
EUROGRAPHICS 2016 / J. Jorge and M. Lin
(Guest Editors)

Volume 35 (2016), Number 2

SAH guided spatial split partitioning for
fast BVH construction

Per Ganestam and Michael Doggett

Lund University

Figure 1: Traversal cost visualization of the Power Plant model (12,759,246 triangles). The binned SAH builder is represented by the left half
of the figure and our splitting approach together with the Bonsai BVH algorithm is represented by the right half. A brighter color means a
higher traversal cost. The binned BVH is built in 1311ms and the Bonsai BVH using our triangle split approach is built in 1881ms. However,
traversal cost is significantly reduced and rendering performance is improved by 60% when using our triangle split BVH.

Abstract
We present a new SAH guided approach to subdividing triangles as the scene is coarsely partitioned into smaller sets of spatially
coherent triangles. Our triangle split approach is integrated into the partitioning stage of a fast BVH construction algorithm, but
may as well be used as a stand alone pre-split pass. Our algorithm significantly reduces the number of split triangles compared
to previous methods, while at the same time improving ray tracing performance compared to competing fast BVH construction
techniques. We compare performance on Intel’s Embree ray tracer and show that BVH construction with our splitting algorithm
is always faster than Embree’s pre-split construction algorithm. We also show that our algorithm builds significantly improved
quality trees that deliver higher ray tracing performance. Our algorithm is implemented into Embree’s open source ray tracing
framework, and the source code will be released late 2015.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Display Algorithms

1. Introduction

For ray tracing techniques [Whi80], such as path tracing [Kaj86], to
be a feasible choice of rendering it is necessary to accelerate trian-
gle intersection computations with an underlying accelerating spa-
tial data structure [KK86,PH10]. This data structure, often arranged
as a binary tree, is used to speed up traversal of a three-dimensional
scene to determine which triangle a ray intersects. Common types
of data structures for ray tracing are kd-trees, grids, and the Bound-
ing Volume Hierarchy (BVH), where the latter has gained a lot of
popularity in recent years.

It is also important that the data structure is of high quality, in the
sense that a higher quality data structure results in better ray tracing
performance. A commonly used algorithm to construct high quality
BVHs is a greedy top-down approach called sweep SAH, that uses
the Surface Area Heuristic (SAH) [MB90]. Another crucial aspect
of BVH construction, especially for animated scenes and real-time
ray tracing, is that the data structure must be constructed quickly,
since it may need to be rebuilt or updated every frame.

An often overlooked, but still important aspect for high quality
tree construction is triangle splitting. Triangle splitting creates mul-
tiple references to a single triangle enabling the axis aligned nodes

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Per Ganestam and Michael Doggett / SAH guided spatial split partitioning for fast BVH construction

in a BVH to have a tighter fit, resulting in improved ray traversal
times.

Analyzing the results in Section 5 reveals some disadvantages of
current triangle splitting approaches which may be either a lack of
robustness or significantly increased BVH construction times and
memory usage.

We propose a new fast top-down triangle splitting algorithm
that produces BVHs with a quality similar to those of Split BVH
(SBVH) [SFD09] but with build times close to those of the fast
binned [Wal07] BVH construction approach. Our algorithm may be
used as a preprocess to construction, or in conjunction with other
top-down BVH approaches. By pairing our method with top-down
construction algorithms, our splitting approach can take advantage
of the partitioning stage already present in the algorithm. We eval-
uate our new algorithm by implementing it into the industry grade
Embree [WWB∗14] ray tracing system. We use our method both
with sweep SAH as a pre-split pass and integrated with the Bonsai
BVH construction algorithm [GBDAM15] and compare our results
with some of the high performing and high quality BVH builders
available in Embree.

Our main contribution is the fastest CPU based triangle split
BVH builder to achieve ray tracing performance comparable to
SBVH. Furthermore, our triangle split approach can be used as a
preprocess to any BVH builder, and thus improve ray tracing qual-
ity by simply adding a pre-split module to existing frameworks. To
attain our results we have developed a new simple but effective re-
cursive triangle split approach and paired it with a novel in-place
parallel partitioning scheme for recursively growing data.

2. Previous Work and Background

Havran and Bittner [HB02] presented the idea of split clipping,
where the bounding box of an object is split to reduce empty over-
lap between object bounding boxes and kd-tree nodes. Rather than
actually splitting triangles and storing the resulting polygons, or
tessellating the polygons into several triangles, only the bound-
ing boxes of triangles are actually split and re-computed, to cre-
ate tighter axis-aligned bounds around the triangles. By perform-
ing split clipping rather than actual triangle splitting both computa-
tional complexity and the memory footprint are reduced.

Ernst and Greiner [EG07] applied a similar concept to BVHs by
splitting triangle bounding boxes in a preprocess, called Early Split
Clipping (ESC), before using a typical BVH construction pass.

Dammertz and Keller [DK08] suggested splitting triangles based
on the tightness of the bounding boxes on each triangle edge and
introduced a heuristic based on the volumes of the triangles’ bound-
ing boxes, the Edge Volume Heuristic (EVH).

Karras and Aila [KA13] introduced a new heuristic to the pre-
splitting approach and the concept of a split budget. Their heuristic
significantly improves split candidate selection and consequently
improves BVH quality compared to earlier methods. By using a
split budget they also reduce the risk of producing too many triangle
splits.

Although computing triangle splits prior to BVH construction
is a tempting approach, it also comes with certain impediments.

As noted by Karras and Aila [KA13], both ESC [EG07] and the
EVH [DHK08] fail in robustness. With the lack of knowledge of
which triangle is valuable to split, some triangles may be split when
they shouldn’t, and some that should may not be split enough, or
not split with the right split plane; sometimes resulting in worse ray
tracing performance than a BVH without triangle splitting. Another
shortcoming shared by the earlier pre-split approaches is that an a
priori choice has to be made. Since ESC only relies on a predefined
constant, it has to be hand tuned for every scene. The heuristic of
EVH tries to mitigate the hand-tuning issue, however, it still has a
constant that needs to be chosen. Although the pre-splitting heuris-
tic by Karras and Aila [KA13] produces very good BVHs and is
robust across a wide range of scenes, there is still the choice of
split budget size. Sometimes a split budget of 10% of the triangles
is enough, however, in other scenes a split budget of 50% is nec-
essary to reach the potential increase in ray tracing performance.
Thus the risk of performing too many splits is still inherent, since
the BVH of some scenes cannot be improved by triangle splitting.

Stich et al. [SFD09] and Popov et al. [PGDS09] proposed sim-
ilar ideas, where primitives are considered for splitting into both
children during BVH construction, which resulted in tighter bound-
ing boxes on a larger range of triangles than previous approaches.
The top-down approaches by Stich et al. [SFD09] and Popov et
al. [PGDS09] have the potential of producing superior BVHs. How-
ever, at the mercy of long build times. At each level of recursion,
SBVH by Stich et al. [SFD09] picks the better of either using the
best object split computed by sweep SAH, or the best spatial split
among 256 equidistant split planes. To reduce the risk of perform-
ing too many triangle splits, and potentially running out of memory,
SBVH incorporates a bias so that it may choose sweep SAH object
split, even though spatial splits in fact could reduce SAH costs fur-
ther. As of yet, the SBVH algorithm by Stich et al. [SFD09] pro-
duces the highest quality BVHs [KA13, AKL13].

Since we make extensive use of Bonsai, a fast CPU based BVH
construction algorithm presented by Ganestam et al. [GBDAM15],
it is worth mentioning a few details about the algorithm. Initially,
Bonsai employs a fast approximate partitioning routine, using tri-
angle mid-points only, to divide the scene into smaller spatially co-
herent groups of triangles. The triangle groups are passed to a BVH
builder, in Bonsai a fast sweep SAH routine is used, and in parallel
constructed into mini-trees. Prior to the last stage where the mini-
trees are considered as leaf nodes in a sweep SAH pass, a pruning
algorithm is applied to each mini-tree. Thus tightening the bounds
of each mini-tree and correcting potential flaws to the full BVH
caused by the initial partitioning stage.

Domingues and Pedrini [DP15] improve upon the performance
of GPU based BVH construction by using an agglomerative pro-
cess that merges nodes in treelets based on selecting the mini-
mum surface area of the bounding boxes. They build on previ-
ous treelet reordering work that searched exhaustively for the best
treelet [KA13]. Their technique is based on an initial tree being
built using the LBVH method [LGS∗09]. Domingues and Pedrini
don’t present any results with triangle splitting. However, their
BVH builder may as well be combined with the pre-splitting ap-
proach by Karras et al. [KA13], or for that matter, our approach as
a preprocess.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Per Ganestam and Michael Doggett / SAH guided spatial split partitioning for fast BVH construction

Previous triangle splitting algorithms, although producing high
quality BVHs, are either slow in construction [SFD09, PGDS09],
or in need of hand tuning or manual decisions prior to construc-
tion [EG07,DHK08,KA13]. Motivated by the little, or none, a pri-
ori knowledge needed for BVH construction and the prospect of
producing superb trees, we continue in the fashion of the recursive
triangle split approaches. However, to reduce build times, we pair
our splitting method with the Bonsai BVH algorithm.

3. Algorithm

Our SAH guided mid-point split partitioning can be either inte-
grated with the Bonsai BVH construction algorithm or work as a
stand alone triangle pre-split method for any other BVH algorithm.
Both with Bonsai and as a sweep SAH pre-split pass, our split par-
titioning approach results in improved ray tracing performance and
when paired with Bonsai, ray tracing performance is similar to that
of Embree’s SBVH based spatial split builder.

3.1. The Surface Area Heuristic

Although the Surface Area Heuristic [GS87, MB90] for BVH con-
struction in recent years has been found not to correlate per-
fectly with improved ray tracing performance [FFD09,AKL13,GB-
DAM15], it is still an advantageous approach in the construction of
high quality BVHs. With this in mind we will briefly explain the
SAH cost equations and how the SAH cost is evaluated and mini-
mized in a top-down BVH construction algorithm.

The total SAH cost of a BVH can be computed as

Ci ∑
n∈I

A(n)
A(root)

+Cl ∑
n∈L

A(n)
A(root)

+Ct ∑
n∈L

A(n)
A(root)

N(n), (1)

where the equation expresses the expected cost of a random ray
traversing the BVH, however in such a way, that it does not termi-
nate within the scene geometry. Internal nodes are in the set I and
the set L represents leaf nodes. The operator A represents the sur-
face area of a node’s bounding box and N represents the number
of triangles in a node. The constants Ci, Cl , and Ct represent the
costs of traversing an internal node, a leaf node, and intersecting a
triangle, respectively.

Using SAH to optimize a top-down BVH builder is done by at
each level of recursion evaluating and minimizing the equation

Er =CiA(n)+Cl(A(nl)N(nl))+A(nr)N(nr)), (2)

which represents the cost of proceeding with the recursion, where
nl and nr are the potential left and right child nodes. The result is
compared to

Et =CtA(n)N(n), (3)

which represents the cost of terminating the recursion and using
the current node n as a leaf node in the BVH. If Et < Er an SAH
optimal leaf node is found and the recursion terminates. Otherwise
the recursion continues with nl and nr as child nodes. In our triangle
split algorithm we use Equation 2 in a similar way to how it is used
in recursive BVH construction.

DL

R

O

S

D

O

S

L

L

R

R

Figure 2: The bounding boxes of the different sets of triangles used
by our triangle split method. The brown box represents the mid-
point bounds of all triangles and its spatial median is used to create
the split plane. The blue bounds represent the overlap sets, the red
bounds represent the split sets, and the green bounds represent the
left and right disjoint sets.

3.2. SAH guided mid-point split partitioning

In addition to computing the mid-point bounds used to find the
split plane while partitioning, to know whether triangles should be
subdivided or not, we need to compute the complete left and right
bounding boxes. While partitioning, we accumulate six sets of dif-
ferent triangle categories. We create two completely disjoint sets of
left and and right triangles, in relation to the mid-point split plane,
where the two sets are denoted as DL and DR and DL∩DR = ∅. We
also store two overlap sets, OL and OR, of those triangles that have
their mid-points to the left or right side of the split plane but with
bounding boxes overlapping the split plane. The last two sets, the
split sets, contain the left and right halves of subdivided triangles
respectively, and are denoted as SL and SR. The triangles in each of
the split sets are exactly the same as the triangles in the overlap sets,
i.e. OL∪OR = SL = SR. However, due to split clipping [HB02], the
left and right subdivided triangles have different bounding boxes.
This also implies that the split sets contain twice as many triangles
as the overlap sets.

Figure 2 shows the bounding boxes and their associated groups
of triangle indices created around the split plane. As in the Bonsai
algorithm [GBDAM15], to avoid empty partitions, we use the mid-
point bounds rather than full bounds when choosing the split plane.
As a consequence of this, the split plane used to subdivide triangles
isn’t the spatial median of the complete bounding box of a partition,
but instead chosen as the spatial median of the mid-point bounds.
We choose the largest axis for partitioning.

Once the bounds of the six sets are computed we evaluate the
benefit of splitting triangles by computing the SAH cost when using
the overlap sets

CO = A(DL∪OL)|DL∪OL|+A(DR∪OR)|DR∪OR|

and comparing the result to the SAH cost when using the split sets,

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Per Ganestam and Michael Doggett / SAH guided spatial split partitioning for fast BVH construction

evaluated as

CS = A(DL∪SL)|DL∪SL|+A(DR∪SR)|DR∪SR|,

where A is the surface area of a set, CO is the SAH cost of keeping
the original triangles, and CS is the SAH cost of using the split
triangles. Split partitioning is continued by choosing whichever set
has the lowest SAH cost.

Our split partitioning algorithm continues the recursion until a
treshold of triangle count has been reached. The threshold is based
on the Bonsai algorithm’s mini-tree size and can be set arbitrarily.
However, we have found that for smaller scenes (< 100,000 prim-
itives) a smaller threshold of 512 is necessary to perform enough
triangle splitting, and for larger scenes (> 4,000,000 primitives),
a value of 8192 as a threshold is enough to achieve a high quality
BVH. We linearly interpolate the threshold value between its mini-
mum and maximum values. Other than the mini-tree size threshold,
our method does not require any other bias or tuning variables to
guarantee enough splitting or to avoid over-splitting.

4. Implementation

Since we have implemented our splitting algorithm in Embree, we
also make use of some of their design choices. The type primitive
reference, denoted primref, is a structure of six floats representing
a triangles bounding box and two integers used as references to the
original mesh and triangle. Since the size of a primref is (6+2) ·32
bits, it fits into a 256-bit AVX register, which is useful for fast
bounding box computations. As an initial pass, all algorithms we
present create an array of primrefs containing the original bound-
ing boxes and indices of each triangle. It is the primref array that is
used in BVH construction and triangle splitting. A split triangle is
simply two primrefs referencing the same original triangle, but hav-
ing different bounding boxes. To avoid confusion, in the following
section we simply talk about triangles, although all operations are
actually done on primrefs.

4.1. Triangle Splitting and Recursively Growing Memory

One of the most difficult tasks with a recursive algorithm that needs
to expand memory wise, is efficient memory management. In prac-
tice, keeping the different sets (split, overlap, and disjoint) in sepa-
rate arrays and then merging them when a decision whether to split
or not is taken, although much easier to implement, is inefficient
memory wise.

We perform a quick-sort style in-place partitioning with the split
plane as the pivot. To minimize memory traffic, we track the index
of any triangle that belongs to one of the overlap sets instead of
making an actual copy of the triangle. When partitioning discov-
ers an overlap triangle, it places that triangle to the left or right of
the split plane depending on its bounding box midpoint, as is done
with a non-split partitioning. Thus there is no need for any auxiliary
storage of the overlap sets as it is with the split sets. Since we store
the index of the overlap triangles, it is possible to later substitute an
overlap triangle for a split triangle, if the SAH-cost calculation de-
termines that it is more beneficial to keep the split sets of triangles
than the overlap sets. The partitioning performed at each recursion
is illustrated in Figure 3.

First Last Last free space

Initial triangle array

After partitioning

After splitting and
memory reordering

Left first

Left last
free space

Left last
Right first

Right last

Right last
free space

Pivot

Figure 3: Triangle array memory management in each recursion.
The initial array contains disjoint left and right triangles (blue and
red) and overlap triangles (green and orange). After in-place par-
titioning, the left side of the split plane contains DL ∪OL and the
right side its counterparts. Two separate arrays of temporary left
and right split triangles contain their respective parts of split trian-
gles. An indexed triangle, one that can be inserted where an overlap
triangle currently resides, in the left split set SL is colored blue and
green and marked with IL. An indexed triangle in the right set SR
is colored red and orange and marked with IR. If the SAH metric
finds the split sets favorable, indexed triangles are inserted where
the overlap triangles are and a small segment of the right partition
is moved as the last part of the diagram illustrates. Note that this is
an extreme case were almost 50% of the triangles are split, and it
is merely for illustrative purposes.

A memory problem arises when it is decided that the split sets
should be used. Since there are twice as many triangles in the split
sets as there are in the overlap sets, and only half of the split trian-
gles are indexed and can be inserted into the original triangle array.
In the first level of split partitioning, before any recursive calls have
been made, it is possible to simply append the non-indexed trian-
gles of the right split set SR to the end of the original partition.
However, it doesn’t solve the problem with the non-indexed left
split triangles. There is no space to place them in-between the pivot
and the triangles that belong to the right of the split plane. Thus,
as many right triangles as there are non-indexed left split triangles
have to be moved to the end of the original partition as well. Then
there would be enough space for both the left and right split sets.

Due to the recursive fashion of our algorithm, it becomes more
problematic with the succeeding recursions. In most cases, there
won’t be any empty space available at the end of the partition, and
all triangles of one of the halves would have had to been moved
to new memory every time the split sets are better than the overlap
sets. This memory overhead can be solved by always rebalancing
the available empty space relative to the partition sizes and making
sure that enough empty space is created in each partition as the
algorithm recurses.

Whether the split sets produce a lower SAH cost than the overlap
sets or not, we always perform a rebalancing of empty space. In
each recursion of the left and right partitions, they are rearranged
to supply each side with a fraction of the available empty space

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Per Ganestam and Michael Doggett / SAH guided spatial split partitioning for fast BVH construction

in proportion to the current size of the partitions. As an example,
after splitting and partitioning, if there is space for 15 additional
triangles at the end of the right partition but no space between the
left and the right partitions, and the left partition is twice as large as
the right partition, then after rebalancing there would be space for
10 additional triangles at the end of the left partition and 5 at the
end of the right partition.

If there isn’t enough space for both SL and SR after split par-
titioning, then the whole right set DR ∪ SR has to be moved to a
new memory region, with an additional 20% extra padding space
as well. The left side gets all the memory left behind by the right
side.

We empirically found that the 20% additional space for the par-
titions works in a robust way for all of our scenes. It is rare that a
partition grows with more than a few percent of its size.

In a pathological worst case scenario where all triangles in a
scene need to be split, the size of the temporary split set arrays
SL and SR would need to be as large as the entire scene, but such
a scene would cause trouble to any split builder. We found that the
actual worst case space needed for the split set arrays across all
our scenes is 1% of the triangle count in size. Often they are much
smaller than that. For San Miguel the largest temporary split set ar-
ray is only 0.05% in size relative to the number of triangles of the
scene.

Bonsai [GBDAM15] permits gaps between each final partition
and some unused space at the end of the partitions will not affect
other stages of the builder. However, when using our splitting algo-
rithm as a pre-split pass, a compaction of the triangle array prior to
BVH construction is necessary.

Task parallelism is implemented by recursively spawning new
tasks as more partitions are created. We utilize data parallelism
when swapping positions of triangles and when computing new
bounding boxes.

The total memory allocations needed for our split partitioning
algorithm additional to the initial triangle array are a dynamically
growing SL and SR pair per thread and the dynamically growing
memory of the triangle array. Our in-place growing memory par-
titioning scheme allocates at worst about twice as much additional
memory than needed. As an example, the Power Plant scene is built
with 19% additional split triangles but allocated space is increased
by 39%.

4.2. Bonsai and 8-wide Trees

To maximize ray tracing performance on modern CPUs Embree
utilizes 8-wide SIMD instructions (AVX) when ray tracing. How-
ever, to efficiently gain data level parallelism while traversing a
BVH, Embree builds 4-wide or 8-wide trees for SSE or AVX hard-
ware. We had to modify the Bonsai algorithm to also build 8-wide
trees. The initial partitioning of Bonsai doesn’t store any BVH node
information and is not affected by the fact that the BVH nodes
will have eight children. However, mini-tree construction and top
tree construction must be adapted to build 8-wide trees. Since both
the top tree and the mini-trees use the sweep SAH algorithm, they
are modified in the same way. Just like in Embree’s binned SAH

builder, instead of creating a node once an SAH optimal pivot has
been found, the two halves are placed in a priority queue. While
the queue is smaller than the maximum number of children of a
node, the element with the largest SAH cost in the queue is chosen
for further partitioning. Once the queue has reached the maximum
branching size, a BVH node is created and the children are further
partitioned recursively.

One issue with the top tree in 8-wide BVH construction that
doesn’t exist for binary trees, is that it isn’t guaranteed that the
top tree gets precisely the maximum number of children (which
are mini-trees) in its leaf nodes, causing partially filled nodes in the
middle of the tree. Initially we thought it would be better to move
the gaps to the leaves of the BVH and when a partially filled node
was created, the empty space was propagated down the tree. How-
ever, we didn’t see any tree quality improvement by moving the
empty nodes from the middle of the tree to the leaf nodes. It was
simply wasted CPU cycles, thus we decided to leave the partially
filled nodes as they were.

Triangle splitting is integrated into Bonsai simply by exchanging
the mini-tree partitioning with our split partitioning.

5. Results

Our main results have been generated using an Apple Macbook
Pro laptop with a quad core Intel 4850HQ CPU. Our primary re-
sults are produced by running our triangle split implementations
in the Embree ray tracing framework and using the path tracer
available in Embree, in benchmark mode, for tree quality measure-
ments. We compare several different construction algorithms with
and without splitting and the results are shown in Table 1. For non-
split algorithms we include a standard sweep SAH, SWEEPSAH,
the original non-split version of Bonsai (BONSAI), and the binned
SAH algorithm included in Embree, BINNEDSAH. Our new split-
ting algorithm is integrated into the Bonsai construction algorithm
and denoted BONSAIS. To demonstrate the ability to use our split-
ting algorithm with other construction techniques, we apply it as
a pre-split pass to sweep SAH, SWEEPPRE. We also compare to
the two splitting algorithms available in the Embree. The first is a
pre-split builder BINNEDPRE, and the second is a spatial split al-
gorithm BINNEDS, based on SBVH [SFD09].

BVH performance comparisons are done using Embree version
2.7.1. It is worth noting that our implementation of SWEEPSAH
is not optimized for build time, although, Ganestam et al. [GB-
DAM15] showed that SWEEPSAH can achieve competitive build
performance.

In Table 1 build times are presented in milliseconds and render-
ing performance is the average time in milliseconds of 10 frames
rendered using the path tracer supplied by Embree. A frame is sim-
ply a rendering pass with one sample per pixel and many frames
need to be accumulated for a final image to converge. The more
samples and longer time an image need to converge the more ben-
eficial it is with a high quality BVH.

We have marked the two algorithms resulting in the best ren-
dering performance in bold. If more than two algorithms share the
best performance percentage, they are all marked. Among the al-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Per Ganestam and Michael Doggett / SAH guided spatial split partitioning for fast BVH construction

gorithms with the best rendering performance we also marked the
one with the fastest build time.

Across our twelve test scenes, BONSAIS is always the fastest
triangle split algorithm. Additionally, BONSAIS is among the two
best performing algorithms 10 out of 12 times and in four occa-
sions, Bonsai with integrated triangle splitting even out performs
BINNEDS. SWEEPPRE is among the top performing algorithms in
two occurrences, and tends to have a ray tracing performance in be-
tween BINNEDS and BINNEDPRE on scenes where triangle split-
ting is beneficial. BINNEDS improves rendering performance on all
scenes but one compared to SWEEPSAH. However, on scenes that
don’t benefit much from splitting, the performance gain is small,
and at the cost of significantly longer build times.

An example of a scene where triangle splitting does not improve
rendering performance is Dragon. The reason is that Dragon only
contains finely tessellated and evenly distributed triangles, and non-
split builders like BINNEDSAH can easily minimize the SAH cost.

Figure 4 illustrates multicore performance scaling of the Power
Plant scene with BONSAS and BINNEDSAH. Scaling measure-
ments were performed on an Intel E5-2643V3 dual socket 12 core
CPU. Although BINNEDSAH scales slightly better with an increas-
ing number of CPU cores than BONSAIS, it is worth noting that
BONSAIS build times are close to BINNEDSAH build times and
ray tracing performance on the 12 core CPU using BONSAIS is
105ms per frame and with BINNEDSAH 162ms per frame. Since
BINNEDSAH and BONSAIS present significantly better build per-
formance than BINNEDS we omit BINNEDS in the multicore scal-
ing comparisons.

Although it is easy to measure memory performance of BON-
SAIS it is difficult to make thorough comparisons in regards of
build time memory usage to the BINNEDS algorithm. The source
code of BINNEDS presents many small memory allocations and
memory free instructions. We added a counter to see whether the
actual number of allocations were significant or not and found that
a large number of allocations were made. However we didn’t have
the means to measure the maximum memory allocated at any time.
To further investigate memory usage we executed both BONSAIS
and BINNEDS through the well known memory analysis tool Val-
grind. Valgrind couldn’t tell us what the largest amount of memory
allocated at any time was either, but it could inform us about the to-
tal number of allocations made by both algorithms. In the tests we
made, BINNEDS allocated 34× more memory in total compared
to BONSAIS and for Arabic City BONSAIS allocated 735MB of
memory and BINNEDS allocated 25GB of memory, not counting
any free instructions.

5.1. Binary Trees

Since Embree only implements 4-wide and 8-wide BVHs we also
present results on a subset of our scenes using a standard binary
BVH. In this comparison we also use SWEEPSAH as a baseline
but present only one additional algorithm, BONSAIS. The ray tracer
used in the second comparison performs ray traversal on the GPU
but computes shading on the CPU. The GPU calculations are done
on an Intel Iris Pro 5200 integrated graphics processor.

In our Embree implementation, we noticed that the improved

B
u
il

d
 t

im
e
 (

m
s)

0

1500

3000

4500

6000

Number of cores

1 2 4 8 16

BonsaiS BinnedSAH

12

Figure 4: Multicore performance scaling of the Power Plant scene.
Although BONSAIS is close, BINNEDSAH presents slightly better
multicore scaling. Scaling measurements were conducted on a dual
socket 12 core CPU. Note the logarithmic x-axis scale.

rendering times using triangle splitting didn’t always match the ex-
pected rendering improvement we had seen prior to integrating our
methods to Embree. One observation that partially explains the gap
in rendering performance between the 8-wide Embree implementa-
tion and the 2-wide GPU implementation is that it may be less ad-
vantageous for wider trees to perform triangle splitting. We found
that if we forced Embree to actually build binary BVHs, although
the ray tracer would still use its 8-wide AVX implementation, on
some scenes, the reduced rendering time benefit from triangle split-
ting compared to no splitting would differ with about 5% compared
to the splitting benefit with 8-wide trees. This doesn’t fully account
for the discrepancy, where as an example Arabic City, in Table 1
using 8-wide trees BONSAIS performs at 84% of SWEEPSAH,
but in Table 2 using 2-wide trees, the rendering time is reduced
to 65% of SWEEPSAH. The rest of the discrepancy can then only
be explained by using different hardware or a different ray tracer,
or more likely, a combination of the two.

Due to this discrepancy we also present results of a sub set of our
test scenes by ray tracing standard binary BVHs. We do this with
our own GPU based ray tracer, with shading computations done
on the CPU. The improved rendering times in Table 2 can also
be put in relation to the rendering speed improvements reported
by Karras et al. [KA13]. For Arabic City their SBVH implemen-
tation reduces rendering times to 62% compared to SWEEPSAH.
The same comparison results in 71% for Sponza and 73% for San
Miguel. The rendering times of the same three scenes of the fast
triangle split builder by Karras et al. [KA13] are reduced by 74%,
73% and 77% respectively compared to SWEEPSAH. For Arabic
City and Sponza the triangle counts are increased by 50% and for
San Miguel the count is increased by 30%. On the same scenes,
BONSAIS reduces rendering times to 65% for Arabic City, 75%
for San Miguel, and 60% for Sponza, compared to SWEEPSAH,
while having an adaptive split count that is increased by 34% for

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Per Ganestam and Michael Doggett / SAH guided spatial split partitioning for fast BVH construction

Arabic City Crown Dragon Fairy Forest Italian City Kalabsha
Triangles 416,236 4,868,924 7,349,978 174,117 382,029 4,542,705

Build Trace Build Trace Build Trace Build Trace Build Trace Build Trace
SWEEPSAH 254 295 [100%] 4680 325 [100%] 7595 129 [100%] 117 299 [100%] 240 300 [100%] 4910 551 [100%]
BONSAI 34 291 [99%] 469 331 [102%] 664 131 [102%] 16 299 [100%] 31 292 [97%] 451 554 [101%]
BINNEDSAH 33 302 [102%] 447 322 [99%] 674 126 [98%] 14 296 [99%] 31 297 [99%] 459 555 [101%]
SWEEPPRE 374 243 [82%] 5414 322 [99%] 8087 134 [104%] 147 301 [100%] 322 239 [80%] 6098 550 [100%]
BONSAIS 53 247 [84%] 535 316 [97%] 827 132 [102%] 24 297 [99%] 47 231 [77%] 765 513 [93%]
BINNEDPRE 91 267 [91%] 980 317 [98%] 1577 134 [104%] 40 305 [102%] 77 254 [85%] 811 572 [104%]
BINNEDS 404 237 [80%] 4130 304 [94%] 2205 124 [96%] 129 289 [97%] 316 229 [76%] 4646 505 [92%]

Mini Power Plant Sala San Miguel Sibenik Sponza
Triangles 912,411 12,759,246 400,637 7,880,512 79,380 262,267

Build Trace Build Trace Build Trace Build Trace Build Trace Build Trace
SWEEPSAH 719 593 [100%] 14347 617 [100%] 283 298 [100%] 8208 394 [100%] 49 222 [100%] 178 1210 [100%]
BONSAI 74 581 [98%] 1261 606 [98%] 34 298 [100%] 711 363 [92%] 9 225 [101%] 22 1137 [94%]
BINNEDSAH 83 592 [100%] 1311 700 [113%] 35 332 [111%] 798 386 [98%] 7 222 [100%] 22 1393 [115%]
SWEEPPRE 952 548 [92%] 17603 469 [76%] 359 296 [100%] 9301 359 [91%] 53 222 [100%] 213 1224 [101%]
BONSAIS 106 538 [91%] 1881 437 [71%] 47 286 [96%] 835 339 [86%] 11 218 [98%] 29 1057 [87%]
BINNEDPRE 166 617 [104%] 3625 606 [98%] 90 339 [114%] 2168 388 [98%] 14 229 [103%] 56 1244 [103%]
BINNEDS 739 572 [96%] 13835 441 [71%] 342 292 [98%] 7118 341 [87%] 53 213 [96%] 168 1113 [92%]

Table 1: BVH build time and rendering performance measurements across all scenes and algorithms. Build times are reported in milliseconds
and ray tracing performance in milliseconds per frame. The reported frame time is the average of ten frames rendered with the path tracer
available in Embree, set to benchmark mode. The reported build times are generated by taking the minimum build time when running each
builder 20 times. In regards of both build times and rendering performance, lower is better. The two algorithms that result in the highest ray
tracing performance are marked, and so is the fastest build time among those with the best rendering performance.

Arabic City Crown Italian City Kalabsha San Miguel Sponza
SWEEPSAH 240 [100%] 191 [100%] 129 [100%] 455 [100%] 667 [100%] 630 [100%]
BONSAIS 155 [65%] 183 [96%] 86 [67%] 330 [73%] 499 [75%] 380 [60%]

Table 2: Rendering performance comparison of SWEEPSAH and BONSAIS using binary BVHs and on a GPU based ray tracer. Measure-
ments are reported in milliseconds per frame.

Arabic City, 6% for San Miguel, and 23% for Sponza. Since the al-
gorithms are designed for and executed on different hardware it is
difficult make direct build time comparisons. However, BONSAIS
and the triangle split builder by Karras et al. [KA13] exhibit similar
performance improvements, but BONSAIS results in a significantly
smaller increase of triangles.

5.2. Triangle counts

Table 3 presents the increase in triangle counts due to splitting tri-
angles. Our splitting algorithm and the binned spatial split builder
BINNEDS both split triangles adaptively and thus find triangle
splits that greedily minimize the SAH costs. The pre-split approach
used in Embree depends on a pre-defined splitting budget and thus
may split too much or too little in some scenes. Generally, BON-

SAIS creates fewer additional triangles than the two triangle split
methods available in Embree. The pre-split approach in Embree
tends to increase the original triangle count by close to 50%. This is
because of the split budget that allows a maximum increase of 50%.
The algorithm will continue to split large triangles until it is close to
its split budget, even though it may not always further improve ren-
dering performance. For the Power Plant model, BINNEDS creates
more than twice the number of additional triangles than BONSAIS,
even so, rendering performance is identical. For San Miguel, the
difference in triangle splits is even greater, where BONSAIS only
adds 6% additional triangles compared to 45% with BINNEDS but
BONSAIS results in slightly better rendering performance. Again,
we see how dragon isn’t affected much by splitting and most of its
split computations are discarded.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Per Ganestam and Michael Doggett / SAH guided spatial split partitioning for fast BVH construction

BONSAIS BINNEDPRE BINNEDS
Arabic City 34% 47% 61%
Crown 9% 46% 34%
Dragon 2% 46% 1%
Fairy Forest 19% 46% 24%
Italian City 27% 48% 59%
Kalabsha 11% 22% 46%
Mini 24% 46% 42%
Power Plant 19% 47% 50%
Sala 19% 45% 44%
San Miguel 6% 50% 45%
Sibenik 19% 46% 29%
Sponza 23% 45% 25%

Table 3: The triangle count increase due to splitting. BONSAIS
represents the counts for SWEEPPRE as well, since they use the
same splitting algorithm. BINNEDSAH with pre-split always stays
close to a 50% increase, since this is the allowed splitting budget.
Our method and BINNEDS are both adaptive split techniques, and
reduce the probability of keeping unnecessary splits.

5.3. Splitting performance

In Table 4 we present the actual time our splitting algorithm takes
as a stand alone pre-split approach and the percentage of the BON-
SAIS build time that is spent on split partitioning. When our method
is used with Bonsai the splitting time is merged with the initial
mini-tree partitioning. As an example, when using our triangle
splitter as a pre-split on San Miguel, the extra build time added
is 248ms. Since the splitting algorithm is integrated into BONSAI,
and the original partitioning pass of BONSAI takes 133ms for San
Miguel, the added build time for BONSAIS in relation to BONSAI

is 248−133 = 155ms. Any other extra build time added for BON-
SAIS and other algorithms using our split method would be from
the fact that there are more triangles to process while building the
BVH.

5.4. SAH cost

Table 5 shows the SAH cost of the competing algorithms. BON-
SAIS consistently produces low SAH costs, not always the lowest,
but close. Table 5 also demonstrates that SAH cost doesn’t neces-
sarily correlate with rendering performance [FFD09, AKL13, GB-
DAM15]. This is clearly seen on Fairy Forest and San Miguel,
where BINNEDPRE greatly increases the SAH cost without signif-
icantly reducing ray tracing performance compared to BINNED-
SAH.

6. Conclusion

We have presented a new triangle split algorithm for fast BVH
construction on multicore CPUs using contemporary SIMD exten-
sions. Our triangle split approach paired with Bonsai is always the
fastest triangle split builder among the presented algorithms and
achieves a rendering performance similar to, and some times better
than, the SBVH based spatial split builder available in Embree. We
achieve fast build times by utilizing a parallel in-place partitioning

Split time (ms)
Arabic City 13 [25%]
Crown 151 [28%]
Dragon 294 [36%]
Fairy Forest 11 [46%]
Italian City 11 [23%]
Kalabsha 394 [52%]
Mini 30 [28%]
Power Plant 844 [45%]
Sala 17 [36%]
San Miguel 248 [30%]
Sibenik 4 [36%]
Sponza 8 [28%]

Table 4: The time in milliseconds our triangle splitting approach
takes when used as a pre-split pass. In brackets we show the time
spent on split partitioning relative to full BONSAIS build times. On
split friendly scenes, such as Italian City, the relative time spent on
splitting is lower than on less split friendly scenes. This is inherent,
since all triangles that cross the split plane have to be considered
as a split candidate, even if the split never is used. However, if the
number of triangles used by the BVH builder isn’t increased, the
build times are lower than they would be if the splits were used.
Thus increasing the ratio between triangle split time and BVH build
time.

scheme for recursively growing data, and improved BVH quality
by employing an SAH guided triangle split technique while parti-
tioning. Our algorithm reaches its full potential in regards of both
build times and rendering performance when paired with Bonsai.
We have also showed that our method works well as a pre-split
pass prior to BVH construction, and can easily be added to existing
BVH builders without any invasive procedures.

We consider our contributions as continued work towards a high
quality real-time BVH construction.

As future improvement, our algorithm could benefit from a more
sophisticated parallel approach in the early stages of partitioning.
Rather than using only one thread in the first level of recursion, all
available threads could work on the same partition until the number
of partitions equals the number of hardware threads available.

Acknowledgements

Thanks to ELLIIT and the Intel Visual Computing Institute for
funding. We would like to thank Veronica Sundstedt for the Kal-
absha temple model and Timo Aila for the Italian and Arabic
City models. We would also like to thank Martin Lubich, http:
//www.loramel.net, for the Crown model and Gilles Tran,
http://www.oyonale.com, for the Mini model.

References

[AKL13] AILA T., KARRAS T., LAINE S.: On Quality Metrics of
Bounding Volume Hierarchies. In High-Performance Graphics (2013),
pp. 101–107. 2, 3, 8

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

http://www.loramel.net
http://www.loramel.net
http://www.oyonale.com

Per Ganestam and Michael Doggett / SAH guided spatial split partitioning for fast BVH construction

SWEEPSAH SWEEPPRE BONSAI BONSAIS BINNEDSAH BINNEDPRE BINNEDS
Arabic City 23.23 17.21 22.43 17.10 23.83 20.38 16.80
Crown 7.91 7.48 7.77 7.77 7.93 7.79 7.58
Dragon 6.22 6.16 6.02 6.48 6.50 7.44 6.50
Fairy Forest 9.50 9.89 9.42 9.63 9.76 15.17 9.82
Italian City 17.94 13.83 17.49 13.64 19.05 17.27 13.66
Kalabsha 2.31 2.34 2.24 2.42 3.42 6.55 3.39
Mini 5.10 5.16 4.94 5.31 6.19 9.57 5.61
Power Plant 10.02 8.34 9.83 8.17 10.67 9.37 7.32
Sala 10.43 10.41 10.67 10.00 12.05 13.08 10.61
San Miguel 18.86 16.92 19.12 16.00 19.75 24.45 15.99
Sibenik 15.03 14.38 14.59 14.06 14.78 16.02 13.45
Sponza 22.53 22.25 22.61 20.78 24.59 29.26 21.65

Table 5: SAH costs of all scenes and construction methods. For each scene, the builder with the lowest cost is marked with bold text.
BONSAIS and BINNEDS tend to have the lowest SAH costs, but no algorithm is consistently lowest. The Ci and Ct constants used to evaluate
Eq. 1 are set to one and Cl is zero.

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow Bound-
ing Volume Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays.
Computer Graphics Forum, 27, 4 (2008), 1225–1233. 2, 3

[DK08] DAMMERTZ H., KELLER A.: Edge volume heuristic - robust
triangle subdivision for improved BVH performance. In Proc. 2008
IEEE/EG Symposium on Interactive Ray Tracing (2008), pp. 155–158.
2

[DP15] DOMINGUES L. R., PEDRINI H.: Bounding Volume Hierarchy
Optimization through Agglomerative Treelet Restructuring. In High-
Performance Graphics (2015), pp. 13–20. 2

[EG07] ERNST M., GREINER G.: Early Split Clipping for Bounding
Volume Hierarchies. In IEEE Symposium on Interactive Ray Tracing
(2007), pp. 73–78. 2, 3

[FFD09] FABIANOWSKI B., FLOWER C., DINGLIANA J.: A cost met-
ric for scene-interior ray origins. In Eurographics Short Papers (2009),
pp. 49–52. 3, 8

[GBDAM15] GANESTAM P., BARRINGER R., DOGGETT M.,
AKENINE-MÖLLER T.: Bonsai: Rapid Bounding Volume Hierar-
chy Generation using Mini Trees. Journal of Computer Graphics
Techniques, 4, 3 (September 2015), 23–42. 2, 3, 5, 8

[GS87] GOLDSMITH J., SALMON J.: Automatic Creation of Object Hi-
erarchies for Ray Tracing. IEEE Computer Graphics & Applications, 7,
5 (1987), 14–20. 3

[HB02] HAVRAN V., BITTNER J.: On Improving KD-Trees for Ray
Shooting. In Winter School on Computer Graphics (2002), pp. 209–217.
2, 3

[KA13] KARRAS T., AILA T.: Fast Parallel Construction of High-quality
Bounding Volume Hierarchies. In High-Performance Graphics Confer-
ence (2013), pp. 89–99. 2, 3, 6, 7

[Kaj86] KAJIYA J. T.: The Rendering Equation. In Computer Graphics
(Proceedings of ACM SIGGRAPH 86) (1986), vol. 20, pp. 143–150. 1

[KK86] KAY T. L., KAJIYA J. T.: Ray Tracing Complex Scenes. In
Computer Graphics (Proceedings of SIGGRAPH 86) (1986), vol. 20,
pp. 269–278. 1

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE
D., MANOCHA D.: Fast BVH Construction on GPUs. Computer Graph-
ics Forum, 28, 2 (2009), 375–384. 2

[MB90] MACDONALD D. J., BOOTH K. S.: Heuristics for Ray Tracing
Using Space Subdivision. Visual Computer, 6, 3 (1990), 153–166. 1, 3

[PGDS09] POPOV S., GEORGIEV I., DIMOV R., SLUSALLEK P.: Object
Partitioning Considered Harmful: Space Subdivision for BVHs. In High-
Performance Graphics (2009), pp. 15–22. 2, 3

[PH10] PHARR M., HUMPHREYS G.: Physically Based Rendering:
From Theory to Implementation, 2nd ed. MKP, 2010. 1

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial Splits in
Bounding Volume Hierarchies. In High-Performance Graphics (2009),
pp. 7–13. 2, 3, 5

[Wal07] WALD I.: On Fast Construction of SAH-based Bounding Vol-
ume Hierarchies. In IEEE Symposium on Interactive Ray Tracing (2007),
pp. 33–40. 2

[Whi80] WHITTED T.: An Improved Illumination Model for Shaded Dis-
play. Communications of the ACM, 23, 6 (1980), 343–349. 1

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Transactions on Graphics, 33, 4 (2014), 143:1–143:8. 2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

