
Compressing Dynamically Generated Textures on the GPU

Oskar Alexandersson
Lund University / TAT

Christoffer Gurell
Lund University / TAT

Tomas Akenine-Möller
Lund University

1 Introduction
To reduce bandwidth usage to textures in a graphics hardware ar-
chitecture, it is common to use texture compression (see Fenney’s
paper [2003] for an overview of previous work). The idea is to com-
press textures to a fixed rate. When the rasterizer requests texels,
they are sent in compressed form over the bus, and the GPU decom-
presses them as needed. For texture compression, the focus is often
on image quality. Therefore compression is done offline, allowing
for compression times of several seconds or even minutes. Hence,
traditionally, texture compression isn’t used for compression of dy-
namically generated textures. Examples include dynamically gen-
erated cube maps and user interfaces. In this sketch, we show that
by allowing a slight decrease in image quality, textures can be com-
pressed about 100 times faster using the GPU, and that compress-
ing dynamically generated textures can significantly reduce texture
bandwidth usage.

2 Algorithm
We have chosen to use the S3 texture compression scheme
(S3TC) [Brown 2001] since it is available in both OpenGL and
DirectX. However, we could have used any TC scheme to prove
our concept. In S3TC, two base colors are quantized to RGB565
for each 4× 4 tile, and during decompression, two additional col-
ors are interpolated in between these base colors. Thus, each tile
obtains a local palette of four colors, and each texel in the tile can
select either of these using a two-bit index. In total, 64 bits of stor-
age is needed for a 4× 4 tile. To compress a texture, we fit a line
in RGB space that minimizes the mean square error (MSE). This
line will pass through the average of the colors and the direction
is found using principal component analysis (PCA). By projecting
the colors onto this line, an interval encompassing all tile colors
is found, and this interval gives us the two base colors. For each
texel we then choose the two-bit index that represents the closest
color. A basic “GPU port” of this algorithm is fairly simple with
the following exceptions:

Lack of integers. The compression algorithm involves a lot
of integer math and bitwise operators. This becomes problematic,
since current GPUs lack these features. Instead, we have to rely on
floats. We represent each 32-bit integer by four floats, each holding
a value between 0 and 255. Bitwise operations have to be done
using standard arithmetics. Before we write to the output texture,
each of the four floats are divided by 255 in order to obtain values
between 0.0 and 1.0. When writing to an RGBA8 texture, these
values are automatically mapped to 8-bit integers.

Four bytes of output. In a single pass, we can never write
more than four bytes to a single render target. Since we need to
write 8 bytes (64 bits) per tile, the shader needs different code paths
for odd/even pixels. We can use either a two-pass or a one-pass
shader program. Even though the latter alternative involves com-
puting the base colors twice, we use this approach because it is
more straightforward and it benefits more from texture caching.

No “texture casting”. In order to have bit-level control over
the constructed S3TC texture, we have to output to an RGBA8 tex-
ture. There is currently no way to immediately make the graphics
hardware use this RGBA8 texture as an S3TC texture. Instead, we
currently read it back to RAM and upload it as an S3TC texture.
Ideally, we would need a way to inform the graphics driver that
“this RGBA8 texture is now an S3TC texture”. We call this proce-
dure texture casting.

Original ATI Compressonator GPU

34.4 dB 32.6 dB
Figure 1: Quality comparison. PSNR numbers are shown below the images.

3 Results
Compressing a texture involves reading the original texture once,
and writing the compressed texture once. Assuming the original
texture uses x bytes, the compression costs1: x + x

6 = 7x
6 bytes. If

all texels in the texture are accessed every frame, then rendering n
frames costs: 7x

6 + nx
6 , while the cost using non-compressed textures

is: nx. This implies that bandwidth savings occur when n > 1.4, i.e.,
already on the second frame. Rendering using compressed textures
converges towards x

6 bytes per frame. Although this is a special
case, the same applies to a real GPU architecture where tiles of
texels are being read rather than individual texels.

Our implementation compresses a 512× 512 texture in 25 ms
using the GPU2, which is about 100× faster than on the CPU. This
speed advantage has two causes: 1) the compression algorithm is
well suited for a streaming architecture, so a GPU implementation
provides generous speedups, and 2) a CPU implementation usually
searches for a better line fit in a small region around the line end-
points, and this is not done on the GPU. As a result, our image
quality is on average about 2.5 dB lower in peak-signal-to-noise-
ratio (PSNR) using eight test images, but we find the image quality
useful for real-time purposes.

The speed advantage of our algorithm opens up new possibili-
ties in terms of applications for texture compression. For example,
dynamically generated textures in user interfaces (e.g., for mobile
phones) can be compressed on the fly using the GPU and used in
subsequent frames. This can provide for substantial bandwidth sav-
ings as can be seen in our accompanying video. Our user interface
renders two images, which are compressed on the GPU, and then a
cross fade between these is generated. Since the compressed tex-
tures are used during several frames in the cross fade, the bandwidth
savings become significant.

The major point of our sketch is to spur an interest in texture
compression on the GPU, and to show that it can provide for great
bandwidth savings. We also hope that graphics hardware manufac-
turers will be inspired to implement texture casting in their drivers,
and perhaps even include hardware texture compression and cast-
ing as part of APIs, such as OpenGL and DirectX. We also want to
emphasize that the bandwidth savings are critical in order to reach
high performance, but also for mobile graphics, minimizing mem-
ory accesses is of uttermost importance since it helps preserving
battery power.

References
BROWN, P. 2001. GL EXT texture compression s3tc. In OpenGL Extension Registry,

http://oss.sgi.com/projects/ogl-sample/registry/.

FENNEY, S. 2003. Texture Compression using Low-Frequency Signal Modulation. In
Graphics Hardware, 84–91.

1All costs are in terms of memory bandwidth.
2NVIDIA Quadro FX 1400 Go (Geforce 6800 Go equivalent)


