
Time-Continuous
Quasi-Monte Carlo Ray Tracing

Carl Johan Gribel Tomas Akenine-Möller

-- more --

Intel Corporation
2200 Mission College Blvd.
P.O. Box 58119
Santa Clara, CA 95052-8119

 Backgrounder
NOTE TO EDITORS: photos, videos and more facts available at
www.intel.com/newsroom/corporateinfo

Intel Corporation

Intel Corporation, the world’s largest chip company by revenue, designs and manufactures
microprocessors, chipsets, software and services that are the foundation for computing. Once
largely a PC-oriented company, Intel® increasingly provides the vital intelligence inside a wide
range of devices, from the lowest-power mobile devices to the most powerful supercomputers in
the world. Headquartered in Santa Clara, Calif., Intel has more than 100,000 employees in 63
countries. Brian Krzanich is the company’s chief executive officer and Renee James is the
president.

In 1968, Silicon Valley pioneers Robert Noyce and Gordon Moore founded their new chip
company, naming it Intel Corporation. Since introducing the industry’s first commercially
available memory chips in 1969 and the first microprocessor in 1971, Intel makes hardware and
software products that power the majority of the world’s data centers, connect hundreds of
millions of cellular handsets and help secure and protect computers, mobile devices and
corporate and government IT systems. Intel technologies are also embedded in intelligent
systems including for automobiles, digital signage, automated factories and medical devices.

Intel has actively driven at the speed of Moore’s Law for nearly 40 years, spurring new
innovations that have integrated more features and capabilities into every chip. Moore’s Law is
named after Intel co-founder Gordon E. Moore, who in a 1965 paper noted that components in
integrated circuits had doubled every year and projected that they would continue to do so.1 This
phenomenon became a guidepost for long-term planning and set challenging targets for Intel and
others in the semiconductor design and manufacturing industry.

Intel delivers the benefits of Moore’s Law through ongoing investments in manufacturing
innovation and leading-edge capacity, continually making higher performance, more energy-
efficient and more cost-effective solutions for an ever-broadening array of market segments.

1 Moore, Gordon E. (1965). "Cramming more components onto integrated circuits" (PDF). Electronics Magazine.
p. 4. Retrieved 03-18-2013.

Malmö University
Lund University

Intel Corporation
Lund University

4 / 16 Point Samples
(Multi-Jitter Monte Carlo)

1 Time-Continuous Sample
4 shading samples

Motivation:
Monte Carlo-based ray tracing tends to converge slowly for high-
frequent, multi-dimensional inputs
• Example: Motion Blur from high velocities

Our Proposal:
Integrate the temporal domain on closed-form
• Adds complexity, but very fast (“immediate”) convergence
• Not previously done in ray tracing

4
16

1

Catmull 78, 84
Sung 02
Gribel et al.10, 11, 12
Tzeng et al. 12
Nowrouzezahrai et al. 13

Cook 84
Akenine-Möller et al. 07
Lehtinen et al. 11

Talk Outline
• Two novel intersection tests, formulated for time-continuity:

• Ray vs. Moving Triangle
• Ray vs. Moving AABB

• Prototype Ray Tracer for Time-Continuous Primary Visibility
• Mixed Sampling of Static and Dynamic Geometry
• C1-continuity Guided Shading Filtering

• Results, etc

Ray vs. Static Triangle
• Möller-Trumbore intersection test [Möller and Trumbore 97]

• Allow early-out termination, highly optimizable
• s = hit depth, (u, v) = barycentric coordinates of hit point

0

@
s
u
v

1

A =

0

@
�d

p1 � p0

p2 � p0

1

A
�T

(o� p0)

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

ray:o+sd

q2

q1
q0

r0

r1

r2

s

t
0 1

a(t)

e1(t)

e2(t)
�{ts,te,s(ts),s(te)}
visibility segment

Figure 2: Time-continuous intersection between a ray and a
triangle undergoing per-vertex linear motion. The intersec-
tion gives rise to a visibility segment d, defined from the times
and ray distances at the start and end of the intersection.

of the Möller-Trumbore test [MT97] to work for triangles
with moving vertices and the ray-moving AABB test utilizes
the separating-axis theorem (SAT) to intersect a ray against
a moving AABB (henceforth just called a box). These tests
are applied at leaf- and node-level, respectively, during BVH
traversal.

3.1. Time-Continuous Ray vs. Moving Triangle

A ray, r(s) = o + sd, is parameterized by s, which can be
interpreted as the signed distance from the ray origin, o to
a certain point on the ray, if the ray direction, d, is normal-
ized. A triangle can be described by three points, p0, p1, and
p2. This is visualized in Figure 2. The intersection between
a ray and a triangle can be formulated using barycentric co-
ordinates u and v [MT97], as

0

@
�d

p1 �p0
p2 �p0

1

A
T0

@
s
u
v

1

A = o�p0

()

A

0

@
s
u
v

1

A = a, (1)

which is solved using Cramer’s rule, i.e.,
0

@
s
u
v

1

A =
1
|A|

0

@
|A0|
|A1|
|A2|

1

A =
1

(d⇥ e2) · e1

0

@
(a⇥ e1) · e2
(d⇥ e2) ·a
(a⇥ e1) ·d,

1

A , (2)

where e1 = p1 �p0, e2 = p2 �p0, a = o�p0, and Ai is the
matrix formed from A with the i:th column replaced by a.
For an intersection to be valid, it must hold that

u
v

1�u� v

9
=

;� 0. (3)

An important property of this intersection test is that the
1/|A|-division in Equation 2 is not required for a binary
HIT/MISS classification of the intersection. The sign of
the determinant, |A|, indicates facing of the triangle, that is,

|A| >= 0 for front-facing and |A| < 0 for back-facing. If
back-facing triangles are to be detected, which is common
in, e.g., ray tracing, u, v, and |A| need to be negated in Equa-
tion 3 whenever |A| < 0. Now assume that the triangle is
moving over time in a per-vertex linear fashion, from {pi}
at t = 0 to {qi} at t = 1, according to

xi(t) = pi + t(qi �pi), for i 2 [0,1,2], (4)

where t is the time parameter. Motion is defined relative
to the ray origin o and direction d, which therefore remain
time-independent. In absolute terms, the ray may undergo
motion as well, e.g. primary rays originating from a mov-
ing eye position. The terms e1, e2, and a also become linear
functions of time, that is,

e1(t) = x1(t)�x0(t) = f+gt,
e2(t) = x2(t)�x0(t) = h+ it,
a(t) = o�x0(t) = j+kt,

where f = p1�p0 and g = q1�q0�(p1�p0), and similarly
for the other terms above. The intersection in Equations 1
and 2 now becomes

0

@
�d

e1(t)
e2(t)

1

A
T0

@
s
u
v

1

A = a(t) () A(t)

0

@
s
u
v

1

A = a(t), (5)

with the solution, again using Cramer’s rule,
0

@
s(t)
u(t)
v(t)

1

A =
1

|A(t)|

0

@
(a(t)⇥ e1(t)) · e2(t)

(d⇥ e2(t)) ·a(t)
(a(t)⇥ e1(t)) ·d,

1

A , (6)

where |A(t)| = (d⇥ e2(t)) · e1(t). The intersection criteria
now becomes

u(t)
v(t)

1�u(t)� v(t)

9
=

;� 0. (7)

As expected, we have arrived at a time-dependent ray-
triangle intersection test. This may be carried out as a t-
stochastic intersection test by by evaluating Equation 6 using
a specific time, ts. In effect, the triangle is then interpolated
to its position at ts and then intersected as if it were static.
To evaluate the t-continuous intersection however, the three
polynomials in Equation 7 have to be solved for t. To this
end, we rewrite u(t) and v(t) as dot product, i.e.,

u(t) =
1

|A(t)|

0

@
(h⇥ j) ·d

(h⇥k+ i⇥ j) ·d
(i⇥k) ·d

1

A
T0

@
1
t
t2

1

A� 0, (8)

v(t) =
1

|A(t)|

0

@
(j⇥ f) ·d

(j⇥g+k⇥ f) ·d
(k⇥g) ·d

1

A
T0

@
1
t
t2

1

A� 0. (9)

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

Intersection if

ray:o+sd

p1p0

p2

Ray vs. Moving Triangle
• Monte Carlo Motion Blur: Assign discrete times to each ray
• In effect: interpolate triangle, intersect as if it were static

ray:o+sd

s

t
0 1

discrete hit points

t=0

t=1

miss

4
16

Ray vs. Moving Triangle
• Our approach: reformulate & solve for continuous intersection
• Interval of intersection – visibility segment

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

ray:o+sd

q2

q1
q0

r0

r1

r2

s

t
0 1

a(t)

e1(t)

e2(t)
�{ts,te,s(ts),s(te)}
visibility segment

Figure 2: Time-continuous intersection between a ray and a
triangle undergoing per-vertex linear motion. The intersec-
tion gives rise to a visibility segment d, defined from the times
and ray distances at the start and end of the intersection.

of the Möller-Trumbore test [MT97] to work for triangles
with moving vertices and the ray-moving AABB test utilizes
the separating-axis theorem (SAT) to intersect a ray against
a moving AABB (henceforth just called a box). These tests
are applied at leaf- and node-level, respectively, during BVH
traversal.

3.1. Time-Continuous Ray vs. Moving Triangle

A ray, r(s) = o + sd, is parameterized by s, which can be
interpreted as the signed distance from the ray origin, o to
a certain point on the ray, if the ray direction, d, is normal-
ized. A triangle can be described by three points, p0, p1, and
p2. This is visualized in Figure 2. The intersection between
a ray and a triangle can be formulated using barycentric co-
ordinates u and v [MT97], as

0

@
�d

p1 �p0
p2 �p0

1

A
T0

@
s
u
v

1

A = o�p0

()

A

0

@
s
u
v

1

A = a, (1)

which is solved using Cramer’s rule, i.e.,
0

@
s
u
v

1

A =
1
|A|

0

@
|A0|
|A1|
|A2|

1

A =
1

(d⇥ e2) · e1

0

@
(a⇥ e1) · e2
(d⇥ e2) ·a
(a⇥ e1) ·d,

1

A , (2)

where e1 = p1 �p0, e2 = p2 �p0, a = o�p0, and Ai is the
matrix formed from A with the i:th column replaced by a.
For an intersection to be valid, it must hold that

u
v

1�u� v

9
=

;� 0. (3)

An important property of this intersection test is that the
1/|A|-division in Equation 2 is not required for a binary
HIT/MISS classification of the intersection. The sign of
the determinant, |A|, indicates facing of the triangle, that is,

|A| >= 0 for front-facing and |A| < 0 for back-facing. If
back-facing triangles are to be detected, which is common
in, e.g., ray tracing, u, v, and |A| need to be negated in Equa-
tion 3 whenever |A| < 0. Now assume that the triangle is
moving over time in a per-vertex linear fashion, from {pi}
at t = 0 to {qi} at t = 1, according to

xi(t) = pi + t(qi �pi), for i 2 [0,1,2], (4)

where t is the time parameter. Motion is defined relative
to the ray origin o and direction d, which therefore remain
time-independent. In absolute terms, the ray may undergo
motion as well, e.g. primary rays originating from a mov-
ing eye position. The terms e1, e2, and a also become linear
functions of time, that is,

e1(t) = x1(t)�x0(t) = f+gt,
e2(t) = x2(t)�x0(t) = h+ it,
a(t) = o�x0(t) = j+kt,

where f = p1�p0 and g = q1�q0�(p1�p0), and similarly
for the other terms above. The intersection in Equations 1
and 2 now becomes

0

@
�d

e1(t)
e2(t)

1

A
T0

@
s
u
v

1

A = a(t) () A(t)

0

@
s
u
v

1

A = a(t), (5)

with the solution, again using Cramer’s rule,
0

@
s(t)
u(t)
v(t)

1

A =
1

|A(t)|

0

@
(a(t)⇥ e1(t)) · e2(t)

(d⇥ e2(t)) ·a(t)
(a(t)⇥ e1(t)) ·d,

1

A , (6)

where |A(t)| = (d⇥ e2(t)) · e1(t). The intersection criteria
now becomes

u(t)
v(t)

1�u(t)� v(t)

9
=

;� 0. (7)

As expected, we have arrived at a time-dependent ray-
triangle intersection test. This may be carried out as a t-
stochastic intersection test by by evaluating Equation 6 using
a specific time, ts. In effect, the triangle is then interpolated
to its position at ts and then intersected as if it were static.
To evaluate the t-continuous intersection however, the three
polynomials in Equation 7 have to be solved for t. To this
end, we rewrite u(t) and v(t) as dot product, i.e.,

u(t) =
1

|A(t)|

0

@
(h⇥ j) ·d

(h⇥k+ i⇥ j) ·d
(i⇥k) ·d

1

A
T0

@
1
t
t2

1

A� 0, (8)

v(t) =
1

|A(t)|

0

@
(j⇥ f) ·d

(j⇥g+k⇥ f) ·d
(k⇥g) ·d

1

A
T0

@
1
t
t2

1

A� 0. (9)

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

0

@
s(t)
u(t)
v(t)

1

A =

0

@
�d

p1(t)� p0(t)
p2(t)� p0(t)

1

A
�T

(o� p0(t))

ray:o+sd

q2

q1
q0

r0

r1

r2
s

t
0 1

e1(t)

e2(t)
�{ts,te,s(ts),s(te)}

continuous intersection

– visibility segment

u and v are 2nd degree polynomials
(assuming per-vertex linear motion)

Ray vs. Moving Triangle
• Our approach: reformulate & solve for continuous intersection
• Interval of intersection – visibility segment

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

ray:o+sd

q2

q1
q0

r0

r1

r2

s

t
0 1

a(t)

e1(t)

e2(t)
�{ts,te,s(ts),s(te)}
visibility segment

Figure 2: Time-continuous intersection between a ray and a
triangle undergoing per-vertex linear motion. The intersec-
tion gives rise to a visibility segment d, defined from the times
and ray distances at the start and end of the intersection.

of the Möller-Trumbore test [MT97] to work for triangles
with moving vertices and the ray-moving AABB test utilizes
the separating-axis theorem (SAT) to intersect a ray against
a moving AABB (henceforth just called a box). These tests
are applied at leaf- and node-level, respectively, during BVH
traversal.

3.1. Time-Continuous Ray vs. Moving Triangle

A ray, r(s) = o + sd, is parameterized by s, which can be
interpreted as the signed distance from the ray origin, o to
a certain point on the ray, if the ray direction, d, is normal-
ized. A triangle can be described by three points, p0, p1, and
p2. This is visualized in Figure 2. The intersection between
a ray and a triangle can be formulated using barycentric co-
ordinates u and v [MT97], as

0

@
�d

p1 �p0
p2 �p0

1

A
T0

@
s
u
v

1

A = o�p0

()

A

0

@
s
u
v

1

A = a, (1)

which is solved using Cramer’s rule, i.e.,
0

@
s
u
v

1

A =
1
|A|

0

@
|A0|
|A1|
|A2|

1

A =
1

(d⇥ e2) · e1

0

@
(a⇥ e1) · e2
(d⇥ e2) ·a
(a⇥ e1) ·d,

1

A , (2)

where e1 = p1 �p0, e2 = p2 �p0, a = o�p0, and Ai is the
matrix formed from A with the i:th column replaced by a.
For an intersection to be valid, it must hold that

u
v

1�u� v

9
=

;� 0. (3)

An important property of this intersection test is that the
1/|A|-division in Equation 2 is not required for a binary
HIT/MISS classification of the intersection. The sign of
the determinant, |A|, indicates facing of the triangle, that is,

|A| >= 0 for front-facing and |A| < 0 for back-facing. If
back-facing triangles are to be detected, which is common
in, e.g., ray tracing, u, v, and |A| need to be negated in Equa-
tion 3 whenever |A| < 0. Now assume that the triangle is
moving over time in a per-vertex linear fashion, from {pi}
at t = 0 to {qi} at t = 1, according to

xi(t) = pi + t(qi �pi), for i 2 [0,1,2], (4)

where t is the time parameter. Motion is defined relative
to the ray origin o and direction d, which therefore remain
time-independent. In absolute terms, the ray may undergo
motion as well, e.g. primary rays originating from a mov-
ing eye position. The terms e1, e2, and a also become linear
functions of time, that is,

e1(t) = x1(t)�x0(t) = f+gt,
e2(t) = x2(t)�x0(t) = h+ it,
a(t) = o�x0(t) = j+kt,

where f = p1�p0 and g = q1�q0�(p1�p0), and similarly
for the other terms above. The intersection in Equations 1
and 2 now becomes

0

@
�d

e1(t)
e2(t)

1

A
T0

@
s
u
v

1

A = a(t) () A(t)

0

@
s
u
v

1

A = a(t), (5)

with the solution, again using Cramer’s rule,
0

@
s(t)
u(t)
v(t)

1

A =
1

|A(t)|

0

@
(a(t)⇥ e1(t)) · e2(t)

(d⇥ e2(t)) ·a(t)
(a(t)⇥ e1(t)) ·d,

1

A , (6)

where |A(t)| = (d⇥ e2(t)) · e1(t). The intersection criteria
now becomes

u(t)
v(t)

1�u(t)� v(t)

9
=

;� 0. (7)

As expected, we have arrived at a time-dependent ray-
triangle intersection test. This may be carried out as a t-
stochastic intersection test by by evaluating Equation 6 using
a specific time, ts. In effect, the triangle is then interpolated
to its position at ts and then intersected as if it were static.
To evaluate the t-continuous intersection however, the three
polynomials in Equation 7 have to be solved for t. To this
end, we rewrite u(t) and v(t) as dot product, i.e.,

u(t) =
1

|A(t)|

0

@
(h⇥ j) ·d

(h⇥k+ i⇥ j) ·d
(i⇥k) ·d

1

A
T0

@
1
t
t2

1

A� 0, (8)

v(t) =
1

|A(t)|

0

@
(j⇥ f) ·d

(j⇥g+k⇥ f) ·d
(k⇥g) ·d

1

A
T0

@
1
t
t2

1

A� 0. (9)

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

0

@
s(t)
u(t)
v(t)

1

A =

0

@
�d

p1(t)� p0(t)
p2(t)� p0(t)

1

A
�T

(o� p0(t))

ray:o+sd

q2

q1
q0

r0

r1

r2
s

t
0 1

e1(t)

e2(t)
�{ts,te,s(ts),s(te)}

continuous intersection

– visibility segment

u and v are 2nd degree polynomials
(assuming per-vertex linear motion)

Solve!

Time-Continuous Ray – TC-Ray
• Collect visibility segments per ray during BVH traversal
• When traversal is done: resolve depth-wise (occlusion cull) to a

sequence of non-overlapping segments [Barringer et al. 12]

s

t
0 1

s

t
0 1

Resolve

Ray vs. Moving AABB
Levine’s Moving Convex Polyhedra intersection test 
(Algorithm published by Schneider and Eberly 02):

• Consider all candidate separating axes (Separating Axis Theorem)
• Compute temporal bounds of intersection per axis
• Terminate if bounds are disjoint, or – if union of all bounds are disjoint
• Assumes non-scaling AABB’s  

Problem: AABB’s in a BVH built for motion blur will usually scale
We extend this test to support scaling AABB’s

• Formulation inspired by Ericson 04 (in the context of time-of-impact)

Ray vs. Moving AABB
• Candidate Separating axes for a ray r = o + sd and an AABB:

• These axes correspond to separating planes

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

The determinant of A(t) is given by

|A(t)| =

0

@
(h⇥ f) ·d

(h⇥g+ i⇥ f) ·d
(i⇥g) ·d

1

A
T0

@
1
t
t2

1

A , (10)

which is used to form the third polynomial

1�u(t)� v(t) � 0. (11)

The t-roots to Equations 8, 9, and 11 are computed analyt-
ically, similar to what Gribel et al. did [GDAM10]. These
roots represent points in time when the moving edges of the
triangle either begins or seizes to intersect the ray. Whenever
all polynomials simultaneously satisfy Equation 7, the trian-
gle itself intersects the ray. The 1

|A(t)| -division in Equation 8
and 9 normalizes u(t) and v(t) and is not needed for finding
the roots.

We denote each interval of intersection a visibility seg-
ment, d{ts, te}, defined from a start time ts and an end time
te. Vertex motion, per Equation 4, is such that we are inter-
ested only in visibility segments where [ts, te]\ [0,1] 6= ?.
Due to the non-linearity of Equations 8, 9, and 11, a sin-
gle ray-triangle test may give rise to multiple visibility seg-
ments. In our renderer, all visibility segments generated dur-
ing ray traversal are stored in a list associated with the ray.
Once traversal has finished, the list is resolved for a final vis-
ibility integral. At this point it contains the full, t-continuous
set of visibility information seen by the ray over the entire
valid time interval, t 2 [0,1]. This will be explained further
on Section 5.

Depth function The t-dependent ray distance s(t) is given
by Equation 6, i.e.,

s(t) =
|A0(t)|
|A(t)| =

(a(t)⇥ e1(t)) · e2(t)
(d⇥ e2(t)) · e1(t)

. (12)

s(t) is undefined for |A(t)| = 0, in which case the ray and
triangle lie within the same plane. From inspection of the
factors, we can conclude that s(t) is cubic in the nomina-
tor and quadratic in the denominator in t. This is consis-
tent with earlier work in the context of analytical raster-
ization [GDAM10, AMAM13]. Our end results consist of
barycentric coordinates, (u(t),v(t)) and a cubic-quadratic
rational depth function, s(t), which is similar to these ear-
lier works. However, we approach it from world-space co-
ordinates instead of clip-space coordinates. This makes our
equations suitable for world-space applications, such as ray
tracing and continuous collision detection. In our prototype
ray tracer, each visibility segment makes a linear approxima-
tion over [ts, te] by storing the ray distance at the start- and
end-times. Combined with the triangle index, the full visi-
bility segment definition becomes: d{ts, te,s(ts),s(te), ID}.

e0u0

e1u1

e2u2

f2u2

f1u1

f0u0

t = 0 t = 1

n

r

v

r + �r

C0

Figure 3: An AABB undergoing scaling and rectilinear mo-
tion along v over t 2 [0,1]. The local basis, ui, corresponds
to the unit frame (1,0,0), (0,1,0) and (0,0,1), with radial
extents ei at t = 0 and fi at t = 1. The projection of the AABB
onto an arbitrary axis, n, amounts to r at t = 0 and r +Dr at
t = 1.

3.2. Time-Continuous Ray vs. Moving AABB with
Temporal Bounds

As mentioned in Section 2, the previous polyhedron
vs. moving polyhedron tests can handle only the case when
the size of the polyhedra are constant. This assumption does
not generally hold when the polyhedra are represented by
dynamic bounding boxes (AABB’s) in a BVH, since the
bounds of transforming geometry often will vary over time.
We generalize Levine’s algorithm, described by Schneider
and Eberly [SE02], in the context of AABB’s to work with
motion with linearly changing size of the box. In our test,
the ray, r(s) = o + sd, is interpreted as a degenerate, con-
vex polyhedron with a single edge along the ray direction, d,
through the ray origin, o. This allows us to construct a new
test using the SAT as a basis.

Candidate Separating Axes When applying SAT to two
convex polyhedra, the set of candidate separating planes,
pi, are comprised of the face normals and the cross prod-
ucts between all unique edge directions. Since an AABB
has three unique edge directions, namely the cardinal axes
ui = {(1,0,0),(0,1,1),(0,0,1)}, i 2 {0,1,2}, and a ray has
(is) a single edge d, there is a total of three candidate sepa-
rating axes, which are

ni = ui ⇥d. (13)

These axes are normals to three corresponding separating
planes, pi, given by

pi : (ui ⇥d) · (x�o) = 0, (14)

where d and o are the ray direction and origin, respectively,
as defined in Section 3.1, and x is a point on the plane. Note
that the cardinal axes, ui, do not need to be tested to see
if they are separating axes because they will always overlap
with the ray, since it is infinite length. There is a special case,
though, when the ray direction is parallel to one of the axes.

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

The determinant of A(t) is given by

|A(t)| =

0

@
(h⇥ f) ·d

(h⇥g+ i⇥ f) ·d
(i⇥g) ·d

1

A
T0

@
1
t
t2

1

A , (10)

which is used to form the third polynomial

1�u(t)� v(t) � 0. (11)

The t-roots to Equations 8, 9, and 11 are computed analyt-
ically, similar to what Gribel et al. did [GDAM10]. These
roots represent points in time when the moving edges of the
triangle either begins or seizes to intersect the ray. Whenever
all polynomials simultaneously satisfy Equation 7, the trian-
gle itself intersects the ray. The 1

|A(t)| -division in Equation 8
and 9 normalizes u(t) and v(t) and is not needed for finding
the roots.

We denote each interval of intersection a visibility seg-
ment, d{ts, te}, defined from a start time ts and an end time
te. Vertex motion, per Equation 4, is such that we are inter-
ested only in visibility segments where [ts, te]\ [0,1] 6= ?.
Due to the non-linearity of Equations 8, 9, and 11, a sin-
gle ray-triangle test may give rise to multiple visibility seg-
ments. In our renderer, all visibility segments generated dur-
ing ray traversal are stored in a list associated with the ray.
Once traversal has finished, the list is resolved for a final vis-
ibility integral. At this point it contains the full, t-continuous
set of visibility information seen by the ray over the entire
valid time interval, t 2 [0,1]. This will be explained further
on Section 5.

Depth function The t-dependent ray distance s(t) is given
by Equation 6, i.e.,

s(t) =
|A0(t)|
|A(t)| =

(a(t)⇥ e1(t)) · e2(t)
(d⇥ e2(t)) · e1(t)

. (12)

s(t) is undefined for |A(t)| = 0, in which case the ray and
triangle lie within the same plane. From inspection of the
factors, we can conclude that s(t) is cubic in the nomina-
tor and quadratic in the denominator in t. This is consis-
tent with earlier work in the context of analytical raster-
ization [GDAM10, AMAM13]. Our end results consist of
barycentric coordinates, (u(t),v(t)) and a cubic-quadratic
rational depth function, s(t), which is similar to these ear-
lier works. However, we approach it from world-space co-
ordinates instead of clip-space coordinates. This makes our
equations suitable for world-space applications, such as ray
tracing and continuous collision detection. In our prototype
ray tracer, each visibility segment makes a linear approxima-
tion over [ts, te] by storing the ray distance at the start- and
end-times. Combined with the triangle index, the full visi-
bility segment definition becomes: d{ts, te,s(ts),s(te), ID}.

e0u0

e1u1

e2u2

f2u2

f1u1

f0u0

t = 0 t = 1

n

r

v

r + �r

C0

Figure 3: An AABB undergoing scaling and rectilinear mo-
tion along v over t 2 [0,1]. The local basis, ui, corresponds
to the unit frame (1,0,0), (0,1,0) and (0,0,1), with radial
extents ei at t = 0 and fi at t = 1. The projection of the AABB
onto an arbitrary axis, n, amounts to r at t = 0 and r +Dr at
t = 1.

3.2. Time-Continuous Ray vs. Moving AABB with
Temporal Bounds

As mentioned in Section 2, the previous polyhedron
vs. moving polyhedron tests can handle only the case when
the size of the polyhedra are constant. This assumption does
not generally hold when the polyhedra are represented by
dynamic bounding boxes (AABB’s) in a BVH, since the
bounds of transforming geometry often will vary over time.
We generalize Levine’s algorithm, described by Schneider
and Eberly [SE02], in the context of AABB’s to work with
motion with linearly changing size of the box. In our test,
the ray, r(s) = o + sd, is interpreted as a degenerate, con-
vex polyhedron with a single edge along the ray direction, d,
through the ray origin, o. This allows us to construct a new
test using the SAT as a basis.

Candidate Separating Axes When applying SAT to two
convex polyhedra, the set of candidate separating planes,
pi, are comprised of the face normals and the cross prod-
ucts between all unique edge directions. Since an AABB
has three unique edge directions, namely the cardinal axes
ui = {(1,0,0),(0,1,1),(0,0,1)}, i 2 {0,1,2}, and a ray has
(is) a single edge d, there is a total of three candidate sepa-
rating axes, which are

ni = ui ⇥d. (13)

These axes are normals to three corresponding separating
planes, pi, given by

pi : (ui ⇥d) · (x�o) = 0, (14)

where d and o are the ray direction and origin, respectively,
as defined in Section 3.1, and x is a point on the plane. Note
that the cardinal axes, ui, do not need to be tested to see
if they are separating axes because they will always overlap
with the ray, since it is infinite length. There is a special case,
though, when the ray direction is parallel to one of the axes.

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

The determinant of A(t) is given by

|A(t)| =

0

@
(h⇥ f) ·d

(h⇥g+ i⇥ f) ·d
(i⇥g) ·d

1

A
T0

@
1
t
t2

1

A , (10)

which is used to form the third polynomial

1�u(t)� v(t) � 0. (11)

The t-roots to Equations 8, 9, and 11 are computed analyt-
ically, similar to what Gribel et al. did [GDAM10]. These
roots represent points in time when the moving edges of the
triangle either begins or seizes to intersect the ray. Whenever
all polynomials simultaneously satisfy Equation 7, the trian-
gle itself intersects the ray. The 1

|A(t)| -division in Equation 8
and 9 normalizes u(t) and v(t) and is not needed for finding
the roots.

We denote each interval of intersection a visibility seg-
ment, d{ts, te}, defined from a start time ts and an end time
te. Vertex motion, per Equation 4, is such that we are inter-
ested only in visibility segments where [ts, te]\ [0,1] 6= ?.
Due to the non-linearity of Equations 8, 9, and 11, a sin-
gle ray-triangle test may give rise to multiple visibility seg-
ments. In our renderer, all visibility segments generated dur-
ing ray traversal are stored in a list associated with the ray.
Once traversal has finished, the list is resolved for a final vis-
ibility integral. At this point it contains the full, t-continuous
set of visibility information seen by the ray over the entire
valid time interval, t 2 [0,1]. This will be explained further
on Section 5.

Depth function The t-dependent ray distance s(t) is given
by Equation 6, i.e.,

s(t) =
|A0(t)|
|A(t)| =

(a(t)⇥ e1(t)) · e2(t)
(d⇥ e2(t)) · e1(t)

. (12)

s(t) is undefined for |A(t)| = 0, in which case the ray and
triangle lie within the same plane. From inspection of the
factors, we can conclude that s(t) is cubic in the nomina-
tor and quadratic in the denominator in t. This is consis-
tent with earlier work in the context of analytical raster-
ization [GDAM10, AMAM13]. Our end results consist of
barycentric coordinates, (u(t),v(t)) and a cubic-quadratic
rational depth function, s(t), which is similar to these ear-
lier works. However, we approach it from world-space co-
ordinates instead of clip-space coordinates. This makes our
equations suitable for world-space applications, such as ray
tracing and continuous collision detection. In our prototype
ray tracer, each visibility segment makes a linear approxima-
tion over [ts, te] by storing the ray distance at the start- and
end-times. Combined with the triangle index, the full visi-
bility segment definition becomes: d{ts, te,s(ts),s(te), ID}.

e0u0

e1u1

e2u2

f2u2

f1u1

f0u0

t = 0 t = 1

n

r

v

r + �r

C0

Figure 3: An AABB undergoing scaling and rectilinear mo-
tion along v over t 2 [0,1]. The local basis, ui, corresponds
to the unit frame (1,0,0), (0,1,0) and (0,0,1), with radial
extents ei at t = 0 and fi at t = 1. The projection of the AABB
onto an arbitrary axis, n, amounts to r at t = 0 and r +Dr at
t = 1.

3.2. Time-Continuous Ray vs. Moving AABB with
Temporal Bounds

As mentioned in Section 2, the previous polyhedron
vs. moving polyhedron tests can handle only the case when
the size of the polyhedra are constant. This assumption does
not generally hold when the polyhedra are represented by
dynamic bounding boxes (AABB’s) in a BVH, since the
bounds of transforming geometry often will vary over time.
We generalize Levine’s algorithm, described by Schneider
and Eberly [SE02], in the context of AABB’s to work with
motion with linearly changing size of the box. In our test,
the ray, r(s) = o + sd, is interpreted as a degenerate, con-
vex polyhedron with a single edge along the ray direction, d,
through the ray origin, o. This allows us to construct a new
test using the SAT as a basis.

Candidate Separating Axes When applying SAT to two
convex polyhedra, the set of candidate separating planes,
pi, are comprised of the face normals and the cross prod-
ucts between all unique edge directions. Since an AABB
has three unique edge directions, namely the cardinal axes
ui = {(1,0,0),(0,1,1),(0,0,1)}, i 2 {0,1,2}, and a ray has
(is) a single edge d, there is a total of three candidate sepa-
rating axes, which are

ni = ui ⇥d. (13)

These axes are normals to three corresponding separating
planes, pi, given by

pi : (ui ⇥d) · (x�o) = 0, (14)

where d and o are the ray direction and origin, respectively,
as defined in Section 3.1, and x is a point on the plane. Note
that the cardinal axes, ui, do not need to be tested to see
if they are separating axes because they will always overlap
with the ray, since it is infinite length. There is a special case,
though, when the ray direction is parallel to one of the axes.

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

where

Ray vs. Moving AABB
Moving/scaling AABB vs. plane (n·x – d = 0) 
start/end times of intersection  

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and (f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x�d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

Dr = (f0� e0)nx +(f1� e1)ny +(f2� e2)nz.

The projection over time then is r(t) = r0 + tDr, t 2 [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance  r(t) of the plane, i.e., when

|n ·C(t)�d| r(t)
()

n · (C0 + tv)�d ±(r0 + tDr). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d�n ·C0

n ·v�±Dr
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t� and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0�d| r0 (intersects at t =0) (17)
n ·C0�d <�r0 (inside at t =0) (18)
n ·C0�d > r0 (outside at t =0) (19)

|n · (C0 +v)�d| (r0 +Dr) (intersects at t =1) (20)
n · (C0 +v)�d <�(r0 +Dr) (inside at t =1) (21)
n · (C0 +v)�d > (r0 +Dr) (outside at t =1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ?, (18,21) or (19,22) (23)

ts =

8
<

:

0, (17)
t�, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =

8
<

:

1, (20)
t�, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB⇤14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te] [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n d⇥ui
5: [ts, te]⇤ INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te] [ts, te]\ [ts, te]⇤

7: if [ts, te] = ? then return ?
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

T
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

e0u0

e1u1

e2u2

f2u2

f1u1

f0u0

t = 0 t = 1

n

r

v

r +�r

C0

Ray vs. Moving AABB
Moving/scaling AABB vs. plane (n·x – d = 0) 
start/end times of intersection  

• Which is start/end?
• May be outside of t = [0, 1]
– We need this form for our test:

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and (f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x�d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

Dr = (f0� e0)nx +(f1� e1)ny +(f2� e2)nz.

The projection over time then is r(t) = r0 + tDr, t 2 [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance  r(t) of the plane, i.e., when

|n ·C(t)�d| r(t)
()

n · (C0 + tv)�d ±(r0 + tDr). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d�n ·C0

n ·v�±Dr
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t� and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0�d| r0 (intersects at t =0) (17)
n ·C0�d <�r0 (inside at t =0) (18)
n ·C0�d > r0 (outside at t =0) (19)

|n · (C0 +v)�d| (r0 +Dr) (intersects at t =1) (20)
n · (C0 +v)�d <�(r0 +Dr) (inside at t =1) (21)
n · (C0 +v)�d > (r0 +Dr) (outside at t =1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ?, (18,21) or (19,22) (23)

ts =

8
<

:

0, (17)
t�, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =

8
<

:

1, (20)
t�, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB⇤14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te] [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n d⇥ui
5: [ts, te]⇤ INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te] [ts, te]\ [ts, te]⇤

7: if [ts, te] = ? then return ?
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

T
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

e0u0

e1u1

e2u2

f2u2

f1u1

f0u0

t = 0 t = 1

n

r

v

r +�r

C0

[tstart, tend] 2 [0, 1]

Ray vs. Moving AABB
Moving/scaling AABB vs. plane (n·x – d = 0) 
start/end times of intersection  

• Which is start/end?
• May be outside of t = [0, 1]
– We need this form for our test:

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and (f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x�d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

Dr = (f0� e0)nx +(f1� e1)ny +(f2� e2)nz.

The projection over time then is r(t) = r0 + tDr, t 2 [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance  r(t) of the plane, i.e., when

|n ·C(t)�d| r(t)
()

n · (C0 + tv)�d ±(r0 + tDr). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d�n ·C0

n ·v�±Dr
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t� and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0�d| r0 (intersects at t =0) (17)
n ·C0�d <�r0 (inside at t =0) (18)
n ·C0�d > r0 (outside at t =0) (19)

|n · (C0 +v)�d| (r0 +Dr) (intersects at t =1) (20)
n · (C0 +v)�d <�(r0 +Dr) (inside at t =1) (21)
n · (C0 +v)�d > (r0 +Dr) (outside at t =1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ?, (18,21) or (19,22) (23)

ts =

8
<

:

0, (17)
t�, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =

8
<

:

1, (20)
t�, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB⇤14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te] [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n d⇥ui
5: [ts, te]⇤ INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te] [ts, te]\ [ts, te]⇤

7: if [ts, te] = ? then return ?
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

T
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

[tstart, tend] 2 [0, 1]

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and (f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x�d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

Dr = (f0� e0)nx +(f1� e1)ny +(f2� e2)nz.

The projection over time then is r(t) = r0 + tDr, t 2 [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance  r(t) of the plane, i.e., when

|n ·C(t)�d| r(t)
()

n · (C0 + tv)�d ±(r0 + tDr). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d�n ·C0

n ·v�±Dr
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t� and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0�d| r0 (intersects at t =0) (17)
n ·C0�d <�r0 (inside at t =0) (18)
n ·C0�d > r0 (outside at t =0) (19)

|n · (C0 +v)�d| (r0 +Dr) (intersects at t =1) (20)
n · (C0 +v)�d <�(r0 +Dr) (inside at t =1) (21)
n · (C0 +v)�d > (r0 +Dr) (outside at t =1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ?, (18,21) or (19,22) (23)

ts =

8
<

:

0, (17)
t�, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =

8
<

:

1, (20)
t�, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB⇤14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te] [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n d⇥ui
5: [ts, te]⇤ INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te] [ts, te]\ [ts, te]⇤

7: if [ts, te] = ? then return ?
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

T
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and (f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x�d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

Dr = (f0� e0)nx +(f1� e1)ny +(f2� e2)nz.

The projection over time then is r(t) = r0 + tDr, t 2 [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance  r(t) of the plane, i.e., when

|n ·C(t)�d| r(t)
()

n · (C0 + tv)�d ±(r0 + tDr). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d�n ·C0

n ·v�±Dr
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t� and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0�d| r0 (intersects at t =0) (17)
n ·C0�d <�r0 (inside at t =0) (18)
n ·C0�d > r0 (outside at t =0) (19)

|n · (C0 +v)�d| (r0 +Dr) (intersects at t =1) (20)
n · (C0 +v)�d <�(r0 +Dr) (inside at t =1) (21)
n · (C0 +v)�d > (r0 +Dr) (outside at t =1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ?, (18,21) or (19,22) (23)

ts =

8
<

:

0, (17)
t�, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =

8
<

:

1, (20)
t�, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB⇤14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te] [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n d⇥ui
5: [ts, te]⇤ INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te] [ts, te]\ [ts, te]⇤

7: if [ts, te] = ? then return ?
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

T
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

tstart

tend

e0u0

e1u1

e2u2

f2u2

f1u1

f0u0

t = 0 t = 1

n

r

v

r +�r

C0

Ray vs. Moving AABB
Moving/scaling AABB vs. plane (n·x – d = 0) 
start/end times of intersection  

• Which is start/end?
• May be outside of t = [0, 1]
– We need this form for our test:

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and (f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x�d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

Dr = (f0� e0)nx +(f1� e1)ny +(f2� e2)nz.

The projection over time then is r(t) = r0 + tDr, t 2 [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance  r(t) of the plane, i.e., when

|n ·C(t)�d| r(t)
()

n · (C0 + tv)�d ±(r0 + tDr). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d�n ·C0

n ·v�±Dr
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t� and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0�d| r0 (intersects at t =0) (17)
n ·C0�d <�r0 (inside at t =0) (18)
n ·C0�d > r0 (outside at t =0) (19)

|n · (C0 +v)�d| (r0 +Dr) (intersects at t =1) (20)
n · (C0 +v)�d <�(r0 +Dr) (inside at t =1) (21)
n · (C0 +v)�d > (r0 +Dr) (outside at t =1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ?, (18,21) or (19,22) (23)

ts =

8
<

:

0, (17)
t�, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =

8
<

:

1, (20)
t�, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB⇤14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te] [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n d⇥ui
5: [ts, te]⇤ INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te] [ts, te]\ [ts, te]⇤

7: if [ts, te] = ? then return ?
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

T
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

[tstart, tend] 2 [0, 1]

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and (f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x�d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

Dr = (f0� e0)nx +(f1� e1)ny +(f2� e2)nz.

The projection over time then is r(t) = r0 + tDr, t 2 [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance  r(t) of the plane, i.e., when

|n ·C(t)�d| r(t)
()

n · (C0 + tv)�d ±(r0 + tDr). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d�n ·C0

n ·v�±Dr
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t� and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0�d| r0 (intersects at t =0) (17)
n ·C0�d <�r0 (inside at t =0) (18)
n ·C0�d > r0 (outside at t =0) (19)

|n · (C0 +v)�d| (r0 +Dr) (intersects at t =1) (20)
n · (C0 +v)�d <�(r0 +Dr) (inside at t =1) (21)
n · (C0 +v)�d > (r0 +Dr) (outside at t =1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ?, (18,21) or (19,22) (23)

ts =

8
<

:

0, (17)
t�, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =

8
<

:

1, (20)
t�, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB⇤14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te] [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n d⇥ui
5: [ts, te]⇤ INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te] [ts, te]\ [ts, te]⇤

7: if [ts, te] = ? then return ?
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

T
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

tstart

tend

B
C2 or C1
A2 or A3

2
A3 or B3
B1 or C1

A

B

C

1

2

3

t = 0 t = 1

Ray vs. Moving AABB
Moving/scaling AABB vs. plane (n·x – d = 0) 
start/end times of intersection  

• Which is start/end?
• May be outside of t = [0, 1]
– We need this form for our test:

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and (f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x�d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

Dr = (f0� e0)nx +(f1� e1)ny +(f2� e2)nz.

The projection over time then is r(t) = r0 + tDr, t 2 [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance  r(t) of the plane, i.e., when

|n ·C(t)�d| r(t)
()

n · (C0 + tv)�d ±(r0 + tDr). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d�n ·C0

n ·v�±Dr
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t� and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0�d| r0 (intersects at t =0) (17)
n ·C0�d <�r0 (inside at t =0) (18)
n ·C0�d > r0 (outside at t =0) (19)

|n · (C0 +v)�d| (r0 +Dr) (intersects at t =1) (20)
n · (C0 +v)�d <�(r0 +Dr) (inside at t =1) (21)
n · (C0 +v)�d > (r0 +Dr) (outside at t =1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ?, (18,21) or (19,22) (23)

ts =

8
<

:

0, (17)
t�, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =

8
<

:

1, (20)
t�, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB⇤14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te] [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n d⇥ui
5: [ts, te]⇤ INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te] [ts, te]\ [ts, te]⇤

7: if [ts, te] = ? then return ?
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

T
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

[tstart, tend] 2 [0, 1]

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and (f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x�d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

Dr = (f0� e0)nx +(f1� e1)ny +(f2� e2)nz.

The projection over time then is r(t) = r0 + tDr, t 2 [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance  r(t) of the plane, i.e., when

|n ·C(t)�d| r(t)
()

n · (C0 + tv)�d ±(r0 + tDr). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d�n ·C0

n ·v�±Dr
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t� and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0�d| r0 (intersects at t =0) (17)
n ·C0�d <�r0 (inside at t =0) (18)
n ·C0�d > r0 (outside at t =0) (19)

|n · (C0 +v)�d| (r0 +Dr) (intersects at t =1) (20)
n · (C0 +v)�d <�(r0 +Dr) (inside at t =1) (21)
n · (C0 +v)�d > (r0 +Dr) (outside at t =1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ?, (18,21) or (19,22) (23)

ts =

8
<

:

0, (17)
t�, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =

8
<

:

1, (20)
t�, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB⇤14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te] [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n d⇥ui
5: [ts, te]⇤ INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te] [ts, te]\ [ts, te]⇤

7: if [ts, te] = ? then return ?
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

T
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

tstart

tend

B
C2 or C1
A2 or A3

2
A3 or B3
B1 or C1

A

B

C

1

2

3

t = 0 t = 1

Ray vs. Moving AABBC. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

t=1

t=0

n0
�0

�2

n2

�1
n1

ray:o+sd

�0

�2

�1 �1
�2

�0

ts,e
0 ? [0.0,0.1] [0.0,0.6]

ts,e
1 . . . [0.3,1.0] [0.0,0.5]

ts,e
2 [0.0,1.0]

2T

i=0
? ? [0.0,0.5]

Table 1: Moving AABB intersected by three different rays
with the same direction d (pointing straight into the figure)
but with different origins o. Three candidate separating axes
pi are defined according to Equation 14 and are evaluated
by order of index. Corresponding temporal overlaps ts,e

i are
presented in the table. Left: no intersection since p0 sep-
arates the ray spatially from the AABB. Middle: no inter-
section since the temporal overlaps between p0 and p1 are
disjoint. Right: ray intersects the AABB during [0.0,0.5].

and t = 1 boxes [Woo90]. This test can be highly optimized
and provides an over-conservative but fast test, and also a
(constant) depth that is used to guide child node traversal.
Boxes that are not culled in this initial test are tested again
using the above algorithm, before traversal to the intersected
nodes continues.

Instead of the solution we presented above, a ray can be
naïvely tested t-continuously against a moving AABB by
creating a new box that encloses the moving box at its start
and end locations, and then intersecting it as if though it was
static. This approach may work well for axis-aligned mo-
tion, but will produce many false hits whenever this is not
the case. Our solution is more efficient in that it produces no
false hits at all.

4. Spatio-Temporal Shading Sampling

This section addresses sampling of shading over a pixel in
a practical implementation using time-continuous visibility
information. In the rest of this paper, shading is defined
as the net light color seen at a surface point after contri-
butions from light sources, BRDFs, shadow rays, and sec-
ondary rays & beyond. We present a novel heuristic where
time-continuous visibility information is gathered and then
used to sample shading in addition to detecting static ge-
ometry. A separate pass is used to sample static geometry
using supplemental time-discrete rays, which are spatially
distributed over the pixel. Since we use QMC methods both
for shading & for static geometry, and time-continuous vis-
ibility determination for primary rays, we call our type of
sampling for time-continuous QMC (TC-QMC). In the fol-
lowing, let us denote a ray with a time-continuous visibility

determination for a TC-ray, or r̊. Recall that the previous
section detailed how time-continuous visibility is obtained
by intersecting a ray (i.e., a spatial point sample) with scene
geometry simultaneously over the full temporal domain (i.e.,
analytical). This results in a set of visibility segments (or tri-
angles), {d}, with temporal visibility intervals, [ts

i , t
e
i].

Adaptive shading sampling and reconstruction Since
shading sources, such as BRDFs, lights, seconday rays, etc,
typically are not available in continuous form, the shad-
ing integral is commonly computed by point sampling over
time. Gribel et al. [GDAM10] and Tzeng et al. [TPD⇤12],
for instance, sample shading at the midpoint per visibility
segment. However, tying shading samples to segments also
ties the shading rate to the level of tessellation of the ge-
ometry, which may actually lead to under- as well as over-
sampling on a mesh level. Coarsely tessellated or slow-
moving meshes may receive too few samples and highly tes-
sellated or fast-moving meshes too many. To this end, we
use a fixed baseline shading rate per TC-ray, combined with
an adaptive heuristic where additional samples are generated
based on depth complexity of the segments. The adaptive
heuristic identifies clusters of C1-coherent segments, and en-
sures, in order for each cluster to have a contribution, that
each cluster receives at least one shading sample. If no sam-
ple from the baseline distribution is contained by the clus-
ter, one is created. The baseline shading samples are jittered
over t = [0,1]. This way coherent surfaces, such as walls or
floors, will form a single cluster regardless of mesh tessel-
lation, and thus receive a predictable shading rate (the base-
line distribution). Complex geometry on the other hand, with
incoherency among the segments, will give rise to multiple
clusters and thus (potentially) a higher number of samples to
account for it.

Cluster formation Clustering takes place after occlusion
culling and is the process of identifying continuous meshes
in the geometry seen by a TC-ray. Cluster formation is based
on C1-continuity of the triangles, represented by visibility
segments. This means that adjacent segments, which are
similar within a certain threshold with respect to depth, and
the slope of the depth function are considered to belong to
the same cluster. The thresholds control the adaptivity of the
algorithm. Low thresholds will produce more clusters and
hence better image quality, since each cluster is allotted a
minimum number of shading samples. High thresholds allow
for more discontinuity in the input geometry and may cause
shading from fine geometrical features to be lost. In the ex-
treme end, a single cluster is used per TC-ray, in which case
adaptivity is in effect disabled, and the algorithm regresses
to pure QMC over the temporal domain.

Supplemental rays for static geometry Static geometry is
unsuitable for TC-rays, simply because they exhibit limited
variation over time. Shading might harbour time-dependent
components, but the hit point between a static ray and a

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

ABORT

ABORT

Ray vs. Moving AABB

• Bound accuracy

• Blue: empty bounds

• Red: [0,1]

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

Plane vs. Moving AABB Consider an AABB (box) cen-
tred at C0 that moves along a trajectory v according to
C(t) = C0 + tv. This is illustrated in Figure 3. Its radial size
is (e0,e1,e2) at t = 0 and (f0, f1, f2) at t = 1. For an arbi-
trary plane n ·x�d = 0, the box’s projection radius (half of
its full projection) onto the normal, n, at t = 0 is

r0 = e0nx + e1ny + e2nz,

and the projection difference from t = 0 to t = 1 is

Dr = (f0� e0)nx +(f1� e1)ny +(f2� e2)nz.

The projection over time then is r(t) = r0 + tDr, t 2 [0,1].

Let ts and te denote the start- and end-times when the
moving AABB intersects the plane. Consequently, ts = 0 if
it intersects at t = 0, and te = 1 if it intersects at t = 1. In
general, the box intersects the plane whenever C(t) is within
distance  r(t) of the plane, i.e., when

|n ·C(t)�d| r(t)
()

n · (C0 + tv)�d ±(r0 + tDr). (15)

We solve for t and replace the inequality with an equality,

t± =
±r0 +d�n ·C0

n ·v�±Dr
, (16)

which gives us the start and end times for when the box in-
tersects the plane. However we do not yet know which one
of t� and t+ is the start time and which one is the end time.
This depends on how the intersection takes place. We make
the following classifications of the box’s location with re-
spect to the plane:

|n ·C0�d| r0 (intersects at t =0) (17)
n ·C0�d <�r0 (inside at t =0) (18)
n ·C0�d > r0 (outside at t =0) (19)

|n · (C0 +v)�d| (r0 +Dr) (intersects at t =1) (20)
n · (C0 +v)�d <�(r0 +Dr) (inside at t =1) (21)
n · (C0 +v)�d > (r0 +Dr) (outside at t =1) (22)

Now, ts and te can be assigned as follows:

[ts, te] = ?, (18,21) or (19,22) (23)

ts =

8
<

:

0, (17)
t�, (18,20) or (18,22)
t+, (19,20) or (19,21)

te =

8
<

:

1, (20)
t�, (17,21) or (19,21)
t+, (17,22) or (18,22)

(24)

If, for example, the box starts out by intersecting the plane
at t = 0 and then ends up outside at t = 1, then {ts, te} =
{0, t+}. Equation 23–24 is straightforward to vectorize
using bit-masks, which is useful for SIMD-implemented

Figure 4: Ray traced mov-
ing AABB where coloring repre-
sents duration of intersection us-
ing our ray vs. moving box test.
Blue color indicates no intersec-
tion, while red color indicates in-
tersection throughout t = [0,1].
Note the tight bounds of the in-
tervals with respect to the motion
of the box.

BVHs, such as Embree’s BVH4MB [WWB⇤14], where four
ray vs. AABB tests are processed in parallel during traversal.

Ray vs. Moving AABB The final step of the algorithm is
to combine the resulting t-intervals from each plane test
through interval intersection. Whenever a separating plane
is found or the combined t-interval is empty, the test can be
aborted. This part of the algorithm is summarized in Algo-
rithm 1. It assumes the existence of a function INTERSEC-
TRAYPLANE, which returns the (possibly empty) temporal
bounds of a plane vs. moving AABB intersection given by
Equation 23–24. Table 1 presents outcomes for three differ-

Algorithm 1 Intersect ray o+ sd with a moving AABB

1: function INTERSECTRAYAABB(o,d,aabb)
2: [ts, te] [0,1]
3: for ui : {(1,0,0),(0,1,0),(0,0,1)} do
4: n d⇥ui
5: [ts, te]⇤ INTERSECTRAYPLANE(o,n,aabb)
6: [ts, te] [ts, te]\ [ts, te]⇤

7: if [ts, te] = ? then return ?
8: end if
9: end for

10: return [ts, te]
11: end function

ent rays that are intersected with a moving AABB. Planes
are tested in ascending order by index. Note that the rays are
pointing into the figure. In the two leftmost examples, the
test exists early since separations are found. In the first case,
the separation is spatial and in the second case the separa-
tion is temporal. In the rightmost example, the ray hits the
AABB and the algorithm returns the resulting bounds of in-
tersection,

T
i t

s,e
i . Figure 4 illustrates a ray traced, moving

AABB where the color of each pixel is set according to the
bounds of intersection produced by our test. Blue areas rep-
resent empty bounds where no intersection takes place and
the scale goes up to to red areas, where the box and the ray
are intersecting throughout the entire time interval [0,1].

This intersection test does not produce a depth for the in-
tersection, and hence no intersection point. Instead, our im-
plementation relies on a two step intersection test where rays
are first tested against a static, combined box from the t = 0

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

Prototype Ray Tracer
• Based on Intel’s Embree [Wald et al. 14]

• Shading: N shading samples over the set of visibility segments
• C1-clustering: Group geometrically similar segments and blend

shading with a common weight (temporal length of group)

• Dual traversal kernels: time-discrete & time-continuous
• Mixed Sampling: Detect static geometry and fall back to regular

point sampling

Mixed Sampling and Clustering

0 1
t

�0 �i

pixel

�N

discrete rays: t2⌦0

dynamic segments

continuous ray: t=[0, 1]

t

r̊(s) shading
samples

r̊(s)

cluster 0 cluster 1

static segment

Equal Time

Volume 0 (1981), Number 0 pp. 1–15 COMPUTER GRAPHICS forum

Time-Continuous Quasi-Monte Carlo Ray Tracing

C. J. Gribel1,2 and T. Akenine-Möller1,3

1Lund University 2Malmö University 3Intel Corporation

GT QMC TC-QMC (our)

Figure 1: This figure shows an equal-time comparison for the SAN-MIGUEL scene with motion blur. We compare ground truth
(GT) images rendered with 2048 samples per pixel against multi-jitter quasi-Monte Carlo (QMC) rendering and against our
time-continuous quasi-Monte Carlo (TC-QMC) approach. Note that the TC-QMC images are essentially noise-free in terms of
visibility and so the remaining noise comes from shading evaluation, which is point sampled. QMC obtains 38.1 dB in image
quality and was rendered in 22.7 seconds using 64 shading samples per pixel. Using our method (TC-QMC), the PSNR becomes
40.75 dB and rendering time 22.1 seconds using 66.8 shading samples on average, which is a substantially better result.

Abstract
Domain-continuous visibility determination algorithms have proved to be very efficient at reducing noise otherwise
prevalent in stochastic sampling. Even though they come with an increased overhead in terms of geometrical tests
and visibility information management, their analytical nature provides such a rich integral that the pay-off is often
worth it. This paper presents a time-continuous, primary visibility algorithm for motion blur aimed at ray tracing.
Two novel intersection tests are derived and implemented. The first is for ray vs. moving triangle and the second
for ray vs. moving AABB intersection. A novel take on shading is presented as well, where the time continuum
of visible geometry is adaptively point sampled. Static geometry is handled using supplemental stochastic rays
in order to reduce spatial aliasing. Finally, a prototype ray tracer with a full time-continuous traversal kernel
is presented in detail. The results are based on a variety of test scenarios and show that even though our time-
continuous algorithm has limitations, it outperforms multi-jittered quasi-Monte Carlo ray tracing in terms of
image quality at equal rendering time, within wide sampling rate ranges.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Raytracing

1. Introduction

Motion blur has a profound impact in synthesized imagery
and is increasingly indispensable in off-line and real-time

rendering alike. Used right, motion blur helps immersing the
viewer in the image while providing intuition about what
moves and where. One of the major challenges with mo-
tion blur, as with other higher domain effects such as depth-

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

40.8 dB
22.1 s

38.1 dB
22.7 s

2048 spp

(values for frame as a whole)

San Miguel: 7.8M triangles

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

GT QMC TC-QMC (our)

Figure 7: SALA equal-time comparison. The scene contains one point light on the inside of the room and one on the outside.
The tabletop has a dielectric material where all shading originate from reflected or refracted light. QMC obtains a PSNR of
37.8 dB in 5886 ms (32 shading samples per pixel), while TC-QMC (our) obtains 38.3 dB in 5859 ms (33 shading samples on
average). The top zoom-in contains parts of a leaf and a window lath, and the bottom zoom-in is an ornamental hole in the table
structure which moves diagonally. These areas showcase high image convergence compared to QMC. Other areas, such as the
plant which is slower moving than the back- and foreground, exhibits some spatial alias. This, combined with the dielectric
tabletop, makes this a quite hard scene which explains why the total PSNR-values are rather close.

GT QMC TC-QMC (our)

Figure 8: SPONZA+HAND equal-time comparison. QMC obtains a PSNR of 38.4 dB in 10.0 s (32 shading samples per pixel),
while TC-QMC (our) obtains 41.3 dB in 9.9 s (49.3 shading samples on average). The zoom-ins on the pillar/drape and on the
plant highlight the low level of noise achieved by time-continuous visibility. The HAND model, which is static in camera space,
is detected by our algorithm to be static, causing it to be sampled stochastically instead of time-continuously.

between pixels and any reported sspp-value is therefore the
average sspp-rate for all pixels in the current image (i.e., not
necessarily a power of two).

Measurement data is presented in Figure 9 and 10, while
renderings are displayed in Figure 1, 7, and 8.

Test Scenes The prototype ray tracer from Section 5 was
used to render three scenes, namely, SPONZA+HAND, SALA,
and SAN-MIGUEL, which are comprised of 262k+16k, 400k,
and 7.8M triangles, respectively. All scenes contain substan-
tial motion blur induced by linear and angular camera mo-
tion. Geometrical edges, in general, and thin geometry, in
particular, are challenging from a visibility standpoint and
all test scenes have significant amounts of such features, in-
cluding window cross bars, furniture, pillars, and plants. The
hand in SPONZA+HAND rotates in tandem with the camera
and thus appear to be static. SAN-MIGUEL stands out as the
most geometrically rich and complex model in the set. The
tabletop in SALA has a dielectric, reflective-refractive BRDF
similar to glass.

Renderings were made in 1024 ⇥ 768-resolution on a
MacBook Pro with a 2.6 GHz Intel Core i7 CPU running
OS X 10.10. Source code for the ray tracer as well as for
Embree was compiled with AVX x86_64 instruction exten-
sions enabled. Reference images were made using 1024–
2048 sspp.

Shading Models The scenes were rendered using two sepa-
rate illumination models, namely, normal shading and Whit-
ted ray tracing [Whi80]. Whitted ray tracing utilizes direct
lighting, shadow rays, and recursive specular rays. In normal
shading, surface normals were remapped and used as colors.
While of limited production interest in and by itself, normal
shading was used to highlight visibility determination qual-
ities without interference from other shading components,
such as texturing, shadow rays, etc. It should be noted that
normal shading may nevertheless exhibit rather sharp shad-
ing discontinuities, such as around edges, and thus is not
completely devoid of shading variance.

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

38.4 dB
10.0 s

41.3 dB
9.9 s

Equal Time

2048 spp

(values for frame as a whole)

Sponza+Hand: 262k + 16k triangles

Equal TimeC. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

GT QMC TC-QMC (our)

Figure 7: SALA equal-time comparison. The scene contains one point light on the inside of the room and one on the outside.
The tabletop has a dielectric material where all shading originate from reflected or refracted light. QMC obtains a PSNR of
37.8 dB in 5886 ms (32 shading samples per pixel), while TC-QMC (our) obtains 38.3 dB in 5859 ms (33 shading samples on
average). The top zoom-in contains parts of a leaf and a window lath, and the bottom zoom-in is an ornamental hole in the table
structure which moves diagonally. These areas showcase high image convergence compared to QMC. Other areas, such as the
plant which is slower moving than the back- and foreground, exhibits some spatial alias. This, combined with the dielectric
tabletop, makes this a quite hard scene which explains why the total PSNR-values are rather close.

GT QMC TC-QMC (our)

Figure 8: SPONZA+HAND equal-time comparison. QMC obtains a PSNR of 38.4 dB in 10.0 s (32 shading samples per pixel),
while TC-QMC (our) obtains 41.3 dB in 9.9 s (49.3 shading samples on average). The zoom-ins on the pillar/drape and on the
plant highlight the low level of noise achieved by time-continuous visibility. The HAND model, which is static in camera space,
is detected by our algorithm to be static, causing it to be sampled stochastically instead of time-continuously.

between pixels and any reported sspp-value is therefore the
average sspp-rate for all pixels in the current image (i.e., not
necessarily a power of two).

Measurement data is presented in Figure 9 and 10, while
renderings are displayed in Figure 1, 7, and 8.

Test Scenes The prototype ray tracer from Section 5 was
used to render three scenes, namely, SPONZA+HAND, SALA,
and SAN-MIGUEL, which are comprised of 262k+16k, 400k,
and 7.8M triangles, respectively. All scenes contain substan-
tial motion blur induced by linear and angular camera mo-
tion. Geometrical edges, in general, and thin geometry, in
particular, are challenging from a visibility standpoint and
all test scenes have significant amounts of such features, in-
cluding window cross bars, furniture, pillars, and plants. The
hand in SPONZA+HAND rotates in tandem with the camera
and thus appear to be static. SAN-MIGUEL stands out as the
most geometrically rich and complex model in the set. The
tabletop in SALA has a dielectric, reflective-refractive BRDF
similar to glass.

Renderings were made in 1024 ⇥ 768-resolution on a
MacBook Pro with a 2.6 GHz Intel Core i7 CPU running
OS X 10.10. Source code for the ray tracer as well as for
Embree was compiled with AVX x86_64 instruction exten-
sions enabled. Reference images were made using 1024–
2048 sspp.

Shading Models The scenes were rendered using two sepa-
rate illumination models, namely, normal shading and Whit-
ted ray tracing [Whi80]. Whitted ray tracing utilizes direct
lighting, shadow rays, and recursive specular rays. In normal
shading, surface normals were remapped and used as colors.
While of limited production interest in and by itself, normal
shading was used to highlight visibility determination qual-
ities without interference from other shading components,
such as texturing, shadow rays, etc. It should be noted that
normal shading may nevertheless exhibit rather sharp shad-
ing discontinuities, such as around edges, and thus is not
completely devoid of shading variance.

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

38.3 dB
5.86 s

37.8 dB
5.87 s

2048 spp

(values for frame as a whole)

Sala: 400k triangles

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

NORMAL SHADING
PS

N
R

(d
B

)

0 10 20 30 40 50
30

35

40

45

50

32

256

38 505
35

503 69
508

Time (s)

SAN MIGUEL

Quasi-Monte Carlo

TC-QMC† 1spp
TC-QMC 2spp
TC-QMC 4spp
†No clustering

0 5 10 15

32

128

32 509

34 50742
503

Time (s)

SPONZA+HAND

0 5 10 15 20 25
30

35

40

45

50

32

256

33 509

39 506
40

505

Time (s)

SALA

Figure 9: Image quality as a function of rendering time for our method (TC-QMC) compared to QMC, with surface normal
shading. QMC distributes discrete samples over space and time, while our method treats time continuously at 1 (blue), 2 (red),
and 4 (green) discrete spatial locations, respectively. Curve annotations represent shading samples at the primary visibility
level. TC-QMC exhibits a distinct pattern of faster convergence and better quality for equal rendering times within certain
intervals of time. This pattern is particularly distinguished here, since shading is crude and the main source of alias is temporal,
which TC-QMC addresses efficiently. Higher number of spatial samples per pixel successively raises the converged quality of
our algorithm, keeping it ahead of QMC for extended ranges of rendering time. The blue dotted line represents TC-QMC for 1
spp, with clustering disabled, showing that clustering overall has an improving effect.

WHITTED RAY TRACING

PS
N

R
(d

B
)

0 50 100 150
30

35

40

45

32

256

38

505

36

503

69

508

Time (s)

SAN MIGUEL

Quasi-Monte Carlo

TC-QMC† 1spp
TC-QMC 2spp
TC-QMC 4spp
†No clustering

0 25 50 75

32

256

32

254

34

252

32

250

Time (s)

SPONZA+HAND

0 20 40 60
30

35

40

45

32

256

33

253

39

252

51

255

Time (s)

SALA

Figure 10: Image quality as a function of rendering time for our method (TC-QMC) compared to QMC, with Whitted-style
ray tracing. TC-QMC performs favourably over QMC in certain ranges of rendering time, for SAN-MIGUEL (the most complex
scene) in particular, but overall the advantages are fewer here compared to normal shading. Even though feature-aware clus-
tering TC-QMC addresses temporal alias well, but uses point sampling for shading, just like QMC. As variance of the image
shifts from the temporal to the shading domain, there is less that sets the algorithms apart. Feature-aware clustering generally
provides an improvement, however.

Characteristics While both algorithms exhibit logarithmic
increase of quality over rendering time, their profiles in do-
ing so are quite different (Figure 9 and 10). TC-QMC tends
to be less efficient at low rendering times (i.e., for lower
number of shading samples per pixel) before rapidly peak-
ing, and then plateauing to a PSNR which depends on the
number of used TC-rays per pixel.

The initial, lower efficiency is explained by the higher
cost of individual TC-rays compared to their time-discrete
counterpart. This is most clearly visible for the curves where
clustering is disabled, since clustering introduces samples in
a way that offsets the first available data point from near zero
in rendering time.

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

NORMAL SHADING

PS
N

R
(d

B
)

0 10 20 30 40 50
30

35

40

45

50

32

256

38 505
35

503 69
508

Time (s)

SAN MIGUEL

Quasi-Monte Carlo

TC-QMC† 1spp
TC-QMC 2spp
TC-QMC 4spp
†No clustering

0 5 10 15

32

128

32 509

34 50742
503

Time (s)

SPONZA+HAND

0 5 10 15 20 25
30

35

40

45

50

32

256

33 509

39 506
40

505

Time (s)

SALA

Figure 9: Image quality as a function of rendering time for our method (TC-QMC) compared to QMC, with surface normal
shading. QMC distributes discrete samples over space and time, while our method treats time continuously at 1 (blue), 2 (red),
and 4 (green) discrete spatial locations, respectively. Curve annotations represent shading samples at the primary visibility
level. TC-QMC exhibits a distinct pattern of faster convergence and better quality for equal rendering times within certain
intervals of time. This pattern is particularly distinguished here, since shading is crude and the main source of alias is temporal,
which TC-QMC addresses efficiently. Higher number of spatial samples per pixel successively raises the converged quality of
our algorithm, keeping it ahead of QMC for extended ranges of rendering time. The blue dotted line represents TC-QMC for 1
spp, with clustering disabled, showing that clustering overall has an improving effect.

WHITTED RAY TRACING
PS

N
R

(d
B

)

0 50 100 150
30

35

40

45

32

256

38

505

36

503

69

508

Time (s)

SAN MIGUEL

Quasi-Monte Carlo

TC-QMC† 1spp
TC-QMC 2spp
TC-QMC 4spp
†No clustering

0 25 50 75

32

256

32

254

34

252

32

250

Time (s)

SPONZA+HAND

0 20 40 60
30

35

40

45

32

256

33

253

39

252

51

255

Time (s)

SALA

Figure 10: Image quality as a function of rendering time for our method (TC-QMC) compared to QMC, with Whitted-style
ray tracing. TC-QMC performs favourably over QMC in certain ranges of rendering time, for SAN-MIGUEL (the most complex
scene) in particular, but overall the advantages are fewer here compared to normal shading. Even though feature-aware clus-
tering TC-QMC addresses temporal alias well, but uses point sampling for shading, just like QMC. As variance of the image
shifts from the temporal to the shading domain, there is less that sets the algorithms apart. Feature-aware clustering generally
provides an improvement, however.

Characteristics While both algorithms exhibit logarithmic
increase of quality over rendering time, their profiles in do-
ing so are quite different (Figure 9 and 10). TC-QMC tends
to be less efficient at low rendering times (i.e., for lower
number of shading samples per pixel) before rapidly peak-
ing, and then plateauing to a PSNR which depends on the
number of used TC-rays per pixel.

The initial, lower efficiency is explained by the higher
cost of individual TC-rays compared to their time-discrete
counterpart. This is most clearly visible for the curves where
clustering is disabled, since clustering introduces samples in
a way that offsets the first available data point from near zero
in rendering time.

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

Thanks!
Thanks to

Dept. of Computer Science, Malmö University
Intel’s Advanced Rendering Technology team
Rasmus Barringer for SIMD–fu
CGF Reviewers for valuable feedback

Scenes
Hand: Utah 3D Animation Repository
Crytek Sponza: Marko Dabrovic/Frank Meinl
San Miguel: Guillermo M. Leal Llaguno

…and to my family …and to You!

-- more --

Intel Corporation
2200 Mission College Blvd.
P.O. Box 58119
Santa Clara, CA 95052-8119

 Backgrounder
NOTE TO EDITORS: photos, videos and more facts available at
www.intel.com/newsroom/corporateinfo

Intel Corporation

Intel Corporation, the world’s largest chip company by revenue, designs and manufactures
microprocessors, chipsets, software and services that are the foundation for computing. Once
largely a PC-oriented company, Intel® increasingly provides the vital intelligence inside a wide
range of devices, from the lowest-power mobile devices to the most powerful supercomputers in
the world. Headquartered in Santa Clara, Calif., Intel has more than 100,000 employees in 63
countries. Brian Krzanich is the company’s chief executive officer and Renee James is the
president.

In 1968, Silicon Valley pioneers Robert Noyce and Gordon Moore founded their new chip
company, naming it Intel Corporation. Since introducing the industry’s first commercially
available memory chips in 1969 and the first microprocessor in 1971, Intel makes hardware and
software products that power the majority of the world’s data centers, connect hundreds of
millions of cellular handsets and help secure and protect computers, mobile devices and
corporate and government IT systems. Intel technologies are also embedded in intelligent
systems including for automobiles, digital signage, automated factories and medical devices.

Intel has actively driven at the speed of Moore’s Law for nearly 40 years, spurring new
innovations that have integrated more features and capabilities into every chip. Moore’s Law is
named after Intel co-founder Gordon E. Moore, who in a 1965 paper noted that components in
integrated circuits had doubled every year and projected that they would continue to do so.1 This
phenomenon became a guidepost for long-term planning and set challenging targets for Intel and
others in the semiconductor design and manufacturing industry.

Intel delivers the benefits of Moore’s Law through ongoing investments in manufacturing
innovation and leading-edge capacity, continually making higher performance, more energy-
efficient and more cost-effective solutions for an ever-broadening array of market segments.

1 Moore, Gordon E. (1965). "Cramming more components onto integrated circuits" (PDF). Electronics Magazine.
p. 4. Retrieved 03-18-2013.

😃"

Backup

Spatial alias

C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

QMC TC-QMC

Figure 11: Accumulated shading, at the glass tabletop in
SALA, is comparable between our method and QMC given
the same number of shading samples (64, in this case). The
reasons for this are twofold. First, the tabletop geometry
is mostly flat with few discernible geometrical features that
can trigger adaptive sampling for our method. Second, since
our algorithm considers time-continuous visibility at the pri-
mary level and then uses stochastic visibility for secondary
rays and beyond, the metal bars, which are only visible after
two refractions, will ultimately be sampled in the same way
as in QMC (only with a lower spatial distribution).

GT 1 TC-ray 2 4

Figure 12: Spatial alias, such as here on a plant in SALA,
where some geometrical edges are parallel to the motion di-
rection, is reduced when multiple TC-rays per pixel are used.

However once computed, the visibility information of TC-
rays can then be utilized to sample shading at an arbitrary
rate without any further cost for visibility computations.
Consequently, the higher, initial cost becomes amortized as
more shading samples are used. In QMC, the cost for vis-
ibility determination (traversal and triangle intersection) is
lower on a per ray basis, but since visibility determination
and shading are coupled, this cost will accumulate for each
shading sample. This explains why TC-QMC is able to con-
verge significantly faster and stay more effective within cer-
tain intervals of rendering time.

The quality level at which TC-QMC then plateaus de-
pends on how many TC-rays are used per pixel (spp). Alias
originating from shading will reduce with an increasing
number of shading samples, but in order for spatial alias
to reduce as well, additional spatially distributed TC-rays
need to be used per pixel. As evident in the TC-QMC curves,
higher spp-rates lead to curves with similar profiles but with
a “shift” towards higher initial cost as well as higher quality.
This is depicted visually in Figure 12 as well. As spp goes to
infinity, TC-QMC and QMC alike converge to ground truth.
For SAN-MIGUEL/Whitted (leftmost diagram in Figure 10),
there is a breakpoint at about 42dB where TC-QMC with 2
spp outperform 1 spp, and another one at around 43dB where
4 spp outperform 2 spp. Combined, these three curves out-
perform QMC between about 20–180 s in absolute rendering
time, corresponding to 36–46 dB in image quality, for this
particular scene.

These characteristics are most prominent in the normal
shading renderings, where shading is simple and tempo-
ral visibility is the main source of variance. Here, TC-
QMC consistently produces higher quality at equal render-
ing times.

For Whitted ray tracing, TC-QMC retains an edge within
certain rendering times, for SAN-MIGUEL – the most complex
scene – in particular, but to a lesser extent. This illumina-
tion model adds significant shading complexity in the form
of BRDF’s, shadow rays, and secondary ray paths. There
is also an inherent cost related to shading evaluation which
taxes both algorithms equally, thus making them less dis-
tinguishable. SPONZA+HAND, for instance, contains a large
static object where time-continuous visibility is not utilized
at all, and SALA contains a flat dielectric tabletop where all
shading originate from secondary, stochastic visibility, again
without benefits of time-continuity. The tabletop is presented
more closely in Figure 11.

Temporal Coherency An animation was made in SAN-
MIGUEL based on the hacienda view in Figure 1. The cam-
era moves into the scene, grazing the plants and up close
with the door in the background. The animation exhibits no
temporal artifacts, and compares favourably to an identical
sequence rendered in equal time using QMC.

Clustering This technique, as explained in Section 4, gen-
erates additional shading samples based on geometrical fea-
tures of the visibility data. Thresholds for cluster forma-
tion were set to ez = 10�3 and ek = 10�2, for C0- and
C1-continuity, respectively. As a reference, data series with
clustering disabled were included in the Figure 9 and 10
diagrams. These cases show that adaptivity increases con-
vergence. In SPONZA+HAND, the increase is marginal, which
might be explained by the many large, relatively flat surfaces
with high-frequency content textures. One area of improve-
ment here would be be to consider shading variance reduc-
tion as a complementary condition for cluster formation.

Ray vs. Box Test To measure the performance of our ray
vs. box test (Section 3.2), we compared it to a brute force
ray vs. static box implementation, where the static box was
combined from the moving box at t = 0 and t = 1. For ren-
dering times of the latter test normalized to 1, our test ren-
dered in 0.33 for SAN-MIGUEL, 0.55 for SALA and 0.95 for
SPONZA+HAND. Figure 4, furthermore, illustrates tightness
of the produced temporal bounds.

7. Conclusions and Future Work

A novel take on motion blur for ray tracing has been pre-
sented, where we have developed time-continuous intersec-
tion tests between rays and moving triangles & moving
boxes, and used these tests for improved primary visibility.

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

Secondary visibility
C. J. Gribel & T. Akenine-Möller / Time-Continuous Quasi-Monte Carlo Ray Tracing

QMC TC-QMC

Figure 11: Accumulated shading, at the glass tabletop in
SALA, is comparable between our method and QMC given
the same number of shading samples (64, in this case). The
reasons for this are twofold. First, the tabletop geometry
is mostly flat with few discernible geometrical features that
can trigger adaptive sampling for our method. Second, since
our algorithm considers time-continuous visibility at the pri-
mary level and then uses stochastic visibility for secondary
rays and beyond, the metal bars, which are only visible after
two refractions, will ultimately be sampled in the same way
as in QMC (only with a lower spatial distribution).

GT 1 TC-ray 2 4

Figure 12: Spatial alias, such as here on a plant in SALA,
where some geometrical edges are parallel to the motion di-
rection, is reduced when multiple TC-rays per pixel are used.

However once computed, the visibility information of TC-
rays can then be utilized to sample shading at an arbitrary
rate without any further cost for visibility computations.
Consequently, the higher, initial cost becomes amortized as
more shading samples are used. In QMC, the cost for vis-
ibility determination (traversal and triangle intersection) is
lower on a per ray basis, but since visibility determination
and shading are coupled, this cost will accumulate for each
shading sample. This explains why TC-QMC is able to con-
verge significantly faster and stay more effective within cer-
tain intervals of rendering time.

The quality level at which TC-QMC then plateaus de-
pends on how many TC-rays are used per pixel (spp). Alias
originating from shading will reduce with an increasing
number of shading samples, but in order for spatial alias
to reduce as well, additional spatially distributed TC-rays
need to be used per pixel. As evident in the TC-QMC curves,
higher spp-rates lead to curves with similar profiles but with
a “shift” towards higher initial cost as well as higher quality.
This is depicted visually in Figure 12 as well. As spp goes to
infinity, TC-QMC and QMC alike converge to ground truth.
For SAN-MIGUEL/Whitted (leftmost diagram in Figure 10),
there is a breakpoint at about 42dB where TC-QMC with 2
spp outperform 1 spp, and another one at around 43dB where
4 spp outperform 2 spp. Combined, these three curves out-
perform QMC between about 20–180 s in absolute rendering
time, corresponding to 36–46 dB in image quality, for this
particular scene.

These characteristics are most prominent in the normal
shading renderings, where shading is simple and tempo-
ral visibility is the main source of variance. Here, TC-
QMC consistently produces higher quality at equal render-
ing times.

For Whitted ray tracing, TC-QMC retains an edge within
certain rendering times, for SAN-MIGUEL – the most complex
scene – in particular, but to a lesser extent. This illumina-
tion model adds significant shading complexity in the form
of BRDF’s, shadow rays, and secondary ray paths. There
is also an inherent cost related to shading evaluation which
taxes both algorithms equally, thus making them less dis-
tinguishable. SPONZA+HAND, for instance, contains a large
static object where time-continuous visibility is not utilized
at all, and SALA contains a flat dielectric tabletop where all
shading originate from secondary, stochastic visibility, again
without benefits of time-continuity. The tabletop is presented
more closely in Figure 11.

Temporal Coherency An animation was made in SAN-
MIGUEL based on the hacienda view in Figure 1. The cam-
era moves into the scene, grazing the plants and up close
with the door in the background. The animation exhibits no
temporal artifacts, and compares favourably to an identical
sequence rendered in equal time using QMC.

Clustering This technique, as explained in Section 4, gen-
erates additional shading samples based on geometrical fea-
tures of the visibility data. Thresholds for cluster forma-
tion were set to ez = 10�3 and ek = 10�2, for C0- and
C1-continuity, respectively. As a reference, data series with
clustering disabled were included in the Figure 9 and 10
diagrams. These cases show that adaptivity increases con-
vergence. In SPONZA+HAND, the increase is marginal, which
might be explained by the many large, relatively flat surfaces
with high-frequency content textures. One area of improve-
ment here would be be to consider shading variance reduc-
tion as a complementary condition for cluster formation.

Ray vs. Box Test To measure the performance of our ray
vs. box test (Section 3.2), we compared it to a brute force
ray vs. static box implementation, where the static box was
combined from the moving box at t = 0 and t = 1. For ren-
dering times of the latter test normalized to 1, our test ren-
dered in 0.33 for SAN-MIGUEL, 0.55 for SALA and 0.95 for
SPONZA+HAND. Figure 4, furthermore, illustrates tightness
of the produced temporal bounds.

7. Conclusions and Future Work

A novel take on motion blur for ray tracing has been pre-
sented, where we have developed time-continuous intersec-
tion tests between rays and moving triangles & moving
boxes, and used these tests for improved primary visibility.

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.

Our, N=32 QMC, N = 32

Comparison setup: at a glance
• Our: Time-Continuous Quasi-Monte Carlo (TC-QMC)

• 1, 2 or 4 TC-rays per pixel, N shading samples
• TC-rays only at the primary level

• Reference: Quasi-Monte Carlo (QMC)
• Stochastic sampling with N multi-jittered samples

• Shading Models: Normal Shading, Whitted Ray Tracing

• Presentation: Quality as a function of rendering time (growing N)
• Quality metric: PSNR – Peak-Signal to Noise Ratio (dB)
• Ground Truth: 1024-2048 spp Quasi-Monte Carlo

Future Work

• Improved shading reconstruction
• Smarter heuristics for mixed sampling (static & dynamic geometry)
• Secondary rays

• Probably not worth the effort…

• Shadow Rays
• Very high-frequent for point lights, so this is an interesting avenue

