2111.06906v1 [cs.GR] 12 Nov 2021

arxXiv

Path Verification for Dynamic Indirect lllumination

PIERRE MOREAU, Lund University, Sweden
MICHAEL DOGGETT, Lund University, Sweden

ERIK SINTORN, Chalmers University of Technology, Sweden

Fig. 1. Rendering in the Villa scene for the baseline on the left, and our error-based method on the right at roughly equal frame time (341 ms, and resp. 333 ms);
in both cases, the number of bounces is limited to 7. The baseline traces 3 million paths in about 178 ms, and the splatting of the photons takes 148 ms. On the
other hand, our method traces and reuses 5 million paths in about 80 ms, and the splatting of the photon takes 236 ms.

In this paper we present a technique that improves rendering performance
for real-time scenes with ray traced lighting in the presence of dynamic
lights and objects. In particular we verify photon paths from the previous
frame against dynamic objects in the current frame, and show how most
photon paths are still valid. When using area lights, we use a data structure
to store light distribution that tracks light paths allowing photons to be
reused when the light source is moving in the scene. We also show that by
reusing paths when the error in the reflected energy is below a threshold
value, even more paths can be reused. We apply this technique to Indirect
Ilumination using a screen space photon splatting rendering engine. By
reusing photon paths and applying our error threshold, our method can
reduce the number of rays traced by up to 5%, and improve performance by
up to 2X.

CCS Concepts: « Computing methodologies — Ray tracing; Rendering.

Additional Key Words and Phrases: Photon Mapping, Global Illumination

1 INTRODUCTION

Indirect illumination is an important cue for the perceived realism
of computer generated imagery, but its accurate computation can be
computationally expensive. A recent survey by Ritschel et al. [2012]
covers many algorithms that approximate indirect illumination for
real-time applications. Since the general problem is complex, and
cannot be easily solved even in offline rendering, where hundreds of
cores can spend hours on a single frame, most real-time algorithms
are specifically designed to generate a good estimation under very
specific assumptions about lighting and materials.

Computing indirect illumination and soft shadows, while con-
sidering animated objects, leads to a more accurate representation

Authors’ addresses: Pierre Moreau, Lund University, Sweden; Michael Doggett, Lund
University, Sweden; Erik Sintorn, Chalmers University of Technology, Sweden.

%® 2021 Copyright held by the authors, published under Creative Commons
CC-BY-SA-4.0 License.

of the lighting in a scene, than can usually be achieved with pre-
computed techniques. In this paper we build upon the photon splat-
ting technique by Moreau et al. [2016] to enable indirect lighting
with multiple dynamic light sources. Unlike Moreau et al. [2016],
where the photon map is recomputed every frame, we propose to
opportunistically reuse as many photon paths as possible, including
those from moving light sources. We achieve this by reusing light-
ing from previous frames, and within area lights. In this paper we
present a technique that uses a photon map with several bounces,
many more than previous techniques, enabling subtle lighting ef-
fects in neighboring areas which have no direct path to the light
source.

Photon mapping traces light paths from the light, and deposits
photon energy onto diffuse surfaces. To create the final image, cam-
era rays are traced to gather the light deposited on surfaces in the
scene. Path tracing instead traces rays from the camera through the
scene until they find a light source. This means that for traditional
path tracing, all segments of a path must be verified if lights or
objects move in the scene. While for photon mapping, only the light
paths from the light to the surface need to be verified, as camera
rays will be traced regardless.

In scenes with moving objects and dynamic light sources, we
present techniques for path verification. If a path from a previous
frame is classified as still valid, we reuse the photon path in the
current frame. By reusing photon paths we are able to achieve
interactive frame rates in scenes with indirect illumination. Unlike
previous methods with geometric approximations or sparse samples
sets, we use a dense photon map, and instead of recomputing all
light per frame, including lighting that is still valid, we carefully
reuse the light transport from the previous frame.

Using photon maps allows indirect illumination to be computed
in world space without the limitations of screen space methods, and

2« Pierre Moreau, Michael Doggett, and Erik Sintorn

enables the possibility to temporally reuse light transport computa-
tions from previous frames.

2 RELATED WORK

Early attempts to achieve precomputed light transport stored it in
textures [McTaggart 2004], or used spherical harmonics to store
precomputed light transport [Sloan et al. 2002], or, more recently,
in precomputed light field probes [McGuire et al. 2017]. These algo-
rithms can be very efficient to query, but require significant compu-
tational resources for offline precomputations, and large memory
buffers for high quality results. More importantly, they do not al-
low for dynamic lights. On the other end of the spectra are screen
space reflection algorithms [Sousa et al. 2011] that can very quickly
estimate the radiance reflected from a glossy material, but only
when the reflected surfaces are directly visible to the user. Other
screen space algorithms [Ritschel et al. 2009] are only effective for
local reflections when the material is lambertian and do not take
into account more complex materials or light sources outside of the
viewing volume.

Dmitriev et al. [2002] used two different types of photons to
detect areas where lighting changed between frames, and focused
updates to the lighting in those regions using corrective photons. This
allows them to support dynamic scenes and prioritise the updates to
perform, however each corrective photons needs to be traced twice,
with one of the tracings taking place against an earlier version of
the scene.

To reduce the number of paths needed per pixel, Bekaert et
al. [2002] proposed creating path segments in neighboring pixels
and sharing those paths to increase the number of paths traced
in each individual pixel. While our work also attempts to reduce
computation per frame by reusing paths, we reuse the photon paths
from the previous frame, not neighboring pixels.

Voxel Cone Tracing [Crassin et al. 2011] alleviates both of these
problems by voxelizing a rough representation of the scene around
the user’s position, and can be used for diffuse indirect illumination,
but is much too expensive in terms of memory to allow for large
scenes. Also this algorithm does not allow for many bounces of
light.

Also dynamic scenes have been mixed with Stochastic Progressive
Photon Mapping [Weiss and Grosch 2012], but this is a much more
complex technique and requires much longer frame times than our
technique.

More recently, several denoising algorithms have been suggested,
that allow for fast denoising of extremely noisy path-traced im-
ages [Chaitanya et al. 2017; Mara et al. 2017; Schied et al. 2017].
By filtering samples both spatially and temporally, the reflected
radiance of each pixel can be estimated almost as well as if hun-
dreds of indirect illumination rays had been shot per pixel and can
handle both glossy and diffuse surfaces. While these approaches
can generate path traced images at real-time rates, they use short
path lengths to ensure performance.

Another recent method is that of Silvennoinen et al. [2017] where
a very sparse set of light probes are updated every frame by shooting
a single ray per direction and looking up the intersected surface’s
direct-lighting response in a texture. Our technique robustly checks

» »

Fig. 2. A simple scene showing an area light source at the top, show as
a grid, from which several photon paths are traced. A small cube moves
in the bottom of the scene, shown in it’s starting position on the left, and
it’s new position on the right. In the right image the cube intersects the
existing segments of all paths. The grid at the top represents what we call a
distribution map covering the two dimensional area light. For the green and
blue paths, as only their last segment is being intersected, we only need to
compute the new intersection point. On the other hand, the red path’s first
segment is intersected also triggering a computation of the new intersection
point, but also a resampling of the BRDF there, due to the second photon
having become invisible from the first one. However, since the new second
photon can see the old third one, and the energy between the two is similar
to before, the third photon is kept as-is.

all dynamic objects, unlike Silvennoinen et al. [2017], which only
has support for approximated dynamic objects and so will fail to
correctly capture the illumination when all light has undergone
several bounces before reaching the camera.

Corso et al. [2017] recently looked into reusing shading informa-
tion at primary view samples from previous frames. This is done by
reprojecting the view sample locations into the current frame and
validating their visibility. They also maintain a uniform distribution
of outgoing rays to avoid having too many or too few paths at a
given pixel. Our approach extends the validation to consider the
whole path rather than just the first segment, and we modified how
the uniform distribution is maintained to apply to light sources and
support area lights.

3 ALGORITHM

Given a scene made only of static objects and lights, the tracing of
the light paths only needs to be done once and can be reused for
all frames. In this paper we focus on the reuse of light paths from
previous frames in the presence of dynamic objects and lights, and
are not concerned with static scenes. To verify that a light path is
still valid in the current frame, it must be checked against moving
objects and light sources. Figure 2 illustrates how the algorithm
handles a single moving object intersecting three photon paths.
In this section we outline how this verification of light paths is
performed first for dynamic lights, and then for dynamic objects.
Our algorithm is made of 5 main steps, that process all light
paths from previous frames and tell a slightly modified photon
mapper/splatter which paths should be retraced; details about the
modifications done to the photon mapper/splatter can be found in
Section 4. In the following we give a brief introduction to the five

Path Verification for Dynamic Indirect lllumination « 3

Update Dynamic Compute Prune Fill Generate Trace Splat/
path origins occlusions DMc paths DMc rays rays Gather
\/

Fig. 3. A diagram showing where our algorithm sits in a regular photon renderer, visualised as a grey box, as well as its different main steps. The green box
groups steps involving distribution maps together, whereas the blue box groups all steps needed for reusing photons from frame to frame. The “generate rays”
and “trace rays” steps bare a few differences in our algorithm, compared to the classic version. However, as those are not significant, they are represented as
the same steps in this diagram; the differences will be presented in Section 4. DMc represents the distribution map of the current frame, computed from the

existing light paths.

Fig. 4. On the left, a spotlight is lighting a certain area on the ground, with
the primary photons represented as black spheres and its near plane as a
blue line. If one was to keep the same photons as the light moves (while still
illuminating the same area), it would result in a distribution of light across
the near plane that is different from the initial one, as seen on the right.

main stages of our algorithm, and then explain them in more detail
later in this section.

Update path origins to match the current position and orien-
tation of light sources.

Dynamic occlusions will detect and schedule for re-tracing
paths intersected by dynamic objects.

Compute DM¢ to know how many light paths are emitted
from each cell.

Prune paths to decrease the number of emitted paths for cells
with too many light paths.

Fill DM¢ to increase the number of light paths in cells below
the required amount.

Apart from “dynamic occlusions”, which will be presented in Sec-
tion 3.2 as it is unnecessary for dynamic lights, the remaining four
main steps will be presented in Section 3.1. Figure 3 shows the struc-
ture of the five steps and where they sit in relation to a regular
photon splatting architecture.

3.1 Supporting dynamic lights

As lights move in a scene, some surfaces that were previously unlit
become now visible to a light source and receive light, while others
fade in the shadows. To validate light paths against such behaviours,
a first approach would be to test whether the primary segment of
each path is still within the light’s field of view, and if not, replace
the whole path by a new one. However this can lead to changes in
the light’s distribution, as showcased in Figure 4.

DM:[1]1[2]

Fig. 5. A simple example of a distribution map for a spotlight in 2D. Here
the distribution map is composed of only three cells, and is represented in
the top-left corner as an array. Each cell keeps track of how many paths
originated from a specific region on the light; the cells form a partition
of all possible origin configurations. The mapping between a cell and its
corresponding region on the light is colour-coded and can be visualised
directly on the figure.

Even a light that moves parallel to the plane it is illuminating, will
have issues if photons that are now no longer visible from the light
are randomly re-traced over the whole volume visible from the light.
This would result in very few photons in the newly visible areas, as
many of the new photons would end up in the already visible areas.
To avoid those issues, we propose to maintain the distribution of
photons from the light source between frames.

To achieve equal distribution across the light we partition its
surface, and its set of outgoing directions into cells, and ensure that
each cell maintains a given amount of primary paths emitted from
that cell. Those cells form an n-D array which we call a Distribution
Map (DM). The parametrisation of this array is not constrained
and can be different for different light types. For example, a point
light could have a 2-D parametrisation (6, ¢) whereas a rectangular
area light could use a 4-D parametrisation (x, y, 0, ¢); an example
of parametrisation for a 2-D spotlight can be seen in Figure 5.

The distribution map is initialised with a user-defined distribution
for the light source. This initial set of values is denoted as DM,
or the targeted distribution of the light. This target distribution
could be updated every frame to allow for textured light sources.
A second distribution map, noted DM, is computed each frame

4« Pierre Moreau, Michael Doggett, and Erik Sintorn

using all existing paths at the end of the previous frame. Each frame,
we apply a set of operations to make DMc converge towards DMr;
those operations might update the values stored in DMc to ensure
that it counts only valid paths.

Update path origins. As the lights move, we need to update the
position on the light from which the paths are emitted. For a point
light, this simply means setting the light sample to the new position
of the light and recomputing the outgoing direction based on this
new position and the existing primary photon. We also check that
the primary photon is still visible from the light, by making use
of the attached shadow map. This will however not work for area
lights, so in those cases, to avoid tracing visibility rays towards
each primary photon, we keep the existing outgoing direction and
compute its intersection with the plane of the light to get the new
origin of the path. Some of the light paths can already be invalidated
during this step.

Compute DMc. As the light path origins have been updated to
reflect the current position and orientation of the lights, we can now
compute how many light paths are emitted from each cell; this is
done for all paths that were successfully updated in the previous
step. If the parametrisation function of the distribution map returns
a correct value given the position on the light and outgoing direction
of a light path, the cell found to have emitted this path is atomically
increased. Otherwise, the path is marked as invalid and will be
re-traced in the “fill DM¢” step.

Prune paths. Thanks to the previous step, we now know how
many paths lie in each cell. Some of them might contain more paths
than they should, if the light moved. In order to converge back to
DM, for each cell where DM¢ > DMr, every path emitted from
that cell will be pruned with the following probability:

DM¢ — DMy

DM M

note that this does not ensure that DM¢ will be equal to DMy, but
ensures that DM will converge towards the target over a number of
frames. Also, all paths pruned by this pass are valid paths: we could
keep them and reduce their energies, however that could result over
time in paths with low energy, so we prune them instead.

Fill DMc. For the same reasons that some cells will contain more
paths, others will be lacking some paths. For each cell to reach its
expected amount of paths, we sample the light to obtain a new
position on the light and outgoing direction. The sampling of the
light is restricted to the domain contained within the cell. Those
inputs will later be used to trace new light paths in the “trace rays”
step.

3.2 Supporting dynamic objects

To handle dynamic objects, the “dynamic occlusions” step of the
algorithm adds visibility rays to compute whether the visibility
between two vertices of the path changed. These rays test the cur-
rent segment against the bounding box of every dynamic object
in the scene, and kill the segment if any of the tests fail. This is a
conservative approach and might return false positives.

In order to avoid unnecessary tests, we test the segments of a
path in order, starting from the segment leaving the light. If the ith
segment of the path is intersected by a dynamic object, all segments
after it will be different. After a segment is found to be intersected
by a dynamic object, we schedule that segment and all the following
ones to be re-traced.

3.3 Error-based threshold for path reuse

While the solution presented in Section 3.2 is straightforward, some
paths propagate very similar energy from frame to frame and could
be reused. Instead of killing the intersected segment i, we trace
a visibility ray from the segment’s origin to it’s destination, and
compute the new end of that segment, which is also the origin of
the next segment j. As we updated the origin of j, we may break
the visibility between both ends of that segment. We can trace
a new visibility ray along j to compute its new end point, and
continue similarly until we reach the end of the path. The error-
based threshold algorithm is shown in Algorithm 1.

We can however avoid the visibility ray under certain circum-
stances: if the segment is not intersected by any dynamic objects,
neither its origin nor end are located on dynamic objects, and its
newly computed origin is located at the same position as its old
origin. This situation can occur when segment i is intersected by the
bounding box of a dynamic object, but in practice is not intersected
by any of the object’s triangles.

When reusing path vertices, sometimes the energy reflected Ey,
at the new intersection point is very similar to how much energy Ep,
was being reflected at the old intersection point. We detect these
cases by using a user specified energy threshold T, and if Equa-
tion 2 is satisfied, we don’t update or propagate the new energy
value saving valuable computation time. Otherwise, all the segments
— starting from the current vertex — are re-traced. By always com-
paring Ep to the original reflected energy Ep, we ensure that we
do not accumulate errors for the energy over multiple frames.

(-TXEp <EN—-Ep)AN(EN—Eo <TXEp) 2)

This technique will never trace more rays than if the whole path
had been invalidated, and can improve the temporal coherency by
reusing some of the segments.

4 IMPLEMENTATION DETAILS

Each path is made up of several photons, and in order to keep track
of the paths’ structure, including the photon order, we store the
photons in a 2-D array where the i-th row contains the i-th photon
of a path, and each column is a different path. This memory layout,
rather than its transpose, allows for better memory access patterns,
as all threads loading their i-th photon will result in consecutive
memory accesses. Photons use a total of 32 bytes:

o Incoming direction (as XYZ): 3 floats;

o ID of object hit: 32-bit integer;

e Energy (as RGB): 3 floats;

o Radius: float.

To help with the current status of a path, we store separately a

small data structure (a single 32-bit word) containing the following:

o The ID of the DM¢’s cell in which this path lies. (22 bits);

Algorithm 1: Error-based threshold approach to dynamic
occlusions handling

// For each path, iterate over its segments,

starting from the first one.

1 foreach Segment € Path do

2 if notintersectedByObjects(Segment) then

3 L continue

// Compute intersection along segment

4 Hit < TraceRay(Segment.origin, Segment.dir)

5 HitPos < ComputeHitPos(Segment, Hit)

6 NextSeg «— Next(Segment, Path)

// Compute new outgoing direction

7 NextSeg.origin < HitPos

8 NextSeg.dir < NextSeg.dest — NextSeg.origin

9 Energy < BRDF(Segment, NextSeg)

10 if notAreEnergiesClose(NextSeg.energy, Energy) then

1 Segment.dest < HitPos
// Sample BRDF to generate new ray
12 return

13 else if AreClose(HitPos, Segment.dest) A

notintersectedByObjects(NextSeg) A

notHitMovingOb ject(NextSeg.origin) A

notHitMovingObject(NextSeg.dest) then
// Skip visibility check between

NextSeg.origin and NextSeg.dest

14 Segment < NextSeg

15 continue

16 Segment.dest < HitPos

// Visibility check for NextSeg will occur on

the next iteration

e The number of segments in the path. (4 bits);

e Starting segment to retrace path from. (4 bits);

e Replace path. The path is retraced if the bit is set. (1 bit);
e Reuse light keeping light position and direction. (1 bit).

The representation of the different steps as seen in Figure 3 does
not match 1:1 to our implementation. For example, we actually
update the path origins and compute the DM in the same kernel,
while the dynamic occlusions are tested right after that. The merging
of the two kernels was done for performance reasons, in order to
avoid reading from memory data that was recently written, and
the two kernels were relatively small. Since the dynamic occlusions
testing can not be done before the path origins are updated, it had
to be moved after the computation of the DMc.

For simplicity reasons, we generate new rays as soon as it has
been decided we need to replace an existing ray. This means that ray
generation is effectively done in multiple places: during the dynamic
occlusions testing, when filling the DM and when processing the
results from the tracing pass, if the maximum depth has not been
reached yet.

Finally, when pruning extra paths, we end up modifying the
number of paths found in the distribution map, while needing to

Path Verification for Dynamic Indirect lllumination « 5

use the initial amount in the pruning probability (see Equation (1)).
This can be achieved by modifying a copy of the distribution, thus
using more memory, or by doing the update in two passes by first
marking the pruned paths, and then editing the distribution map
values. We are using the second approach in our implementation.

5 RESULTS

All presented results were rendered at a resolution of 1920 x 1080
on an NVIDIA Titan X (Pascal architecture, 12 GB of VRAM). The
tracing of the photons was done using OptiX Prime 5.0.0 [Parker
etal. 2010], whereas the path-reuse computations were implemented
using CUDA 9.1 [Nickolls et al. 2008]. We compare our “naive” ap-
proach, presented in Section 3.2, to our error-based method, pre-
sented in Section 3.3 and to a baseline, which consists in not reusing
any information from previous frames and re-tracing every single
path each frame.
We tested our methods on different scenes:

Merry-go-round Conference, with a disc area light placed
above the centre of the conference table, 3 scaling and ro-
tating teapots placed on that table, around which 8 bunnies
move as shown in Figure 6a);

Armadillo Conference scene with an armadillo moving from
one door to the presenter stand, waiting there for a few sec-
onds, then proceeding to the other door as shown in Figure 6b.

Villa a small torchlight, made of a disc-shaped area light, is
moving within the kitchen of a house, indirectly lighting the
living room as shown in Figure 6c¢.

We recorded the first 30 seconds of the rendering of each scene,
for the baseline and our two methods; those videos can be found
in the supplemental materials. The configurations used (number of
paths, resolution of the DM, etc.) are the same as the ones mentioned
in Figure 7. Note that the time displayed in the top-right corner in
the videos corresponds to the total frame time, while Figure 7 and 8
both focus on only a few steps of the process, ignoring for example
the time taken for splatting the photons (> 130 ms) as orthogonal
to the reuse.

5.1 Performance

The breakdowns presented in Figure 8 uses the different categories
presented in Figure 3, but with the modifications described in Sec-
tion 4. So, for example, the “update path origins” time is included
within the “compute DM¢” time, as they are implemented within
the same kernel.

Our two methods only differ in how they handle moving objects,
but their handling of moving lights is the same. This explains why
there is no differences between our two methods, neither in number
of rays reused nor in tracing time, in Figure 7c.

Even our naive method for dynamic objects already significantly
reduces the number of rays traced each frame, for example for the
armadillo scene, it is reduced by 5X, as can be seen in Figure 7b.
This does not translate into a 5x decrease in the time taken by
OptiX prime for tracing those rays, but into a 3x decrease instead.
This could come from more primary rays, proportionally, not being
retraced, compared to secondary rays, which are more expensive,
as well as not taking special care to maximise ray locality and

6 + Pierre Moreau, Michael Doggett, and Erik Sintorn

>

(a) Merry-go-round

(b) Armadillo

(c) Villa

Fig. 6. Images of the scenes used in this paper.

Table 1. Memory-consumption (in MiB) breakdown when not reusing pho-
tons, reusing photons with moving lights and reusing photons with moving
objects. In all scenarios, 5 millions paths containing each at most 7 photons
were considered; those paths were traced from a single disc-shaped area
light, which was associated to a 32% distribution map.

Noreuse Reuse lights Reuse obj.

Path information - 19.07 19.07
Path origin pos. - 57.22 57.22
Distribution maps - 8.000 -
Pruned paths array - 19.07 -
Sub-total - 103.36 76.29
Photon map 1068

Total 1068 1171 1144

coherency. Overall, our error-based method only slightly improves
the number of rays reused, except when the armadillo gets close to
the light source (around frame 250), where it retraces only half the
number of rays compared to our naive method.

The merry-go-round scene reduces the effectiveness of ray reuse,
as many primary rays will be hitting a moving object, instantly
invalidating the whole path. Despite that, our naive method queries
almost half as many rays as the baseline. Furthermore, our error-
based approach reuses close to 1.5X as many rays as our naive
approach, as seen in Figure 7a.

Our different methods do add a small overhead compared to just
re-tracing the paths every frame. This overhead includes updating
the path’s origin, computing the DM and optimising it. On average
the overhead is about 2.5 ms, compared to the average baseline time
of 60 ms, as shown in Figure 8, and even including this overhead
our method still leads to an average 4X increase in performance.

5.2 Memory Consumption

In this section we present the amount of memory being used for
reusing photons from previous frames. As reusing photons can be
decoupled from the method used for rendering using the photon
map, we do not discuss the memory used for the rendering method.

Path information is stored in a single 32-bit word, per path, as
described in Section 4. This compactness does introduce some lim-
itations, like being limited to at most 16 bounces, or to having at

most 4 million cells in a distribution map, but those are not sce-
narios presented in this paper and were done in order to improve
performance and reduce memory consumption. Those restrictions
could be lifted by using more memory instead, without needing to
change the algorithm.

For each path, we also store the position on the light from which
it was emitted; this is only needed for area lights, as for point lights,
it will always be the same position as the light itself. One could avoid
having to store that information separately, by instead storing for
each photon its incoming direction, scaled by the distance between
it and its predecessor, and its position, allowing to recompute the
origin point. However, this will make all photons larger, resulting
in an increased memory consumption.

A single 32* DM is 4 MiB, but as each light gets two of them (the
current one and the expected one), the number reported is 8 MiB.
Note that DMt could be compressed if memory consumption is an
issue, as, depending on the representation used, multiple symmetries
can be exploited. For example for a diffuse rectangular area light, all
points on its surface will have the same outgoing directions profile,
so only one set could be stored, bringing down the distribution map
size from 4-D to 2-D. Also, if using an angular representation for
the directions, the values obtained for the partitioning along 0 are
the same for all ¢ partitions, bringing the dimensionality further
down to 1. DMt can also be computed as needed, to avoid having
to store it.

When we need to process all pruned paths, i.e. paths that were
marked during the “prune paths” step (see Section 3.1), we could go
over the path information attached to each path, and only process
the ones marked. However this could result in blocks with only a
couple of active threads using the GPU resources and preventing
other blocks from running, whereas if combining all active threads
into as few blocks as possible, they could all run simultaneously. So
in order to achieve the latter, we maintain an array containing all
pruned paths, and process from the start only those paths, at the
cost of using more memory (a single 32-bit word per path).

In cases where paths do not bounce up to the limit, our photon
map design (described in Section 4) will be wasting some memory
space. It is however quite simple and allows straightforward accesses
to any photon of any path, and is quite efficient when processing
all paths, at the same ith bounce, simultaneously.

Number of rays traced per frame

2,

£ 11.7M A

s 8.9M +

T .

2 \/_\’\/“\/_\/'_\/‘
£ 6.1M 1

E 33M ~ T~N— _ | _—

OptiX Tracing time per frame

79.46
59.46 1 WM -

=
B s Lad
(7]
E 39.46 - 6: x: ’\"’“% MMMMNM~
= A o "W ot Lok WA P
19.46
' 0 100 200 300 400 500
Frames
—— Baseline ~——— Naive —— Error-based
(a) Merry-go-round
Number of rays traced per frame
2
E 10.8M
2 7.0M
2
g 3.1M A iy
Z -0.7M

OptiX Tracing time per frame

m!

— 36.76
=%
£ 16.76 ‘
3.24 [
0 500 1000 1500 2000
Frames
—— Baseline —— Naive —— Error-based
(b) Armadillo
Number of rays traced per frame
2
£ 5.7M
B
5 4.1M
E2sM i e T || r-r! R
=
Z 0.9M
OptiX Tracing time per frame
44.65
2 »JMW‘W“"' WA o oy
£
o 24.65
£ mm'
= M
4.65

0 200 400 600 800 1000 1200
Frames
—— Baseline ——— Naive —— Error-based
(c) Villa

Fig. 7. Tracing time and number of rays compared to the baseline, for the
different scenes. The merry-go-round and armadillo scenes both used 2
million paths, whereas the villa has 1 million paths, but for all of them the
paths contained at most 7 photons and the distribution map had a resolution
of 8 x 8 X 64 X 64. For our error-based method, the energy threshold was
set to 0.1%.

Path Verification for Dynamic Indirect lllumination « 7

30

Time [ms]
= —= N
o wu (=)

2]
f

500 1000 1500 2000
Frames
I Dynamic occlusions 55 Compute DM
I Generate rays [Trace rays

I Prune paths

(a) Our error-based method

80

Time [ms]

500 1000 1500
Frames

I Generate rays [Trace rays

(b) Baseline

Fig. 8. Breakdowns of our method for reusing photons (top) and of the
baseline (bottom), for the armadillo scene. In both cases, 2 m paths were
traced with a maximum of 7 bounces, and for our method, the distribution
map had a resolution of 8 x 8 x 64 x 64 while a 0.1% error on the outgoing
radiance was allowed on reused segments.

6 LIMITATIONS

Glossy surfaces Ifan intersection on a glossy surface is located
on a static object and neither the incoming nor outgoing
directions have changed, our method will be able to reuse
those segments. However, if the above condition does not
hold, then we might have to re-trace the outgoing ray, as
even a small change in direction can lead to a large change
in reflected energy.

Motion Blur For this to be correct we would need to detect
occlusions in between frames.

8 « Pierre Moreau, Michael Doggett, and Erik Sintorn

7 CONCLUSION

Path tracing for indirect illumination requires a substantial amount
of computation and in this paper we have shown how light transport
paths can be reused temporally by verifying the path segments. In
particular for moving lights we demonstrate that even though the
light source moves, we can still reuse photon paths coming from area
light sources. Furthermore when moving objects are present in the
scene we demonstrate how paths can be brute force tested against
dynamic objects in a relatively short amount of time compared to
overall frame time. By using an error threshold for path verification
we further demonstrate that path reuse can be improved and the
number of retraced rays per frame can be significantly reduced. Path
verification is particularly important for scenes with long paths
where reuse has an even greater impact on frame time.

Since our technique is focused on verifying the validity of paths,
it would also be applicable to camera paths for path tracing methods.
For path tracing the distribution map would be located on the near
plane of the camera and the 2D distribution map should behave
similarly to that of a spotlight.

ACKNOWLEDGMENTS

In the villa scene, the “flash light” [naves 2017] model is courtesy of
naves and the “maison a ossature bois” [Envisioneer 2015] model
is courtesy of ADoc Envisioneer, both under CC Attribution 4.0.
Conference, the bunny, the teapot and Armadillo are taken from
Morgan McGuire’s Computer Graphics Archive [2017]. Pierre and
Michael are sponsored by the Swedish Research Council under grant
Ne 2014-5191.

REFERENCES

Philippe Bekaert, Mateu Sbert, and John Halton. 2002. Accelerating Path Tracing
by Re-using Paths. In Proceedings of the 13th Eurographics Workshop on Rendering
(EGRW). 125-134.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Recon-
struction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoen-
coder. ACM Transactions on Graphics 36, 4, Article 98 (July 2017), 12 pages.
https://doi.org/10.1145/3072959.3073601

Alessandro Dal Corso, Marco Salvi, Craig Kolb, Jeppe Revall Firsvad, Aaron Lefohn,
and David Luebke. 2017. Interactive Stable Ray Tracing. In Proceedings of High
Performance Graphics (HPG °17), Vlastimil Havran and Karthik Vaidyanathan (Eds.).
Association for Computing Machinery, New York, NY, USA, 1-20. https://doi.org/
10.1145/3105762.3105769

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. 2011.
Interactive Indirect Illumination Using Voxel Cone Tracing. Computer Graphics
Forum (Proceedings of Pacific Graphics 2011) 30, 7 (Sept. 2011), 207-207.

Kirill Dmitriev, Stefan Brabec, Karol Myszkowski, and Hans-Peter Seidel. 2002. Interac-
tive Global Illumination Using Selective Photon Tracing. In Proceedings of the 13th
Eurographics Workshop on Rendering (EGRW °02), Paul Debevec and Simon Gibson
(Eds.). The Eurographics Association, Goslar, DEU, 25-36.

ADoc Envisioneer. 2015. Maison a Ossature Bois. https://sketchfab.com/models/
67e4fbf7f01942e0a162ebe0173bb72b

Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech Jarosz. 2017. An
Efficient Denoising Algorithm for Global Illumination. In Proceedings of High Per-
formance Graphics (Los Angeles, California, USA). ACM, New York, NY, USA.
https://doi.org/10.1145/3105762.3105774

Morgan McGuire. 2017. Computer Graphics Archive. https://casual-effects.com/data
https://casual-effects.com/data.

Morgan McGuire, Mike Mara, Derek Nowrouzezahrai, and David Luebke.
2017. Real-time Global Illumination Using Precomputed Light Field
Probes. In Proceedings of the 21st ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games (I3D ’17). ACM, New York, NY, USA,
Article 2, 11 pages. https://doi.org/10.1145/3023368.3023378

Gary McTaggart. 2004. Half-Life® 2/Valve Source™ Shading. In Direct3D
Tutorial (GDC).

Pierre Moreau, Erik Sintorn, Viktor Kampe, Ulf Assarsson, and Michael
Doggett. 2016. Photon Splatting Using a View-Sample Cluster Hierarchy.
In Eurographics/ ACM SIGGRAPH Symposium on High Performance Graph-
ics, UIf Assarsson and Warren Hunt (Eds.). The Eurographics Association.
https://doi.org/10.2312/hpg.20161194

naves. 2017. Flash Light.
123a79642c2646d8b315576828fea84a

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable
Parallel Programming with CUDA. Queue 6, 2 (March 2008), 40-53.
https://doi.org/10.1145/1365490.1365500

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith Mor-
ley, Austin Robison, and Martin Stich. 2010. OptiX: A General Purpose
Ray Tracing Engine. ACM Transactions on Graphics 29, 4, Article 66 (July
2010), 13 pages.

Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan Kautz. 2012.
The State of the Art in Interactive Global lllumination. Comput. Graph.
Forum 31, 1, Article 1 (Feb. 2012), 29 pages. https://doi.org/10.1111/j.1467-
8659.2012.02093.x

Tobias Ritschel, Thorsten Grosch, and Seidel Hans-Peter. 2009. Approximat-
ing dynamic global illumination in image space. In Proc. ACM i3D.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney,
Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachs-
bacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-
guided Filtering: Real-time Reconstruction for Path-traced Global Illu-
mination. In Proceedings of High Performance Graphics (Los Angeles,
California) (HPG ’17). ACM, New York, NY, USA, Article 2, 12 pages.
https://doi.org/10.1145/3105762.3105770

Ari Silvennoinen and Jaakko Lehtinen. 2017. Real-time Global Illumination
by Precomputed Local Reconstruction from Sparse Radiance Probes. ACM
Transactions on Graphics (Proceedings of SGGRAPH Asia) 36, 6 (Nov. 2017),
230:1-230:13. https://doi.org/10.1145/3130800.3130852

Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed Radiance
Transfer for Real-time Rendering in Dynamic, Low-frequency Lighting
Environments. ACM Transactions on Graphics (Proceedings of SSGGRAPH)
21, 3 (July 2002), 527-536. https://doi.org/10.1145/566654.566612

Tiago Sousa, Nickolay Kasyan, and Nicolas Schulz. 2011. Secrets of
CryENGINE 3 Graphics Technology. In Advances in Real-Time Rendering
in 3D Graphics and Games, SSGGRAPH Tutorial. http://www.crytek.com/
cryengine/presentations/secrets-of-cryengine-3-graphics-technology

Maayan Weiss and Thorsten Grosch. 2012. Stochastic Progressive Photon
Mapping for Dynamic Scenes. Computer Graphics Forum 31, 2pt4, Article
1 (May 2012), 8 pages.

https://sketchfab.com/models/

https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/3105762.3105769
https://doi.org/10.1145/3105762.3105769
https://sketchfab.com/models/67e4fbf7f01942e0a162ebe0173bb72b
https://sketchfab.com/models/67e4fbf7f01942e0a162ebe0173bb72b
https://doi.org/10.1145/3105762.3105774
https://casual-effects.com/data
https://doi.org/10.1145/3023368.3023378
https://doi.org/10.2312/hpg.20161194
https://sketchfab.com/models/123a79642c2646d8b315576828fea84a
https://sketchfab.com/models/123a79642c2646d8b315576828fea84a
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1111/j.1467-8659.2012.02093.x
https://doi.org/10.1111/j.1467-8659.2012.02093.x
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3130800.3130852
https://doi.org/10.1145/566654.566612
http://www.crytek.com/cryengine/presentations/secrets-of-cryengine-3-graphics-technology
http://www.crytek.com/cryengine/presentations/secrets-of-cryengine-3-graphics-technology

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Supporting dynamic lights
	3.2 Supporting dynamic objects
	3.3 Error-based threshold for path reuse

	4 Implementation details
	5 Results
	5.1 Performance
	5.2 Memory Consumption

	6 Limitations
	7 Conclusion
	Acknowledgments
	References

