
High-Performance Graphics (2019) Short Paper
T. Foley and M. Steinberger (Editors)

Dynamic Many-Light Sampling for Real-Time Ray Tracing

P. Moreau1,2 , M. Pharr1 and P. Clarberg1

1NVIDIA
2Lund University, Sweden

Abstract

Monte Carlo ray tracing offers the capability of rendering scenes with large numbers of area light sources—lights can be sam-
pled stochastically and shadowing can be accounted for by tracing rays, rather than using shadow maps or other rasterization-
based techniques that do not scale to many lights or work well with area lights. Current GPUs only afford the capability of
tracing a few rays per pixel at real-time frame rates, making it necessary to focus sampling on important light sources. While
state-of-the-art algorithms for offline rendering build hierarchical data structures over the light sources that enable sampling
them according to their importance, they lack efficient support for dynamic scenes. We present a new algorithm for maintaining
hierarchical light sampling data structures targeting real-time rendering. Our approach is based on a two-level BVH hierarchy
that reduces the cost of partial hierarchy updates. Performance is further improved by updating lower-level BVHs via refitting,
maintaining their original topology. We show that this approach can give error within 6% of recreating the entire hierarchy
from scratch at each frame, while being two orders of magnitude faster, requiring less than 1 ms per frame for hierarchy updates
for a scene with thousands of moving light sources on a modern GPU. Further, we show that with spatiotemporal filtering, our
approach allows complex scenes with thousands of lights to be rendered with ray-traced shadows in 16.1 ms per frame.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

Complex illumination is a critical ingredient for the visual rich-
ness of rendered images. Images that include the soft shadows and
diffused lighting that is characteristic of large area light sources
have a markedly more realistic appearance than images rendered
with small numbers of point or directional light sources, which give
stark and harsh lighting effects. However, with more than few light
sources it is infeasible to shade them all individually, especially un-
der the constraints of real-time rendering. Culling and/or stochastic
selection of a subset of lights is necessary. In this work, we focus
on stochastic sampling in order to be able to support many con-
tributing light sources and still compute unbiased results.

With this approach, it is necessary to define a discrete proba-
bility density function (PDF) pl(x, i) that gives the probability of
sampling the ith light as seen from a point x in the scene. The more
closely proportional pl(x, i) is to the reflected light at x due to the
light i’s emission, the less error will be present in the image. Unfor-
tunately, an accurate pl cannot be easily precomputed as there are
millions of shading points x, a scene may have tens of thousands
of lights i, and generally, the optimal sampling distribution varies
drastically between different parts of the scene.

An elegant solution exists for offline rendering: a single bound-
ing volume hierarchy (BVH) is built over all lights and at each point

x, the tree is stochastically traversed [KWR∗17, CEK18]. At each
level of the traversal, the relative contributions of the children nodes
are estimated such that the full distribution pl is never represented
explicitly and only log(n) computations per shading point (where
n is the number of lights) are required. This idea is illustrated in
Figure 1. For offline rendering, the cost of constructing the light
BVH is negligible compared to the rendering time. This is not the
case for real-time rendering, where many fewer rays are generally
traced per frame and no more than a few milliseconds per frame are
available. The goal of this paper is to adapt light BVH methods to
be suitable for real-time ray tracing of dynamic scenes. We make
the following contributions:

• We organize light sources in multiple bounding volume hierar-
chies, arranged in a two-level hierarchy.
• We show that refitting light BVHs without modifying their topol-

ogy can be implemented efficiently on the GPU, and that this ap-
proach works well for moderate amounts of light source motion.
• We demonstrate that top-level BVHs can be rebuilt asyn-

chronously to maintain close-to-optimal overall tree topology.
Thus, our approach can support a wide range of motion without
an increase in sampling error due to sub-optimal BVHs.
• We present results based on a real-time path tracer implemented

in Direct3D 12 using the DirectX Raytracing API.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.
The definitive version is available at https://diglib.eg.org/handle/10.

2312/hpg20191191.

https://diglib.eg.org/handle/10.2312/hpg20191191
https://diglib.eg.org/handle/10.2312/hpg20191191

P. Moreau, M. Pharr & P. Clarberg / Dynamic Many-Light Sampling for Real-Time Ray Tracing

x

Figure 1: Light sources are stored in a bounding volume hierarchy
(illustrated in 2D on the left, and as a tree on the right). To sample
a light at a shading point x, the tree is stochastically traversed by
estimating the contributions from the two children (light clusters)
at each node. Important clusters are given a higher priority and a
random decision is made about which branch to follow.

We show that with our approach, the cost of maintaining the
light acceleration structure is less than 1 ms per frame for dynamic
scenes with tens of thousands of emitters, with mean-squared error
(MSE) within 6% compared to a single optimized light BVH.

2. Previous Work

Kajiya suggested taking a single light sample at each path vertex
regardless of the total number of lights [Kaj86]. Since his work, a
number of researchers have investigated ways of computing accu-
rate estimates of the contributions of the light sources to be able to
choose among them more effectively.

Ward introduced the idea of generating a discrete PDF over lights
at each shaded point [War91] and tracked how often each light
source was visible. Shirley et al. estimated lights’ contributions to
compute per-light probabilities [SWZ96], using an octree to clas-
sify light sources into “bright” and “dim” sets. Zimmerman and
Shirley used a uniform spatial subdivision rather than an octree and
also maintained estimates of each light’s visibility [ZS95]. Wald
et al. generated a light sampling PDF using a sparse path tracing
pass [WBS03]. Their approach works well in densely occluded en-
vironments but does not effectively distinguish between local lights
that are important at some points but less so at others.

A number of light transport algorithms have been developed
based on hierarchical representations of illumination encoded as
point lights, including Lightcuts [WFA∗05] and its predeces-
sor [PPD98]. Closely related are global illumination algorithms
based on virtual point lights (VPLs) [DKH∗14]. These approaches
all use point lights for illumination and not just for sampling, which
introduces the possibility of error from the discretization and the
weak singularity from the 1/r2 term close to the point lights.

Tiled shading [And09, OA11, Har12, OC17] bins lights into
screen-space tiles, where the depth bounds of the tiles reduce the
number of lights that need to be processed in each one. These
screen space acceleration structures are not applicable to indi-
rect intersection points with ray tracing. Further, clamped light
ranges can cause undesired darkening. To address the darken-
ing, Tokuyoshi and Harada used a bounding sphere hierarchy and
stochastic light ranges to reject unimportant lights [TH16].

A number of researchers have investigated other approaches

based on building hierarchies over the light sources and travers-
ing them to sample lights. Iray uses a hierarchical light importance
sampling scheme based on a BVH [KWR∗17]. Conty Estévez and
Kulla [CEK18] take a similar approach for cinematic rendering
with a 4-wide BVH that clusters lights in world space based on both
orientation and surface normal bounding cones. Moreau and Clar-
berg describe a GPU implementation of their algorithm [MC19].
Vévoda et al. [VKK18] recently described an approach based on
online learning of the importance of light sources based on clus-
tering with a hierarchy and a Bayesian approach. Their method
has relatively high memory use, does not support dynamic light
sources, and does not readily map to GPUs.

The idea of “refitting” bounding volume hierarchies for ray in-
tersection acceleration with animated geometry was introduced by
van den Bergen [vdB97] for collision detection, and later applied
to ray–object intersection [LYMT06, WBS07]. These approaches
take advantage of the fact that for relatively small amounts of ob-
ject motion, the original BVH’s topology can be maintained with
node bounds updated to account for moving objects’ new positions.
Doing so saves the computational expense of rebuilding the BVH.
To our knowledge, these techniques have not been applied to light
sampling BVHs. We note that with collision detection and ray–
object intersection, sub-optimal BVHs cause an increase in compu-
tation but do not introduce error. With light sampling, low quality
BVHs instead lead to inaccurate light contribution estimates, which
in turn may lead to variance in rendered images—i.e., error rather
than inefficiency. We apply refitting and study these effects.

3. Algorithm

The light sampling distribution should ideally be proportional to
each light i’s contribution to reflected radiance L at the point x being
shaded: pl(x, i) ∝ L(x,ωo), where ωo is the view direction. The
more closely the distribution matches L, the lower the error will be.
This principle is known as importance sampling in Monte Carlo
integration [PJH16]. However, it is not feasible to determine a pl
that is exactly proportional to L:

L(x,ωo) =
∫

Ai

f (ω→ ωo)Le(xl ,−ω)V (x↔ xl) |cosθ cosθl |
‖x−xl‖2 dxl ,

(1)
where the integration domain Ai is the surface of the ith light, f
is the bidirectional scattering distribution function (BSDF), ω is
the normalized vector from x to a point xl on the light, Le is the
radiance emitted by the light, and V is a visibility term that is one if
the two points are unoccluded and zero otherwise. The two cosine
terms are with respect to the surface normals at x and at xl .

We use the approach by Conty Estévez and Kulla [CEK18] as
implemented by Moreau and Clarberg [MC19], which takes the to-
tal emitted flux, the 1/r2 falloff, and the relative orientations of
the shading normal and light source into account using bounding
cones. Instead of computing these terms for all the light sources,
lights with nearby locations and directions are grouped together
into a light BVH [KWR∗17,CEK18]. The BVH allows hierarchical
approximation of these quantities, reducing the per-sample com-
plexity from O(n) to O(logn) and making it feasible to perform
these computations at every shading point. This algorithm can be
applied to point or area lights, as well as emissive triangles.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

The definitive version is available at
https://diglib.eg.org/handle/10.2312/hpg20191191.

https://diglib.eg.org/handle/10.2312/hpg20191191

P. Moreau, M. Pharr & P. Clarberg / Dynamic Many-Light Sampling for Real-Time Ray Tracing

Figure 2: Care has to be taken when deciding which light sources
to put in each bottom-level hierarchy. Left: it is difficult to accu-
rately estimate the contribution from the large overlapping BLASes,
leading to higher variance. Right: it is preferable to place lights
that are spatially nearby in the same hierarchies.

3.1. Two-Level Light Acceleration Structures

Previous approaches used a single BVH for all light sources. The
BVH must be rebuilt from scratch if even a single light moves
or changes intensity. That approach isn’t suitable for real-time
rendering with dynamic lights due to the cost of rebuilding the
BVH [MC19].

The problem is closely related to managing data structures for
ray-intersection testing in dynamic scenes. APIs like DirectX Ray-
tracing or Vulkan ray tracing and libraries like OptiX [PBD∗10]
and Embree [WWB∗14], use two-level BVHs that store collections
of geometry in separate bottom-level acceleration structure (BLAS)
and maintain a separate top-level acceleration structure (TLAS)
that stores the BLASes. A moving object only causes its BLAS
and the TLAS to be rebuilt. The cost of hierarchy updates is kept
low if static geometry is stored separately from dynamic objects.

With light BVHs, that partitioning is not ideal for static lights
as it would lead to large BVH nodes and therefore poor estimates
of node contributions due to having many emissive primitives and
high uncertainty regarding their positions and orientations within
the node. Other strategies such as sorting based on material can
similarly be counterproductive; see Figure 2. We have found that
storing each emissive mesh in its own BLAS generally gives a good
balance. Figure 3 shows an example from one of our test scenes. In
future work, it would be interesting to investigate automatic ways
to partition emissive geometry into BLASes.

We sample our two-level light BVH by first traversing the TLAS
down to a leaf node by evaluating an importance function [CEK18]
for each of the current node’s children and stochastically select-
ing one of them. Each leaf node points to a BLAS, and the same
technique is used to select a light in it. The overall probability of
sampling a light is the product of the probability of sampling the
BLAS it is in and the probability of sampling it in its BLAS.

3.2. Updating the Two-Level Acceleration Structure

By design, if a light source has been modified then only the TLAS
and BLAS to which it belongs need to be updated. Those updates
can either take the form of fully rebuilding the hierarchy or refit-
ting it. The latter keeps the topology of the hierarchy intact—i.e.,
the parent/children relationships between the nodes stay the same,
as well as which primitives are stored in each leaf node—but the
aggregate attributes like bounding boxes are updated to account
for the object motion [LYMT06, WBS07]. For our light BVHs, the

Figure 3: Each yellow box is the root node of a bottom-level accel-
eration structure (BLAS), here shown for the Bistro scene. Notice
that both static light sources, e.g., the street lights and hanging light
bulbs, and dynamic emissive objects are each represented by one or
more BLASes, here in total 142 for the full scene.

BLAS 1 BLAS 2 BLAS 3

Figure 4: Our light BVH refit operation is performed bottom-up on
all modified bottom-level hierarchies in parallel, with one compute
shader dispatch per tree level (as shown in green). For this purpose,
each tree stores a list of node indices sorted by tree level.

aggregate attributes also include the total emitted flux and normal
bounding cones. Thus, even static light sources can trigger a rebuild
or refit if their flux changes (for example, flashing lights).

After object animation, we dispatch compute shader passes on
the GPU for all modified BLASes, with a separate dispatch for
each tree level bottom-up, updating the current row’s nodes based
on their children’s aggregate attributes; see Figure 4. We then also
refit the TLAS on the GPU, to let rendering immediately proceed.
However, we have found it worthwhile to rebuild the TLAS to keep
it as accurate as possible. Therefore, we perform an asynchronous
full rebuild of the TLAS on the CPU; this lets us exploit idle CPU
cycles while the GPU is busy rendering without introducing extra
latency. Figure 5 shows an execution timeline.

4. Results

We evaluated our approach using two complex scenes with dy-
namic light sources; see below for general statistics and Figure 3
and 6 for representative images. The scenes contain both skinned
animation and multiple rigid objects that follow animation paths.
Note that we perform BVH refit for all moving objects, indepen-
dent of their amount of motion and type of animation. The algo-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.
The definitive version is available at https://diglib.eg.org/handle/10.

2312/hpg20191191.

https://diglib.eg.org/handle/10.2312/hpg20191191
https://diglib.eg.org/handle/10.2312/hpg20191191

P. Moreau, M. Pharr & P. Clarberg / Dynamic Many-Light Sampling for Real-Time Ray Tracing

time

GPU

CPU

Sc
en

e
up

da
te

Sk
in

ni
ng

GBu�er
BLAS
re�t

TLAS
re�t

Rendering
+ post-process

TLAS
rebuild Sc

en
e

up
da

te

TLAS
rebuild

Sk
in

ni
ng

GBu�er
BLAS
re�t

TLAS
re�t

frame n frame n+1

Figure 5: The bottom-level (BLAS) and top-level (TLAS) light BVHs are refitted on the GPU based on the current vertex positions and flux
values for the emissive geometry. To maintain a good topology, the TLAS is rebuilt asynchronously on the CPU based on last frame’s data.

rithms were implemented in the Falcor real-time rendering frame-
work [BYF∗18] using Microsoft Direct3D 12 and DirectX Ray-
tracing (DXR). All results were measured on an NVIDIA GeForce
RTX 2080Ti GPU with 12GB RAM using driver 419.67, on a com-
puter with an Intel Xeon E5-1650 v4 CPU at 3.60GHz and 32GB
RAM. The output resolution was 1920×1080 pixels.

Scene Bistro Emerald Square
Total triangles 3,038,170 9,687,074
Emissive triangles (static) 19,948 19,440
Emissive triangles (dynamic) 6,495 66,172

Using a two-level BVH rather than a single unified one may
reduce importance sampling accuracy (recall Figure 2.) In order
to evaluate the importance of this issue, we first measured ren-
dering time and the mean squared error (MSE) for static scene
using one light sample per pixel (spp) with three sampling ap-
proaches: uniform probabilities over all of the light sources, a sin-
gle light sampling BVH on the GPU [MC19], and our two-level
BVH. Error was measured with respect to reference images ren-
dered with 10,000 spp. Times were averaged over a few hundred
frames and only include the ray-tracing pass to compute lighting—
the time to generate the G-buffer (roughly 2 ms) and for tone map-
ping (less than 1 ms) is not included. All techniques were com-
bined with BRDF sampling using multiple importance sampling
(MIS) [VG95], taking one BRDF sample for each light sample. For
clarity of presentation, only direct illumination was evaluated; the
total number of rays per pixel was therefore 2×spp (one shadow
ray and one BRDF scatter ray).

The results are presented in Table 1. As has been demonstrated
previously [CEK18, MC19] and is evident here, a uniform light
sampling PDF is ineffective in scenes with many light sources. For
these scenes, the increase in MSE from replacing a single BVH
with a two-level BVH is insignificant. Note also that there is a neg-
ligible difference in runtime performance between these variants.

We next performed a set of experiments to compare four ap-
proaches for rendering scenes with moving light sources: uniform
light sampling; a single-level BVH that is built from scratch when
any light changes; a single-level BVH that is refit when a light
changes; and a two-level BVH where bottom-level BVHs are re-
fit and the top-level is rebuilt. Lacking an efficient GPU algorithm
to build the entire BVH, the second approach is not suitable for
real-time applications—a full rebuild for these scenes takes over
90 ms—but it provides a baseline that gives the best sampling prob-
abilities and thus the lowest MSE.

Because all of these sampling methods are unbiased, Monte

Figure 6: The Emerald Square scene with crops rendered using
1 spp, 4 spp, and 16 spp, respectively. This scenes has 143 dynamic
emissive meshes for a total of 66,172 moving emissive triangles.

Carlo efficiency is a useful metric. It is defined as the inverse prod-
uct of rendering time t and variance v [PJH16], which MSE is an
estimate of: ε = 1

t·v . Monte Carlo efficiency cleanly accounts for
the interplay between computation time and error in the integra-
tion: because variance (and MSE) decreases at the rateO(1/N) for
a number of samples N, it correctly indicates that, for example, a
method that takes twice as much time as another to deliver half
as much variance is no improvement: we could equivalently take
twice as many samples with the first and expect the same variance.

The results are reported in Table 2. As before, timings are the
average over a few hundred frames and MSE is computed with re-
spect to a reference rendering with 4,000 spp. We can see that the
slight reduction in update time from refitting a single BVH is not
worth it: the increase in MSE is such that its Monte Carlo efficiency
is on par with or lower than our approach. In a similar fashion, we
can see that although a single-level BVH that is built from scratch
when lights move gives the best MSE, the cost to build the BVH
also is not worth it in terms of overall efficiency.

Next, we measured the effect of the accumulation of error from
refitting BVHs over long animations—extensive motion of light
sources may cause the original BVH topology to become inappro-
priate. See the accompanying video in order to see the animation.
The results are presented in Figure 7 and 8. We can see that rebuild-
ing the TLAS is worth the small computational cost.

Finally, as presented thus far, our method produces consistent,
unbiased results. For practical use at low sample counts, it is es-
sential to pair it with a reconstruction filter to remove the resid-
ual Monte Carlo noise. As a proof of concept, we have integrated
spatiotemporal variance-guided filtering (SVGF) [SKW∗17] in the
renderer. Figure 9 shows an example rendered at 1 spp using uni-
form sampling and our method, before and after denoising. Note
that the denoised result with our method is much closer to ground
truth, thanks to the denoiser having better input to work with. Our

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

The definitive version is available at
https://diglib.eg.org/handle/10.2312/hpg20191191.

https://diglib.eg.org/handle/10.2312/hpg20191191

P. Moreau, M. Pharr & P. Clarberg / Dynamic Many-Light Sampling for Real-Time Ray Tracing

Scene Bistro Emerald Square
Uniform One-level BVH Two-level BVH Uniform One-level BVH Two-level BVH

Time (ms) 6.2 10.4 10.7 7.7 11.3 11.6
MSE 16.8 2.12 2.14 19 0.49 0.50

Table 1: Rendering time and error using 1 spp for the first frame of the animations of the two scenes with time paused, i.e., no dynamic
updates were performed. The two-level BVH only introduces a negligible increase in error of 1–2% compared to a single-level BVH.

Scene Bistro Emerald Square
Uniform One-level One-level Two-level Uniform One-level One-level Two-level

(rebuild) (refit) (rebuild/refit) (rebuild) (refit) (rebuild/refit)
BVH update time (ms) 0 ~90 0.17 0.85 / 0.18 0 ~300 0.22 0.89 / 0.35
Sampling time (ms) 0.34 2.3 2.4 2.6 0.32 2.0 2.0 2.2
Total time (ms) 6.2 101 10.8 12.0 7.7 311 11.3 12.6
MSE 16.5 1.56 1.95 1.65 20 0.58 0.67 0.61
MC efficiency ε 0.0097 0.0064 0.048 0.050 0.0065 0.0055 0.13 0.13
ε w.r.t. uniform 1× 0.66× 4.9× 5.2× 1× 0.85× 20.3× 20.1×

Table 2: Performance and error for with two different scenes rendered at 1 spp. Error was measured after 269 frames in order to capture
large amounts of light movement. By comparing the Monte Carlo efficiency of the various approaches, we can see that our approach (two-
level) has a much higher efficiency than one-level rebuild, without suffering from the robustness issues of refitting only, as pictured in Figure 8.
Notice that we have summed the CPU and GPU execution times in this table, even though in reality they overlap.

1.0

0 100 200 300
Frames

M
S
E

1-level refit
2-level rebuild/refit

Mean squared error (Bistro, 4spp)

0.8

0.6

0.4

0.2

Figure 7: Error over time for an animation of the Bistro scene ren-
dered at 4 spp. The benefit of rebuilding the top-level BVH results
in an up to 1.4× reduction in MSE compared to using a one-level
BVH that is refitted every frame. Notice that locally the differences
can be much larger; see Figure 8.

SVGF implementation has not been optimized, and currently runs
in roughly 4 ms per frame, for a total frame time of 16.1 ms for
this scene. The supplemental video shows SVGF filtering with ani-
mation. The video was rendered with 4 spp, giving a frame time of
31.7 ms. Note that the filtered output is generally of high quality,
with only minor temporal artifacts and ghosting. Gradient estima-
tion [SPD18] would presumably reduce the ghosting.

5. Conclusion and Future Work

The arrival of ray tracing as a first-class visibility primitive in mod-
ern graphics APIs presents an opportunity for substantial improve-
ments in the realism and richness of real-time graphics. We have
introduced an approach for unbiased many-light sampling on GPUs
that is suitable for ray tracing dynamic scenes. Our method is based

Figure 8: Crops of the Bistro scene for frame 269 of the animation
at 4 spp, using a one-level BVH that is refitted each frame on the
left, our two-level BVH in the center, and a reference on the right.

on a two-level hierarchy of acceleration structures over the lights
and includes efficient update and sampling algorithms.

In the future, we would like to develop algorithms for building
light BVHs from scratch on the GPU. Not only would it be de-
sirable to eliminate CPU-GPU copies, but a sufficiently efficient
algorithm would also allow the option of building a single BVH
from scratch for moderate numbers of dynamic light sources. We
would also like to investigate heuristics for determining when a re-
fit light BVH has come to be ineffective and should be rebuilt. We
hope that our work will inspire forward looking game engines and
further research in rendering with complex lighting.

Acknowledgments Thanks to Nicholas Hull and Kate Anderson
for creating the scenes. The Bistro scene is based on assets kindly
donated by Amazon Lumberyard. The car model was made by Tur-
bosquid user barteks2, and the helicopter asset by Sketchfab user
f3nix. We would also like to thank Lund University, Aaron Lefohn
and NVIDIA Research for supporting this work, and the Swedish
Research Council for funding Pierre under grant 2014-5191.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.
The definitive version is available at https://diglib.eg.org/handle/10.

2312/hpg20191191.

https://diglib.eg.org/handle/10.2312/hpg20191191
https://diglib.eg.org/handle/10.2312/hpg20191191

P. Moreau, M. Pharr & P. Clarberg / Dynamic Many-Light Sampling for Real-Time Ray Tracing

1× 0.0128× 0.0517× 0.0061× –

Figure 9: Crops of the Bistro scene and MSE with respect to uniform light sampling. From left to right: uniform light sampling at 1 spp;
filtered with SVGF [SKW∗17] (5 frames accumulated); two-level BVH sampling at 1 spp, filtered output (5 frames acc.); reference image.

References
[And09] ANDERSSON J.: Parallel Graphics in Frostbite—Current & Fu-

ture. Beyond Programmable Shading, SIGGRAPH Courses, 2009. 2

[BYF∗18] BENTY N., YAO K.-H., FOLEY T., OAKES M., LAVELLE C.,
WYMAN C.: The Falcor rendering framework, 05 2018. URL: https:
//github.com/NVIDIAGameWorks/Falcor. 4

[CEK18] CONTY ESTÉVEZ A., KULLA C.: Importance Sampling of
Many Lights with Adaptive Tree Splitting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 1, 2 (2018), 25:1–25:17.
1, 2, 3, 4

[DKH∗14] DACHSBACHER C., KŘIVÁNEK J., HAŠAN M., ARBREE A.,
WALTER B., NOVÁK J.: Scalable Realistic Rendering with Many-Light
Methods. Computer Graphics Forum 33, 1 (2014), 88–104. 2

[Har12] HARADA T.: A 2.5D Culling for Forward+. In SIGGRAPH Asia
2012 Technical Briefs (2012), pp. 18:1–18:4. 2

[Kaj86] KAJIYA J. T.: The Rendering Equation. Computer Graphics
(SIGGRAPH) (1986), 143–150. URL: http://doi.acm.org/10.
1145/15922.15902, doi:10.1145/15922.15902. 2

[KWR∗17] KELLER A., WÄCHTER C., RAAB M., SEIBERT D., VAN
ANTWERPEN D., KORNDÖRFER J., KETTNER L.: The Iray Light
Transport Simulation and Rendering System. arXiv, https://
arxiv.org/abs/1705.01263, 2017. 1, 2

[LYMT06] LAUTERBACH C., YOON S. E., MANOCHA D., TUFT D.:
RT-DEFORM: Interactive ray tracing of dynamic scenes using BVHs. In
Proceedings of the IEEE Symposium on Interactive Ray Tracing (2006),
pp. 39–46. 2, 3

[MC19] MOREAU P., CLARBERG P.: Importance sampling of many
lights on the GPU. In Ray Tracing Gems, Haines E., Akenine-Möller
T., (Eds.). Apress, 2019, pp. 255–283. http://raytracinggems.
com. 2, 3, 4

[OA11] OLSSON O., ASSARSSON U.: Tiled Shading. Journal of Graph-
ics, GPU, and Game Tools 15, 4 (2011), 235–251. 2

[OC17] O’DONNELL Y., CHAJDAS M. G.: Tiled Light Trees. In Sym-
posium on Interactive 3D Graphics and Games (2017), pp. 1:1–1:7. 2

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., STICH M.: OptiX: A General Purpose Ray
Tracing Engine. ACM Transactions on Graphics 29, 4 (July 2010),
66:1–66:13. URL: http://doi.acm.org/10.1145/1778765.
1778803. 3

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation, third ed. Morgan Kauf-
mann, 2016. 2, 4

[PPD98] PAQUETTE E., POULIN P., DRETTAKIS G.: A Light Hierarchy
for Fast Rendering of Scenes with Many Lights. Computer Graphics
Forum 17 (1998), 63–74. 2

[SKW∗17] SCHIED C., KAPLANYAN A., WYMAN C., PATNEY A.,
CHAITANYA C. R. A., BURGESS J., LIU S., DACHSBACHER C.,
LEFOHN A., SALVI M.: Spatiotemporal Variance-Guided Filtering:
Real-Time Reconstruction for Path-Traced Global Illumination. In Pro-
ceedings of High-Performance Graphics (2017), pp. 2:1–2:12. 4, 6

[SPD18] SCHIED C., PETERS C., DACHSBACHER C.: Gradient Esti-
mation for Real-Time Adaptive Temporal Filtering. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 1, 2 (2018),
24:1–24:16. 5

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN K.: Monte Carlo Tech-
niques for Direct Lighting Calculations. ACM Transactions on Graphics
15, 1 (1996), 1–36. 2

[TH16] TOKUYOSHI Y., HARADA T.: Stochastic Light Culling. Journal
of Computer Graphics Techniques 5, 1 (2016), 35–60. 2

[vdB97] VAN DEN BERGEN G.: Efficient Collision Detection of Complex
Deformable Models using AABB Trees. Journal of Graphics Tools 2,
4 (1997), 1–13. URL: https://doi.org/10.1080/10867651.
1997.10487480. 2

[VG95] VEACH E., GUIBAS L. J.: Optimally Combining Sampling
Techniques for Monte Carlo Rendering. In Proceedings of SIGGRAPH
(1995), pp. 419–428. 4

[VKK18] VÉVODA P., KONDAPANENI I., KŘIVÁNEK J.: Bayesian on-
line regression for adaptive direct illumination sampling. In ACM Trans-
actions on Graphics (2018), pp. 125:1–125:12. 2

[War91] WARD G. J.: Adaptive Shadow Testing for Ray Tracing. In
Eurographics Workshop on Rendering (1991), pp. 11–20. 2

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Interactive Global Il-
lumination in Complex and Highly Occluded Environments. In Proceed-
ings of the 14th Eurographics Workshop on Rendering (2003), pp. 74–
81. URL: http://dl.acm.org/citation.cfm?id=882404.
882415. 2

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray Tracing Deformable
Scenes Using Dynamic Bounding Volume Hierarchies. ACM Transac-
tions on Graphics 26, 1 (Jan. 2007). URL: http://doi.acm.org/
10.1145/1189762.1206075. 2, 3

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: A Scalable Approach to
Illumination. ACM Transactions on Graphics 24, 3 (2005), 1098–1107.
2

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Transactions on Graphics 33, 4 (July 2014), 143:1–143:8. URL: http:
//doi.acm.org/10.1145/2601097.2601199. 3

[ZS95] ZIMMERMAN K., SHIRLEY P.: A Two-Pass Solution to the Ren-
dering Equation with a Source Visibility Preprocess. In Rendering Tech-
niques (1995), pp. 284–295. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

The definitive version is available at
https://diglib.eg.org/handle/10.2312/hpg20191191.

https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
http://doi.acm.org/10.1145/15922.15902
http://doi.acm.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://arxiv.org/abs/1705.01263
https://arxiv.org/abs/1705.01263
http://raytracinggems.com
http://raytracinggems.com
http://doi.acm.org/10.1145/1778765.1778803
http://doi.acm.org/10.1145/1778765.1778803
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1080/10867651.1997.10487480
http://dl.acm.org/citation.cfm?id=882404.882415
http://dl.acm.org/citation.cfm?id=882404.882415
http://doi.acm.org/10.1145/1189762.1206075
http://doi.acm.org/10.1145/1189762.1206075
http://doi.acm.org/10.1145/2601097.2601199
http://doi.acm.org/10.1145/2601097.2601199
https://diglib.eg.org/handle/10.2312/hpg20191191

