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Figure 1: This figure shows an equal-time comparison for the SAN-MIGUEL scene with motion blur. We compare ground truth
(GT) images rendered with 2048 samples per pixel against multi-jitter quasi-Monte Carlo (QMC) rendering and against our
time-continuous quasi-Monte Carlo (TC-QMC) approach. Note that the TC-QMC images are essentially noise-free in terms of
visibility and so the remaining noise comes from shading evaluation, which is point sampled. QMC obtains 38.1 dB in image
quality and was rendered in 22.7 seconds using 64 shading samples per pixel. Using our method (TC-QMC), the PSNR becomes
40.75 dB and rendering time 22.1 seconds using 66.8 shading samples on average, which is a substantially better result.

Abstract
Domain-continuous visibility determination algorithms have proved to be very efficient at reducing noise otherwise
prevalent in stochastic sampling. Even though they come with an increased overhead in terms of geometrical tests
and visibility information management, their analytical nature provides such a rich integral that the pay-off is often
worth it. This paper presents a time-continuous, primary visibility algorithm for motion blur aimed at ray tracing.
Two novel intersection tests are derived and implemented. The first is for ray vs. moving triangle and the second
for ray vs. moving AABB intersection. A novel take on shading is presented as well, where the time continuum
of visible geometry is adaptively point sampled. Static geometry is handled using supplemental stochastic rays
in order to reduce spatial aliasing. Finally, a prototype ray tracer with a full time-continuous traversal kernel
is presented in detail. The results are based on a variety of test scenarios and show that even though our time-
continuous algorithm has limitations, it outperforms multi-jittered quasi-Monte Carlo ray tracing in terms of
image quality at equal rendering time, within wide sampling rate ranges.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Raytracing

1. Introduction

Motion blur has a profound impact in synthesized imagery
and is increasingly indispensable in off-line and real-time

rendering alike. Used right, motion blur helps immersing the
viewer in the image while providing intuition about what
moves and where. One of the major challenges with mo-
tion blur, as with other higher domain effects such as depth-
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of-field, is visibility determination. As geometry moves, the
geometrical content seen through a pixel increases and gets
harder to determine. This problem gets substantially more
difficult when the geometry is thin or complex, which is
the case for, e.g., foliage and latticework. Two main ap-
proaches are available when determining temporal visibil-
ity, namely, using point sampling, e.g., quasi-Monte Carlo
(QMC) [KPR12], and analytical approaches. In QMC, time
is treated as a stochastic variable with a low-discrepancy dis-
tribution, and the geometry is tested at each and every one
of these samples. QMC is simple and extremely general –
most modern ray tracers utilize QMC as a universal integra-
tion scheme over all dimensions such as space, time, lens,
area light source, etc – but may converge slowly for high
frequency input. In analytical approaches, time is instead
treated as a continuum, which provides a solution of tem-
poral visibility on closed form. Analytical approaches are
typically more computationally expensive and require man-
agement of visibility data, but have proved very potent in
producing high quality results due to its closed form, both for
motion blur rasterization [GDAM10, GBAM11] but also for
depth of field rasterization [TPD∗12]. Analytical approaches
have been explored previously in the context of rasterization,
but our work is, to the best of our knowledge the first in-
depth investigation of analytical, temporal visibility for ray
tracing. Our contributions include novel world space ray in-
tersection tests and a prototype ray tracer able to trace both
stochastically and analytically depending on scene content.

One advantage of ray tracing compared to rasterization,
in the context of analytical visibility, is memory require-
ments. In general, analytical approaches produce significant
amounts of visibility data (unbounded, in fact). While a ras-
terizer must store this data in memory for each z-buffer sam-
ple over a tile or even the entire framebuffer, a ray tracer only
needs to store this data per allocated ray. Though this number
between allocated z-buffer samples and rays (in streams or
packets for instance) may differ between implementations,
the former may well be an order of magnitude or more larger,
which reduces relative memory requirements for ray tracing.
Another important benefit in the context of time-continuous
vs. time-discrete visibility is that visibility determination is
decoupled from shading sampling. Once a visibility set has
been obtained, shading can be sampled arbitrarily over the
geometry without need for further traversal of the data struc-
ture. This benefit reveals itself in our results, where the cost
of our method increases more slowly compared to QMC
with the number of shading samples.

We show that analytical temporal visibility, despite being
fundamentally different from QMC in many ways, can be
readily integrated into a high-end ray tracer and outperform
regular QMC under certain, though not all, circumstances.
Our aim is to provide an as clear picture of this algorithm
as possible, both in terms of benefits and drawbacks. Our
contributions include the following:

• Derivation of two new geometrical intersection tests:

– Ray vs. moving triangle with temporal segments.
– Ray vs. moving AABB with temporal bounds.

• A novel time-space, feature-aware scheme for shading
sampling.

• A prototype ray tracer with mixed time-discrete and time-
continuous visibility for static and dynamic geometry.

Paper disposition Derivations of the required geometrical
tests are made in Section 3. This section also includes details
of how visibility information is managed. Section 4 explains
how shading is sampled over a pixel, both in time and spa-
tially. Section 5 contains an overview of our prototype ray
tracer, including details about how the ray kernel is set up,
traversal etc. Finally, results, conclusions, and future work
are presented in Sections 6 and 7.

2. Previous Work

There is a lot of work already done in motion blur re-
search and we refer the reader to the overview by Sung
et al. [SPW02] as well as to the state-of-the-art report by
Navarro et al. [NSG11].

The accumulation buffer technique [HA90] on the GPU
is a simple method to get motion blur and other effects,
but the sampling is not very efficient since an entire im-
age is rendered from each point in time, for example, that
you want to sample. Stochastic sampling [CPC84, CCC87]
is then often a much better alternative, however, the down-
side is that the images often will have some level of noise in
them. The noise can be traded off for regularity using inter-
leaved sampling [KH01]. Early methods on analytical vis-
ibility [WA77, Cat78, Cat84, KB83], however, are excellent
at getting noise-free visibility. There has been a renewed in-
terest in these methods through work [GDAM10, GBAM11,
AGJ12, AWJ13] aimed at rasterization-based graphics. Our
research in this paper is about developing and adapting an-
alytical motion blur visibility methods for ray tracing. The
rest of this previous work section will therefore cover dif-
ferent building blocks that are related to what we use in our
work. Sung et al. [SPW02] combine analytical temporal visi-
bility at discrete spatial locations with Monte Carlo-sampled
shading. They use a two-pass adaptive scheme where further
spatial samples are taken when a certain level of contrast is
reached between neighboring pixels. Sung et al.’s work is
somewhat similar to our sampling scheme (Section 4), but
they did not provide any details on how to compute analyti-
cal visibility in time, which is a rather large part of our work.

Motion Blurred Ray Tracing For ray tracing, motion blur
can be added by averaging a number of images taken at
unique times, however, a better approach is to adapt the
spatial data structure to also handle time. Glassner [Gla88]
extended the bounding volume hierararchy (BVH) to also
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handle time using 4D polyhedrons to bound moving boxes.
Olsson extended the kD-tree to handle time as well [Ols07],
but the overhead in terms of memory was often significant.
Hou et al. [HQL∗10] presented an algorithm for microp-
olygon ray tracing with motion and defocus blur, where
they used a hierarchy of oriented hyper-trapezoids and in-
terpolated oriented bounding boxes (OBBs) to the same
time of the ray, and then intersected the micropolygon us-
ing a simplified 2D test. Grünschloß et al. [GSNK11] in-
troduced a technique so that spatial splits [SFD09] could
be used in a motion-blurred BVH with a goal of mini-
mizing overlap. Most approaches today assume that mo-
tion is linear [CFLB06, HQL∗10, HKL10] and so does Em-
bree [WWB∗14], which is a set of highly optimized kernels
for traversal and intersection for ray tracing.

Triangle Intersection There are many different methods
for determining if and where a ray intersects a trian-
gle [AC97, MT97, KS06]. In this paper, we extend one ray-
triangle intersection algorithm [MT97] to also compute the
entire intersection analytically for moving triangles. This is
somewhat related to how a triangle is rasterized with mo-
tion blur, where similar computations happen in world space
using edge functions [GDAM10].

Ray vs. Moving Bounding Volume Several researchers
have observed that the separating axis theorem (SAT) can be
applied for moving polyhedra with linear motion and con-
stant velocity [SE02, Eri04]. By projecting both objects as
well as the relative velocity vector onto an arbitrary candi-
date separating axis at t = 0, it can be determined if they ini-
tially intersect and if they do not, if or when they will start
to do so. If there is no initial intersection, and the objects are
moving apart, then there can be no future intersection either.
This assumption does not hold, however, when the objects
are allowed to scale over time. If, for instance, one object
grows in size relative to the other, they may well start to in-
tersect even though they move apart. This is a reality in our
context since we use a BVH built for motion blur, where the
bounding boxes, which are stored at t = 0 and t = 1, are not
guaranteed to be of exactly the same size. When triangles are
undergoing rotational motion, for example, it is unlikely that
the bounding boxes at t = 0 and t = 1 around the triangle
are of the same size. Part of our contribution is therefore to
generalize previous work so that the intersection between a
ray and a moving, scaling AABB (or convex polyhedra) can
be found. This is done by considering each object’s axis-
projection as time-dependent.

For k-DOPs, which includes AABBs, it is well-known
that those can be linearly interpolated based on the time
parameter, and this has been used in collision detec-
tion [LAM03] to quickly update BVHs for deforming mod-
els and in ray tracing [CFLB06]. We also want to point out
that an AABB vs. moving AABB test can be seen as a shaft
culling operation [Hai00]. However, such a test does not pro-
duce the interval in time when the two objects overlap.

Miscellaneous Level of detail (LOD) methods can be used
for ray tracing to great benefit [CLF∗03, YLM06, CFLB06],
i.e., one can use coarser geometry representation for most
secondary rays, for example. LOD techniques have also
been used to speed up motion blur rendering in Pixar’s
PRMan [Ryu07]. The Razor system introduced a system
where continuous LOD could be used for every ray being
traced [DHW∗11]. We simply note that LOD techniques is
something that our analytical intersection test could benefit
from as well.

Lately, analytical methods for rasterization have been re-
vived and improved and since rasterization and ray tracing
have similiarities, some of that research will be mentioned
here. Gribel et al. [GDAM10] present how analytical raster-
ization can be done in the time dimension over a single spa-
tial pixel location using edge equations and interval lists per
pixel. This work was then extended to use line samples in
screen space [GBAM11]. Combining sampling along lines
over the lens [AMMH07] with analytical motion blur ras-
terization [GDAM10], you arrive at analytical depth of field
sampling [TPD∗12], which also presented alternative ways
for lossy compression. Auzinger et al. [AGJ12,AWJ13] pre-
sented novel ways on how to implement analytical visibil-
ity (without motion and defocus blur) entirely on the GPU.
Bézier curves with varying thickness was rendered in high-
quality using spatial line samples [BGAM12], and a novel
interval resolve was presented as well.

Finally, several somewhat similar techniques have been
proposed for tile-based stochastic rasterization [MCH∗11,
LAKL11, MAM12], and parts of the tile overlap testing re-
semble the work we do in this paper for box vs. ray test-
ing, which is natural since the work starts from the same ba-
sic equations. Still, one difference is that rasterization pro-
cesses one primitive at a time in a hierarchical fashion in
screen space, while ray tracing usually process a one ray at
a time (though there are packet-based versions of ray trac-
ing as well) in world space. Furthermore, we derive a novel
time-continuous ray vs. triangle test.

Nowrouzezahrai et al. [NBMJ13] presented a framework
for fast high-quality rendering. Contour edges were stored
in a dual-space BVH and an integral of visibility-masked
spherical visibility was computed over u-isolines over the
sphere. Their proof-of-concept implementation showed that
their approach was faster than quasi Monte-Carlo ray tracing
(QMCRT) on low to moderate complexity scenes, while for
more complex scenes, QMCRT was faster.

3. Theory

To be able to obtain t-continuous intersection (visibility) in-
formation for each traced ray, two new tests are needed. The
first is for ray vs. moving triangle intersection and the other
is for ray vs. moving AABB intersection. These tests are pre-
sented in this section. The ray-triangle test is a generalization
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Figure 2: Time-continuous intersection between a ray and a
triangle undergoing per-vertex linear motion. The intersec-
tion gives rise to a visibility segment δ, defined from the times
and ray distances at the start and end of the intersection.

of the Möller-Trumbore test [MT97] to work for triangles
with moving vertices and the ray-moving AABB test utilizes
the separating-axis theorem (SAT) to intersect a ray against
a moving AABB (henceforth just called a box). These tests
are applied at leaf- and node-level, respectively, during BVH
traversal.

3.1. Time-Continuous Ray vs. Moving Triangle

A ray, r(s) = o+ sd, is parameterized by s, which can be
interpreted as the signed distance from the ray origin, o to
a certain point on the ray, if the ray direction, d, is normal-
ized. A triangle can be described by three points, p0, p1, and
p2. This is visualized in Figure 2. The intersection between
a ray and a triangle can be formulated using barycentric co-
ordinates u and v [MT97], as −d

p1−p0
p2−p0

Ts
u
v

= o−p0

⇐⇒

A

s
u
v

= a, (1)

which is solved using Cramer’s rule, i.e.,s
u
v

=
1
|A|

|A0|
|A1|
|A2|

=
1

(d× e2) · e1

(a× e1) · e2
(d× e2) ·a
(a× e1) ·d,

 , (2)

where e1 = p1−p0, e2 = p2−p0, a = o−p0, and Ai is the
matrix formed from A with the i:th column replaced by a.
For an intersection to be valid, it must hold that

u
v

1−u− v

≥ 0. (3)

An important property of this intersection test is that the
1/|A|-division in Equation 2 is not required for a binary
HIT/MISS classification of the intersection. The sign of
the determinant, |A|, indicates facing of the triangle, that is,

|A| >= 0 for front-facing and |A| < 0 for back-facing. If
back-facing triangles are to be detected, which is common
in, e.g., ray tracing, u, v, and |A| need to be negated in Equa-
tion 3 whenever |A| < 0. Now assume that the triangle is
moving over time in a per-vertex linear fashion, from {pi}
at t = 0 to {qi} at t = 1, according to

xi(t) = pi + t(qi−pi), for i ∈ [0,1,2], (4)

where t is the time parameter. Motion is defined relative
to the ray origin o and direction d, which therefore remain
time-independent. In absolute terms, the ray may undergo
motion as well, e.g. primary rays originating from a mov-
ing eye position. The terms e1, e2, and a also become linear
functions of time, that is,

e1(t) = x1(t)−x0(t) = f+gt,

e2(t) = x2(t)−x0(t) = h+ it,
a(t) = o−x0(t) = j+kt,

where f= p1−p0 and g= q1−q0−(p1−p0), and similarly
for the other terms above. The intersection in Equations 1
and 2 now becomes −d

e1(t)
e2(t)

Ts
u
v

= a(t)⇐⇒ A(t)

s
u
v

= a(t), (5)

with the solution, again using Cramer’s rule,s(t)
u(t)
v(t)

=
1
|A(t)|

(a(t)× e1(t)) · e2(t)
(d× e2(t)) ·a(t)
(a(t)× e1(t)) ·d,

 , (6)

where |A(t)| = (d× e2(t)) · e1(t). The intersection criteria
now becomes

u(t)
v(t)

1−u(t)− v(t)

≥ 0. (7)

As expected, we have arrived at a time-dependent ray-
triangle intersection test. This may be carried out as a t-
stochastic intersection test by by evaluating Equation 6 using
a specific time, ts. In effect, the triangle is then interpolated
to its position at ts and then intersected as if it were static.
To evaluate the t-continuous intersection however, the three
polynomials in Equation 7 have to be solved for t. To this
end, we rewrite u(t) and v(t) as dot product, i.e.,

u(t) =
1
|A(t)|

 (h× j) ·d
(h×k+ i× j) ·d

(i×k) ·d

T1
t
t2

≥ 0, (8)

v(t) =
1
|A(t)|

 (j× f) ·d
(j×g+k× f) ·d

(k×g) ·d

T1
t
t2

≥ 0. (9)
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The determinant of A(t) is given by

|A(t)|=

 (h× f) ·d
(h×g+ i× f) ·d

(i×g) ·d

T1
t
t2

 , (10)

which is used to form the third polynomial

1−u(t)− v(t)≥ 0. (11)

The t-roots to Equations 8, 9, and 11 are computed analyt-
ically, similar to what Gribel et al. did [GDAM10]. These
roots represent points in time when the moving edges of the
triangle either begins or seizes to intersect the ray. Whenever
all polynomials simultaneously satisfy Equation 7, the trian-
gle itself intersects the ray. The 1

|A(t)| -division in Equation 8
and 9 normalizes u(t) and v(t) and is not needed for finding
the roots.

We denote each interval of intersection a visibility seg-
ment, δ{ts, te}, defined from a start time ts and an end time
te. Vertex motion, per Equation 4, is such that we are inter-
ested only in visibility segments where [ts, te]∩ [0,1] 6= ∅.
Due to the non-linearity of Equations 8, 9, and 11, a sin-
gle ray-triangle test may give rise to multiple visibility seg-
ments. In our renderer, all visibility segments generated dur-
ing ray traversal are stored in a list associated with the ray.
Once traversal has finished, the list is resolved for a final vis-
ibility integral. At this point it contains the full, t-continuous
set of visibility information seen by the ray over the entire
valid time interval, t ∈ [0,1]. This will be explained further
on Section 5.

Depth function The t-dependent ray distance s(t) is given
by Equation 6, i.e.,

s(t) =
|A0(t)|
|A(t)| =

(a(t)× e1(t)) · e2(t)
(d× e2(t)) · e1(t)

. (12)

s(t) is undefined for |A(t)| = 0, in which case the ray and
triangle lie within the same plane. From inspection of the
factors, we can conclude that s(t) is cubic in the nomina-
tor and quadratic in the denominator in t. This is consis-
tent with earlier work in the context of analytical raster-
ization [GDAM10, AMAM13]. Our end results consist of
barycentric coordinates, (u(t),v(t)) and a cubic-quadratic
rational depth function, s(t), which is similar to these ear-
lier works. However, we approach it from world-space co-
ordinates instead of clip-space coordinates. This makes our
equations suitable for world-space applications, such as ray
tracing and continuous collision detection. In our prototype
ray tracer, each visibility segment makes a linear approxima-
tion over [ts, te] by storing the ray distance at the start- and
end-times. Combined with the triangle index, the full visi-
bility segment definition becomes: δ{ts, te,s(ts),s(te), ID}.

e0u0

e1u1

e2u2

f2u2

f1u1

f0u0

t = 0 t = 1

n

r

v

r + �r

C0

Figure 3: An AABB undergoing scaling and rectilinear mo-
tion along v over t ∈ [0,1]. The local basis, ui, corresponds
to the unit frame (1,0,0), (0,1,0) and (0,0,1), with radial
extents ei at t = 0 and fi at t = 1. The projection of the AABB
onto an arbitrary axis, n, amounts to r at t = 0 and r+∆r at
t = 1.

3.2. Time-Continuous Ray vs. Moving AABB with
Temporal Bounds

As mentioned in Section 2, the previous polyhedron
vs. moving polyhedron tests can handle only the case when
the size of the polyhedra are constant. This assumption does
not generally hold when the polyhedra are represented by
dynamic bounding boxes (AABB’s) in a BVH, since the
bounds of transforming geometry often will vary over time.
We generalize Levine’s algorithm, described by Schneider
and Eberly [SE02], in the context of AABB’s to work with
motion with linearly changing size of the box. In our test,
the ray, r(s) = o+ sd, is interpreted as a degenerate, con-
vex polyhedron with a single edge along the ray direction, d,
through the ray origin, o. This allows us to construct a new
test using the SAT as a basis.

Candidate Separating Axes When applying SAT to two
convex polyhedra, the set of candidate separating planes,
πi, are comprised of the face normals and the cross prod-
ucts between all unique edge directions. Since an AABB
has three unique edge directions, namely the cardinal axes
ui = {(1,0,0),(0,1,1),(0,0,1)}, i ∈ {0,1,2}, and a ray has
(is) a single edge d, there is a total of three candidate sepa-
rating axes, which are

ni = ui×d. (13)

These axes are normals to three corresponding separating
planes, πi, given by

πi : (ui×d) · (x−o) = 0, (14)

where d and o are the ray direction and origin, respectively,
as defined in Section 3.1, and x is a point on the plane. Note
that the cardinal axes, ui, do not need to be tested to see
if they are separating axes because they will always overlap
with the ray, since it is infinite length. There is a special case,
though, when the ray direction is parallel to one of the axes.
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Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and ( f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x−d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

∆r = ( f0− e0)nx +( f1− e1)ny +( f2− e2)nz.

The projection over time then is r(t) = r0 + t∆r, t ∈ [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance ≤ r(t) of the plane, i.e., when

|n ·C(t)−d| ≤ r(t)

⇐⇒
n · (C0 + tv)−d ≤±(r0 + t∆r). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d−n ·C0

n ·v−±∆r
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t− and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0−d| ≤ r0 (intersects at t=0) (17)

n ·C0−d <−r0 (inside at t=0) (18)

n ·C0−d > r0 (outside at t=0) (19)

|n · (C0 +v)−d| ≤ (r0 +∆r) (intersects at t=1) (20)

n · (C0 +v)−d <−(r0 +∆r) (inside at t=1) (21)

n · (C0 +v)−d > (r0 +∆r) (outside at t=1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ∅, (18,21) or (19,22) (23)

ts =


0, (17)
t−, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =


1, (20)
t−, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB∗14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te]← [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n← d×ui
5: [ts, te]∗← INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te]← [ts, te]∩ [ts, te]∗

7: if [ts, te] =∅ then return ∅
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

⋂
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0
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t=1

t=0

n0
⇡0

⇡2

n2

⇡1
n1

ray:o+sd

⇡0

⇡2

⇡1 ⇡1
⇡2

⇡0

ts,e
0 ∅ [0.0,0.1] [0.0,0.6]

ts,e
1 . . . [0.3,1.0] [0.0,0.5]

ts,e
2 . . . . . . [0.0,1.0]
2⋂

i=0
∅ ∅ [0.0,0.5]

Table 1: Moving AABB intersected by three different rays
with the same direction d (pointing straight into the figure)
but with different origins o. Three candidate separating axes
πi are defined according to Equation 14 and are evaluated
by order of index. Corresponding temporal overlaps ts,e

i are
presented in the table. Left: no intersection since π0 sep-
arates the ray spatially from the AABB. Middle: no inter-
section since the temporal overlaps between π0 and π1 are
disjoint. Right: ray intersects the AABB during [0.0,0.5].

and t = 1 boxes [Woo90]. This test can be highly optimized
and provides an over-conservative but fast test, and also a
(constant) depth that is used to guide child node traversal.
Boxes that are not culled in this initial test are tested again
using the above algorithm, before traversal to the intersected
nodes continues.

Instead of the solution we presented above, a ray can be
naïvely tested t-continuously against a moving AABB by
creating a new box that encloses the moving box at its start
and end locations, and then intersecting it as if though it was
static. This approach may work well for axis-aligned mo-
tion, but will produce many false hits whenever this is not
the case. Our solution is more efficient in that it produces no
false hits at all.

4. Spatio-Temporal Shading Sampling

This section addresses sampling of shading over a pixel in
a practical implementation using time-continuous visibility
information. In the rest of this paper, shading is defined
as the net light color seen at a surface point after contri-
butions from light sources, BRDFs, shadow rays, and sec-
ondary rays & beyond. We present a novel heuristic where
time-continuous visibility information is gathered and then
used to sample shading in addition to detecting static ge-
ometry. A separate pass is used to sample static geometry
using supplemental time-discrete rays, which are spatially
distributed over the pixel. Since we use QMC methods both
for shading & for static geometry, and time-continuous vis-
ibility determination for primary rays, we call our type of
sampling for time-continuous QMC (TC-QMC). In the fol-
lowing, let us denote a ray with a time-continuous visibility

determination for a TC-ray, or r̊. Recall that the previous
section detailed how time-continuous visibility is obtained
by intersecting a ray (i.e., a spatial point sample) with scene
geometry simultaneously over the full temporal domain (i.e.,
analytical). This results in a set of visibility segments (or tri-
angles), {δ}, with temporal visibility intervals, [ts

i , t
e
i ].

Adaptive shading sampling and reconstruction Since
shading sources, such as BRDFs, lights, seconday rays, etc,
typically are not available in continuous form, the shad-
ing integral is commonly computed by point sampling over
time. Gribel et al. [GDAM10] and Tzeng et al. [TPD∗12],
for instance, sample shading at the midpoint per visibility
segment. However, tying shading samples to segments also
ties the shading rate to the level of tessellation of the ge-
ometry, which may actually lead to under- as well as over-
sampling on a mesh level. Coarsely tessellated or slow-
moving meshes may receive too few samples and highly tes-
sellated or fast-moving meshes too many. To this end, we
use a fixed baseline shading rate per TC-ray, combined with
an adaptive heuristic where additional samples are generated
based on depth complexity of the segments. The adaptive
heuristic identifies clusters of C1-coherent segments, and en-
sures, in order for each cluster to have a contribution, that
each cluster receives at least one shading sample. If no sam-
ple from the baseline distribution is contained by the clus-
ter, one is created. The baseline shading samples are jittered
over t = [0,1]. This way coherent surfaces, such as walls or
floors, will form a single cluster regardless of mesh tessel-
lation, and thus receive a predictable shading rate (the base-
line distribution). Complex geometry on the other hand, with
incoherency among the segments, will give rise to multiple
clusters and thus (potentially) a higher number of samples to
account for it.

Cluster formation Clustering takes place after occlusion
culling and is the process of identifying continuous meshes
in the geometry seen by a TC-ray. Cluster formation is based
on C1-continuity of the triangles, represented by visibility
segments. This means that adjacent segments, which are
similar within a certain threshold with respect to depth, and
the slope of the depth function are considered to belong to
the same cluster. The thresholds control the adaptivity of the
algorithm. Low thresholds will produce more clusters and
hence better image quality, since each cluster is allotted a
minimum number of shading samples. High thresholds allow
for more discontinuity in the input geometry and may cause
shading from fine geometrical features to be lost. In the ex-
treme end, a single cluster is used per TC-ray, in which case
adaptivity is in effect disabled, and the algorithm regresses
to pure QMC over the temporal domain.

Supplemental rays for static geometry Static geometry is
unsuitable for TC-rays, simply because they exhibit limited
variation over time. Shading might harbour time-dependent
components, but the hit point between a static ray and a
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�0 �1 ⌦0
pixel
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shading samples
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discrete rays: t2⌦0

dynamic segments

continuous ray: t=[0, 1]

t
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rj !cj
r̊

r̊(s)

Figure 5: Ray tracing over the temporal (continuous) and spatial (discrete) domain. A time-continuous ray is intersected with
a simple scene comprised of two moving spheres and a static model. The spheres move out of view in sequence and all three
objects are visible individually over approximately a third of the time span. Each object forms a distinct cluster of visibility
information. Shading of the moving spheres is obtained by sampling the visible triangles with a fixed rate (BRDF-evaluation,
secondary rays etc), while new spatially distributed, time-discrete rays (rj) are launched to obtain shading (cj) for the static
bunny. The final pixel color is the weighted sum of contributions from all clusters. Note that over the analytical visibility
information for the green and blue objects, we evaluate the BRDF, etc, at five and six discrete shading samples, ci, respectively.

static object is constant over time, which can cause spatial
aliasing. To make our algorithm more versatile and allow
scene input with static content, we therefore detect static tri-
angles within the visibility set of a TC-ray and treat them
differently. To obtain a better spatial distribution, static tri-
angles are sampled using supplemental rays, which are reg-
ular time-discrete rays, spatially distributed over the current
pixel and temporally distributed over the bounds, [ts

i , t
e
i ], of

the triangle’s visibility segment. This is unlike the scheme
used by Sung et al. [SPW02], where adaptive samples were
also time-continuous. The shading contribution of the sup-
plemental rays are then added to the accumulated shading of
the TC-ray, weighted by te

i − ts
i . This way, static objects will

be sampled much the same way as in QMC.

Figure 5 illustrates how the shading process works. The
shading integral over t = [0,1] is the weighted sum of inte-
grals for all segments, as seen by the ray, over their respec-
tive visibility intervals, [ts

i , t
e
i ]. In our adaptive approach to

generate shading samples, ci, over the time-continuous visi-
bility segments, both fast moving, complex geometry gener-
ating many small segments, as well as large or slow moving
geometry, will be sampled appropriately. If more TC-rays
are used per pixel and they are spatially distributed in a uni-
form or stratified manner, the spatial region for each set of
supplemental rays can be made smaller (to the equivalent of
the cell size of the uniform grid). This improves the accuracy
of our scheme.

Next, our ray tracing traversal kernel, which implements
the approach described above, is described.

Hybrid-domain ray kernel

Time-continuous pass (dynamic geometry)
1. Dispatch TC-ray and gather visibility segments, while

performing occlusion culling.
2. Identify clusters based on C1-continuity.
3. For all clusters,

generate t-samples over cluster
if dynamic: shade at t-samples
else: cache samples for the subsequent static pass

Time-discrete pass (static geometry)
4. For cached samples from dynamic pass,

dispatch time-discrete rays at cached t-value and accu-
mulate shading

Compute final pixel color
5. Combine all shading contributions, weighted by cluster

lengths.

Final Pixel Color Computation Denote a cluster of dy-
namic segments by ∆ and a cluster of static segments by
Ω (containing a single segment), with temporal lengths |∆|
and |Ω|, respectively. All clusters of a TC-ray, r̊, is then the
union of the two non-overlapping sets {∆} and {Ω}, with
a combined temporal length of 1. Now denote the shading
samples taken over a particular dynamic cluster ∆k as {c}∆k ,
and the shading samples (supplemental rays) taken over a
static cluster Ωk as {c}Ωk . The total accumulated shading,
C(x,y), over a pixel at (x,y), is then the weighted sum of all
shading samples in all clusters, over N TC-rays,

C(x,y) =
1
N

N

∑

(
∑

Ωk∈{Ω}
∑

c j∈{c}Ωk

c j|Ωk|+∑
∆k∈{∆}

∑
ci∈{c}∆k

ci|∆k|
)
.
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spatial temporal visibility set occluder depth
discrete ray, r o+ sd ti hit point, o+ smind smin

TC-ray, r̊ o+ sd t = [0,1] visibility segments, {δi} Smax over {δi}

Figure 6: Differences between a discrete ray and a time-continuous ray (TC-ray). A ray is o+ sd, where o is the ray origin,
d is the ray direction, and s is the signed distance along the ray, i.e., the “depth.”. Note that the TC-ray has a more complex
structure, since it can contain an unbounded number of time segments. This can be worked around by, for example, quantizing
the times to 8 bits [GDAM10] and using occlusion culling.

5. Prototype Ray Tracer

We designed a prototype ray tracer around Embree
v2.0 [WWB∗14]. For temporal integration, Embree utilizes
a data structure (BVH4MB) and builder with 4-lane SIMD-
vectorized nodes and leafs. Nodes and leafs are stored at
start/end locations, i.e., at t = 0 and t = 1, respectively. These
are interpolated to the time, t, associated with each ray dur-
ing traversal. BVH4MB was used with only minor modifica-
tions within the node class. We also re-used portions of the
path tracer-integrator renderer included in Embree 2.0. This
renderer is, as stated in Embree’s documentation, not fully
optimized, but it served our purposes for making compar-
isons and unoptimized portions do not benefit one algorithm
over the other. Our prototype ray tracer primarily features
a new inner kernel adapted for mixed discrete and continu-
ous treatment of time, including sampling, traversal, inter-
section, visibility resolution, and shading. This section will
explain how these parts work together.

Time-Continuous Rays The main purpose of a time-
continuous ray is to store visibility information continuously
over t = [0,1]. Each new visibility segment generated by a
triangle intersection is stored in the TC-ray. A regular dis-
crete ray, in contrast, is associated with a single time, t. The
main features of the two types of ray are presented in Ta-
ble 6.

BVH Traversal Our ray tracer utilizes one BVH traversal
kernel for TC-rays and another for discrete rays. The dis-
crete version is a standard, stochastic traversal kernel sim-
ilar to Embree’s original BVH4MB traversal kernel, while
the continuous traversal kernal is a modified version which
implements the ray vs. box and ray vs. triangle intersection
tests presented in Section 3.1 and 3.2.

Since the ray vs. box test from Section 3.2 does not pro-
duce a minimum intersection depth, the ray vs. box proce-
dure in the time-continuous traversal kernel is executed in
two steps. First, the ray is intersected in a static test against
a bounding box, which encloses both the box at the start and
the box at the end position. For the root node of the BVH,
these positions correspond to the boxes at t = 0 and t = 1,
but further down the hierarchy, narrower temporal bounds
will be available through inheritance, which culls the testing
in a more aggressive way. This is done using Woo’s fast ray
vs. box test [Woo90] and its generated minimum intersec-

tion depth is used for occlusion culling. If the static box (en-
closing the boxes at the start and end positions of the moving
box) is hit by the ray, then we continue and execute our more
accurate ray vs. moving box test from Section 3.2.

Occlusion Culling It is essential to use occlusion culling in
order for ray tracing performance to scale well with scene
complexity. In the time-discrete case, the closest depth, smin,
is stored within the ray and used to cull boxes and triangles
farther away during traversal. For a TC-ray, this operation is
more complicated since depth is a set over t = [0,1]. We use
an approach where an approximative Smax is computed over
the set and used analogously to smin during traversal. Smax
is obtained by iterating over the sorted set of segments cur-
rently held by the ray. If a continuous sequence of segments,
caused by, e.g., a moving mesh, is found, Smax is computed
as Smax = max

i
(max(s(ts

i ),s(t
e
i )). Put another way, this is the

maximum depth over all start and end depths over all seg-
ments. Note that this computation relies on the assumption
that s(t) is approximately linear per-segment, which is not
true in theory [AMAM13], but works well in practice. Ini-
tially, Smax =∞ and it is then updated periodically during
traversal as new segments are inserted. This algorithm can be
generalized and made less conservative by the introduction
of a Smax-hierarchy, similar to culling in motion blur raster-
ization [AMMH07, BLF∗10]. This is left for future work.

6. Results

We used image quality as a function of rendering time
to compare our algorithm (TC-QMC) against multi-jittered
quasi-Monte Carlo (QMC) rendering. The metric used for
image quality is peak signal-to-noise ratio (PSNR), which
measures direct quality of an image compared to a reference
image in a logarithmic decibel scale (higher is better). The
term efficiency will be used here to compare image quality
for particular rendering times.

Another unit of measure is primary-level shading samples
per pixel (sspp). In QMC, visibility and shading are both
point sampled and their rates coupled, so sspp simply cor-
responds to the number of primary rays per pixel (spp). In
TC-QMC, where visibility and shading are decoupled, ei-
ther 1, 2, or 4 primary TC-rays are used per pixel, and sspp
refers to, in this case, the total number of shading samples
taken over these rays. Due to adaptiveness, sspp may vary
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GT QMC TC-QMC (our)

Figure 7: SALA equal-time comparison. The scene contains one point light on the inside of the room and one on the outside.
The tabletop has a dielectric material where all shading originate from reflected or refracted light. QMC obtains a PSNR of
37.8 dB in 5886 ms (32 shading samples per pixel), while TC-QMC (our) obtains 38.3 dB in 5859 ms (33 shading samples on
average). The top zoom-in contains parts of a leaf and a window lath, and the bottom zoom-in is an ornamental hole in the table
structure which moves diagonally. These areas showcase high image convergence compared to QMC. Other areas, such as the
plant which is slower moving than the back- and foreground, exhibits some spatial alias. This, combined with the dielectric
tabletop, makes this a quite hard scene which explains why the total PSNR-values are rather close.

GT QMC TC-QMC (our)

Figure 8: SPONZA+HAND equal-time comparison. QMC obtains a PSNR of 38.4 dB in 10.0 s (32 shading samples per pixel),
while TC-QMC (our) obtains 41.3 dB in 9.9 s (49.3 shading samples on average). The zoom-ins on the pillar/drape and on the
plant highlight the low level of noise achieved by time-continuous visibility. The HAND model, which is static in camera space,
is detected by our algorithm to be static, causing it to be sampled stochastically instead of time-continuously.

between pixels and any reported sspp-value is therefore the
average sspp-rate for all pixels in the current image (i.e., not
necessarily a power of two).

Measurement data is presented in Figure 9 and 10, while
renderings are displayed in Figure 1, 7, and 8.

Test Scenes The prototype ray tracer from Section 5 was
used to render three scenes, namely, SPONZA+HAND, SALA,
and SAN-MIGUEL, which are comprised of 262k+16k, 400k,
and 7.8M triangles, respectively. All scenes contain substan-
tial motion blur induced by linear and angular camera mo-
tion. Geometrical edges, in general, and thin geometry, in
particular, are challenging from a visibility standpoint and
all test scenes have significant amounts of such features, in-
cluding window cross bars, furniture, pillars, and plants. The
hand in SPONZA+HAND rotates in tandem with the camera
and thus appear to be static. SAN-MIGUEL stands out as the
most geometrically rich and complex model in the set. The
tabletop in SALA has a dielectric, reflective-refractive BRDF
similar to glass.

Renderings were made in 1024× 768-resolution on a
MacBook Pro with a 2.6 GHz Intel Core i7 CPU running
OS X 10.10. Source code for the ray tracer as well as for
Embree was compiled with AVX x86_64 instruction exten-
sions enabled. Reference images were made using 1024–
2048 sspp.

Shading Models The scenes were rendered using two sepa-
rate illumination models, namely, normal shading and Whit-
ted ray tracing [Whi80]. Whitted ray tracing utilizes direct
lighting, shadow rays, and recursive specular rays. In normal
shading, surface normals were remapped and used as colors.
While of limited production interest in and by itself, normal
shading was used to highlight visibility determination qual-
ities without interference from other shading components,
such as texturing, shadow rays, etc. It should be noted that
normal shading may nevertheless exhibit rather sharp shad-
ing discontinuities, such as around edges, and thus is not
completely devoid of shading variance.

submitted to COMPUTER GRAPHICS Forum (3/2017).



C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing 11

NORMAL SHADING
P

S
N

R
(d

B
)

0 10 20 30 40 50
30

35

40

45

50

32

256

38 505
35

503 69
508

Time (s)

SAN MIGUEL

Quasi-Monte Carlo

TC-QMC† 1spp

TC-QMC 2spp

TC-QMC 4spp
†No clustering

0 5 10 15

32

128

32 509

34 50742
503

Time (s)

SPONZA+HAND

0 5 10 15 20 25
30

35

40

45

50

32

256

33 509

39 506

40

505

Time (s)

SALA

Figure 9: Image quality as a function of rendering time for our method (TC-QMC) compared to QMC, with surface normal
shading. QMC distributes discrete samples over space and time, while our method treats time continuously at 1 (blue), 2 (red),
and 4 (green) discrete spatial locations, respectively. Curve annotations represent shading samples at the primary visibility
level. TC-QMC exhibits a distinct pattern of faster convergence and better quality for equal rendering times within certain
intervals of time. This pattern is particularly distinguished here, since shading is crude and the main source of alias is temporal,
which TC-QMC addresses efficiently. Higher number of spatial samples per pixel successively raises the converged quality of
our algorithm, keeping it ahead of QMC for extended ranges of rendering time. The blue dotted line represents TC-QMC for 1
spp, with clustering disabled, showing that clustering overall has an improving effect.
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Figure 10: Image quality as a function of rendering time for our method (TC-QMC) compared to QMC, with Whitted-style
ray tracing. TC-QMC performs favourably over QMC in certain ranges of rendering time, for SAN-MIGUEL (the most complex
scene) in particular, but overall the advantages are fewer here compared to normal shading. Even though feature-aware clus-
tering TC-QMC addresses temporal alias well, but uses point sampling for shading, just like QMC. As variance of the image
shifts from the temporal to the shading domain, there is less that sets the algorithms apart. Feature-aware clustering generally
provides an improvement, however.

Characteristics While both algorithms exhibit logarithmic
increase of quality over rendering time, their profiles in do-
ing so are quite different (Figure 9 and 10). TC-QMC tends
to be less efficient at low rendering times (i.e., for lower
number of shading samples per pixel) before rapidly peak-
ing, and then plateauing to a PSNR which depends on the
number of used TC-rays per pixel.

The initial, lower efficiency is explained by the higher
cost of individual TC-rays compared to their time-discrete
counterpart. This is most clearly visible for the curves where
clustering is disabled, since clustering introduces samples in
a way that offsets the first available data point from near zero
in rendering time.
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QMC TC-QMC

Figure 11: Accumulated shading, at the glass tabletop in
SALA, is comparable between our method and QMC given
the same number of shading samples (64, in this case). The
reasons for this are twofold. First, the tabletop geometry
is mostly flat with few discernible geometrical features that
can trigger adaptive sampling for our method. Second, since
our algorithm considers time-continuous visibility at the pri-
mary level and then uses stochastic visibility for secondary
rays and beyond, the metal bars, which are only visible after
two refractions, will ultimately be sampled in the same way
as in QMC (only with a lower spatial distribution).

GT 1 TC-ray 2 4

Figure 12: Spatial alias, such as here on a plant in SALA,
where some geometrical edges are parallel to the motion di-
rection, is reduced when multiple TC-rays per pixel are used.

However once computed, the visibility information of TC-
rays can then be utilized to sample shading at an arbitrary
rate without any further cost for visibility computations.
Consequently, the higher, initial cost becomes amortized as
more shading samples are used. In QMC, the cost for vis-
ibility determination (traversal and triangle intersection) is
lower on a per ray basis, but since visibility determination
and shading are coupled, this cost will accumulate for each
shading sample. This explains why TC-QMC is able to con-
verge significantly faster and stay more effective within cer-
tain intervals of rendering time.

The quality level at which TC-QMC then plateaus de-
pends on how many TC-rays are used per pixel (spp). Alias
originating from shading will reduce with an increasing
number of shading samples, but in order for spatial alias
to reduce as well, additional spatially distributed TC-rays
need to be used per pixel. As evident in the TC-QMC curves,
higher spp-rates lead to curves with similar profiles but with
a “shift” towards higher initial cost as well as higher quality.
This is depicted visually in Figure 12 as well. As spp goes to
infinity, TC-QMC and QMC alike converge to ground truth.
For SAN-MIGUEL/Whitted (leftmost diagram in Figure 10),
there is a breakpoint at about 42dB where TC-QMC with 2
spp outperform 1 spp, and another one at around 43dB where
4 spp outperform 2 spp. Combined, these three curves out-
perform QMC between about 20–180 s in absolute rendering
time, corresponding to 36–46 dB in image quality, for this
particular scene.

These characteristics are most prominent in the normal
shading renderings, where shading is simple and tempo-
ral visibility is the main source of variance. Here, TC-
QMC consistently produces higher quality at equal render-
ing times.

For Whitted ray tracing, TC-QMC retains an edge within
certain rendering times, for SAN-MIGUEL – the most complex
scene – in particular, but to a lesser extent. This illumina-
tion model adds significant shading complexity in the form
of BRDF’s, shadow rays, and secondary ray paths. There
is also an inherent cost related to shading evaluation which
taxes both algorithms equally, thus making them less dis-
tinguishable. SPONZA+HAND, for instance, contains a large
static object where time-continuous visibility is not utilized
at all, and SALA contains a flat dielectric tabletop where all
shading originate from secondary, stochastic visibility, again
without benefits of time-continuity. The tabletop is presented
more closely in Figure 11.

Temporal Coherency An animation was made in SAN-
MIGUEL based on the hacienda view in Figure 1. The cam-
era moves into the scene, grazing the plants and up close
with the door in the background. The animation exhibits no
temporal artifacts, and compares favourably to an identical
sequence rendered in equal time using QMC.

Clustering This technique, as explained in Section 4, gen-
erates additional shading samples based on geometrical fea-
tures of the visibility data. Thresholds for cluster forma-
tion were set to εz = 10−3 and εk = 10−2, for C0- and
C1-continuity, respectively. As a reference, data series with
clustering disabled were included in the Figure 9 and 10
diagrams. These cases show that adaptivity increases con-
vergence. In SPONZA+HAND, the increase is marginal, which
might be explained by the many large, relatively flat surfaces
with high-frequency content textures. One area of improve-
ment here would be be to consider shading variance reduc-
tion as a complementary condition for cluster formation.

Ray vs. Box Test To measure the performance of our ray
vs. box test (Section 3.2), we compared it to a brute force
ray vs. static box implementation, where the static box was
combined from the moving box at t = 0 and t = 1. For ren-
dering times of the latter test normalized to 1, our test ren-
dered in 0.33 for SAN-MIGUEL, 0.55 for SALA and 0.95 for
SPONZA+HAND. Figure 4, furthermore, illustrates tightness
of the produced temporal bounds.

7. Conclusions and Future Work

A novel take on motion blur for ray tracing has been pre-
sented, where we have developed time-continuous intersec-
tion tests between rays and moving triangles & moving
boxes, and used these tests for improved primary visibility.
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Such methods have previously only been used in the con-
text of rasterization. We have also presented a prototype ray
tracer, which uses the proposed methods.

We believe that it will be beneficial to continue investigate
methods that are continuous in one or more domains, such
as our method and the one proposed by Nowrouzezahrai et
al. [NBMJ13]. This type of algorithms is in its infancy, and
so while the results are not yet fully competitive to point
sampling, they could become so with more research in this
field. There is certainly a lot of subtopics to do research on.
For example, one can continue to look into other ray-triangle
intersection tests, such as Plücker-based ones. It would also
be interesting to investigate how to relax the definition of
“static” to include motion below a certain threshold. As was
discussed in Section 4, slowly moving geometry may exhibit
low-variance visibility over time and is likely to benefit more
from time-discrete sampling compared to time-continuous
sampling. It is also important to note that for a packet ray
tracer, our ray vs. moving box test can be used to narrow
down the interval in time and hence cull rays using that in-
terval. While this should be beneficial, it was deemed out of
scope and left for future work.

One natural extension of the time-continuous ray-triangle
test (Section 3) is to also consider shadow rays (from a static
receiver) to produce noise-free shadows. The shadow ray
test is similar to an ordinary intersection test, except that it
generates binary occlusion data instead of detailed hit infor-
mation. The main difference in a time-continuous context
lies in how time-continuous occlusion data is represented (a
form of binary visibility segments) and resolved. The end
result would be a fraction, ranging from 0 (never occluded)
to 1 (always occluded). In addition, shadows from moving
geometry onto moving receivers is a difficult topic that de-
serves more research as well. It would also be interesting to
exploit shading caches [RKLC∗11, GBAM11] and level-of-
detail [YLM06] for our approach in order to make rendering
faster. Spatial anti-aliasing could potentially be improved by
the use of contrast-driven adaptivity [SPW02].

We did some testing using hierarchically inherited t-
bounds with the hope to improve performance, where the
t-bounds from one ray vs. box test also serve as conservative
bounds for any child boxes. This is somewhat similar to how
a static ray tracer uses smin and smax-values along the ray in
order to avoid descending the BVH when it is not needed.
Unfortunately, we have not been able to get any significant
speedup using this approach, but with additional tweaks, this
could pay off.

As future work, we want to investigate and develop recon-
struction methods, similar to how Lehtinen et al. [LAC∗11]
reconstruct an image from a point-sampled light field, but
in our case, we want to use our spatial point samples with
analytical time intervals. This is a type of algorithm that is
orthogonal to the work we have presented in this paper, and
as such it is a very interesting avenue for future work.

So far, our implementation has been limited to time-
continuous primary rays, but extending this to secondary
or n:are rays is, in theory, straightforward as long as the
receiver is static, i.e., when the ray origin and direction is
time-independent. To handle time-dependent rays, i.e., mov-
ing origin and direction, the intersection test in Section 3
would need to be augmented. This seems to be difficult and
our conclusion is therefore that time-continuous visibility for
n:ary rays in the general case may not worthwhile pursuing
at the moment. Alternatively, a novel way of attacking this
problem is needed. However, the combination of using time-
continuous visibility for primary rays with stochastic sam-
pling of secondary rays may well be worth doing, especially
since most of the motion blurred visibility comes from the
primary rays.
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