
Volume xx (200y), Number z, pp. 1–12

Ray Accelerator: Efficient and Flexible Ray Tracing on a
Heterogeneous Architecture

R. Barringer,1 M. Andersson,1,2 and T. Akenine-Möller1,2

1Lund University 2Intel Corporation

Figure 1: Our hybrid ray tracing system executes on both the CPU and the graphics processor using a novel scheduling
algorithm. The system achieves high performance by utilizing the two units’ combined resources while keeping data in shared
memory. The zoom-in of the Bentley car above shows that our system can handle complex, layered BRDFs with importance
sampling and texturing.

Abstract
We present a hybrid ray tracing system, where the work is divided between the CPU cores and the GPU in an
integrated chip, and communication occurs via shared memory. Rays are organized in large packets that can be
distributed among the two units as needed. Testing visibility between rays and the scene is mostly performed using
an optimized kernel on the GPU, but the CPU can help as necessary. The CPU cores typically handle most or all
shading, which makes it easy to support complex appearances. For efficiency, the CPU cores shade whole batches
of rays by sorting them on material and shading each material using a vectorized kernel. In addition, we introduce
a method to support light paths with arbitrary recursion, such as multiple recursive Whitted-style ray tracing and
adaptive sampling where the result of a ray is examined before sending the next, while still batching up rays for the
benefit of GPU-accelerated traversal and vectorized shading. This allows our system to achieve high rendering
performance while maintaining the flexibility to accommodate different rendering algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Ray tracing, I.3.2 [Computer Graphics]: Graphics Systems—

submitted to COMPUTER GRAPHICS Forum (9/2016).



2 R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture

1. Introduction

Ray tracing [Whi80] and path tracing [Kaj86] are fundamen-
tal computer graphics techniques for realistic rendering. To
render images quickly, one may use multi-core CPUs, Xeon
Phi-architectures [WWB∗14], or GPUs [CHH02, AL09,
PBD∗10, ALK12]. However, there are few ray tracers that
exploit systems with several CPU cores and an integrated
graphics processor on the same die (see Section 2). This
chip configuration is common since the predominant archi-
tectures for, e.g., laptop computers are organized in this way.
Our goal is to create a highly optimized rendering frame-
work for such architectures, with the intention to exploit
its particular features while maintaining support for vari-
ous rendering algorithms. This includes extracting shader
coherency for vectorized shading and batching rays for effi-
cient traversal on the GPU. In order to demonstrate the flexi-
bility of our approach, we implement both a path tracer and a
Whitted-style ray tracer with multiple recursive rays at each
surface, within the same rendering framework. A result from
our hybrid ray tracing system can be seen in Figure 1, fea-
turing complex BRDFs with importance sampling and tex-
turing.

There are several difficult challenges involved in achiev-
ing high performance on architectures with a CPU and a
GPU on the same die. Both the graphics processor and the
CPU cores share the same memory subsystem, specifically
from the last-level cache (LLC) and beyond in the Haswell
architecture [HMB∗14]. If the CPU cores are working on a
memory-intensive application, the graphics processor may
get lower performance since it competes for the same re-
sources. In addition, Haswell and its successor Broadwell
use fully integrated voltage regulators (FIVR) to manage and
direct power. The FIVR can, for example, direct the major-
ity of the package power to the subsystem (e.g., graphics
processor) that needs the most power. The reason to have
the FIVRs is to save power, but also because it is not possi-
ble to run the entire chip at maximum clock frequency at all
times due to dark silicon [EBA∗11]. Both FIVR and a shared
memory system make it more of a challenge to exploit both
the CPU cores and the graphics processor to work on the
same task. However, they are also key to increasing perfor-
mance per Watt, and we use shared memory to share data
between the CPU cores and the graphics processor without
any associated copy or transfer cost.

To summarize the contributions of this paper, it presents
a flexible system for ray tracing-based rendering that uses a
novel scheduling algorithm based on large packets of rays.
Using this approach, shader coherency can be extracted to
utilize SIMD instructions and packets can be intersection
tested on both the CPU and the integrated graphics processor
using shared memory for fast communication. We also intro-
duce loop shaders (see Section 3.3) as a method to achieve
flexibility similar to single-ray ray tracing, while still batch-
ing up rays for performance. In addition, we introduce the

idea to use the graphics processors texture units after traver-
sal and route the result back to the CPU.

2. Previous Work

Weghorst et al. [WHG84] were early with combining the
power of rasterization and ray tracing. Since rasterization
is highly optimized for eye rays, the scene is rasterized
from the camera’s point of view followed by shooting sec-
ondary rays using a ray tracer. However, all rasterization
and ray tracing work is done on a CPU. Since then, their
approach has been implemented in several different fla-
vors, where both CPU and GPU cores are utilized. Chen
and Liu [CL07] use the GPU to generate primary visibil-
ity, and then the first-hit data is read back to the CPU, which
performs tracing and shading of secondary rays. Sabino et
al. [SAGC∗12] use deferred shading on the GPU for primary
rays and then OptiX [PBD∗10] for secondary effects. Robert
et al. [RSB07] generate first hits using rasterization, com-
pute shadows using shadow mapping, and the CPU cores
then handle ray tracing of secondary effects. In other work,
Budge et al. [BAGJ08] create the bounding volume hierar-
chy (BVH) on the CPU, and in parallel, the previous frame is
ray traced on the GPU. Recent work utilizes hardware raster-
ization and occlusion queries on the GPU to speed up coher-
ent ray tracing of large scenes [MBV∗15]. Batches of rays
traverse a combined screen- and object-space hierarchy, and
a generalized form of occlusion queries is used to perform
occlusion culling for batches of rays with arbitrary origins
and directions. In addition, temporal coherence is exploited
by initiating each frame by intersection testing the closest
geometry from the previous frame.

While there are other examples of previous work that
utilize both the GPU and CPU cores, these differ on sev-
eral points compared to our paper. For example, Nah et
al. [NKL∗10] use OpenGL ES to implement a ray tracer,
where the CPU handles ray generation and builds the accel-
eration structure, while ray traversal and shading are done in
shader code on the GPU. However, their results were gener-
ated using a simulator and no source code is available. Budge
et al. [BBS∗09] present a data management layer in software
for handling out-of core path tracing on CPUs and GPUs.
Their CPUs had an activity level of at most 15%, while our
target is to make the CPU cores work as efficiently as pos-
sible in order to finish rendering the image earlier. Pajot et
al. [PBPP11] reformulate bidirectional path tracing to ex-
ploit simultaneous execution on both the CPU and the GPU.

By using path tracing, the Brigade system [BvS13] pushes
the edge of rendering quality for game engines. The sys-
tem is targeting heterogeneous systems, where game logic
and BVH updates are done on the CPU cores, while path
tracing can be done on one or more GPUs. In theory, it is
mentioned that when the CPU cores are idle, they can help
with path tracing as well, but no successful implementation

submitted to COMPUTER GRAPHICS Forum (9/2016).



R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture 3

was shown. Their ray tracers were implemented either using
CUDA or OpenCL.

Aila and Laine [AL09] investigate what could possibly be
reached in terms of ray tracing performance on SIMD/SIMT
machines. They use a GPU software simulator, where mem-
ory accesses were assumed to return immediately, and an
upper bound of performance could then be found. In ad-
dition, they propose and implement several improvements
to the traversal method, and avoid scheduling inefficiencies
by using a persistent threads approach. Their results show
that the measured performance was about 90% of the simu-
lated upper bound for diffuse rays for scenes with 80–282k
triangles. Their work has been optimized for new GPUs as
well [ALK12].

There are several ray tracers that run entirely on the GPU.
One of these is the OptiX system [PBD∗10] that runs on
NVIDIA GPUs. It is highly programmable and the core
of the system is a domain-specific just-in-time compiler.
Many types of applications, such as Whitted ray tracing, am-
bient occlusion, collision detection, path tracing, etc have
been shown to run at interactive rates. Laine et al. sug-
gest that using a single large kernel for ray tracing is sub-
optimal, especially when used in combination with expen-
sive material evaluation [LKA13]. Instead, they propose to
split ray queries and material evaluation into separate ker-
nels and demonstrate a system for standard path tracing. For
an overview of GPU-based progressive light transport algo-
rithms, see the survey by Davidovič et al. [DKHS14].

LuxRender’s† LuxMark is a ray tracing system that runs
on both CPUs and GPUs, and using the combination of both.
It uses Embree for tracing on the CPU and OpenCL is used
for tracing on the GPU. The GPU part is using micro kernels
with ray buffers. On our target platform, LuxMark runs at 4
megarays/second for a scene with 217k triangles, while our
renderer runs at 14–30 megarays/s for scenes with 2.3–7.9M
triangles. There is no documentation about LuxMark except
for the source code, but it is highly likely that our system
and theirs are quite different (e.g., LuxMark is likely more
capable, etc), and as a result, it is extremely difficult to pro-
vide a fair comparison between our renderer and LuxMark.
Note that LuxMark is one of the most used benchmark for
OpenCL and has widespread use.

Embree is a ray tracing system, targeting CPUs and Xeon
Phis, which consists of highly optimized traversal and in-
tersection kernels for ray tracing [WWB∗14]. This system
includes packet traversal [WSBW01], single-ray traversal,
and hybrid kernels which use packets in the beginning and
switches to single-ray traversal when utilization becomes
low [BWW∗12]. GPU ray tracers often have binary trees for
their bounding volume hierarchies (BVHs), but Embree uses
multi-BVHs [WBB08, EG08, DHK08] with four or more

† http://www.luxrender.net

children per node. This improves SIMD efficiency in inter-
section tests. In our work, we use Embree 2.7 to trace extra
rays on the CPU if any of the CPU threads are idle.

3. Heterogeneous Ray Tracing

In our approach, the majority of ray queries (BVH traver-
sal and triangle intersection) are handled by the GPU, while
the remaining parts of the renderer is implemented on the
CPU. The CPU is thus responsible for creating eye rays,
scheduling ray queries, and evaluating shading at surfaces.
This means that the GPU is used mostly as a ray query accel-
erator. We argue that this is a good use of the graphics hard-
ware since the ray query kernel can be heavily optimized for
the specific GPU in the system, and since rendering systems
can make use of the GPU without making the entire renderer
and all BRDFs work well on the hardware. It may even be
inefficient to shade on the GPU when the number of ma-
terials in the scene becomes large. A typical GPU requires
thousands of data items to be shaded using the same kernel,
in order to maintain high efficiency. This may be hard to ac-
complish, even with sophisticated scheduling. The amount
of available parallelism would simply diminish as the num-
ber of rays hitting the same material decreases.

In order to exploit the fixed-function hardware available
on the GPU for texture filtering [Wil83], texture sampling
can also be performed on the GPU once the closest visi-
ble surface along a ray has been determined. Such texture
lookups can be routed back to the CPU and utilized during
BRDF evaluation. Ideally, the GPU can be used to sample
both an environmental light probe, in case of a miss, and
textures at surfaces, in case of a hit. However, current API
limitations restrict our use of this technique in our imple-
mentation (see Section 4). To further improve efficiency, we
also allow the CPU to perform some ray queries if time per-
mits. This gives a performance boost and makes for better
load balancing, as will be discussed in Section 5.

In our hybrid system, work is distributed using large
buffers of arbitrary rays, which we call ray streams, simi-
lar to previous work [BAM14]. We gather a sufficient num-
ber of rays so that the resources available in both the CPU
and the GPU are saturated. Our software architecture is il-
lustrated in Figure 2. A number of ray dispatch threads feed
the GPU with work in the form of ray streams to perform ray
queries on. In addition, a number of host threads run on the
CPU cores that perform actual CPU work, e.g., shading, eye
ray generation, and ray queries. Both ray dispatch threads
and host threads steal tasks from a central scheduler, which
determines what to do next. As the GPU is responsible for
performing most ray queries, we need to pass ray streams
from the CPU to the GPU and back. On architectures with a
shared memory between CPU and GPU [HMB∗14, Pia12],
these transactions are done without any additional work,
such as copying memory. Scheduling ray queries between
CPU and GPU is thus extremely efficient in this case. This

submitted to COMPUTER GRAPHICS Forum (9/2016).



4 R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture

Shared Memory

Trace

Shade

Lists with pointers
to ray streams:

Scheduler

NeedMore

image

start ray query

start shading job

store eye rays

store secondary rays

accumulate partial ray
results into pixels = GPU thread

= CPU thread

Host thread

Host thread

Host thread

Host thread

Host thread

Host thread

ray query thread

ray query thread

ray query thread

ray query thread

get ray query job

store shading job

store shading job

start ray query (if idle CPU core)

Ray dispatch thread

Ray dispatch thread

Empty

Host thread

Figure 2: Our ray tracing system running on a heterogeneous architecture with shared memory. All communication happens
via ray streams located in shared memory, and threads running on the CPU cores handle creation of eye rays, shading, and
generation of secondary rays. The GPU threads are only responsible for ray queries (i.e., BVH traversal and intersection
testing) and if the intersected surface is textured, the GPU thread can also provide a filtered texture lookup using the available
hardware. Idle CPU cores will help with ray queries to maximize performance.

is exploited in our implementation described in Section 4.
While we have focused on systems with shared memory in
this paper, it is likely that a similar system would work even
without shared memory, using asynchronous memory trans-
fers. In this case, the system would have to tolerate even
longer latencies for dispatching and tracing rays. Exploring
the full ramifications of such a design is deemed out of scope
of this paper and is left for future work.

The ray streams are scheduled for different kinds of work
using a low overhead method that simply keeps a pointer to
each ray stream in one of multiple work lists. First, there is
one list for empty ray streams and one list for ray streams
that need more rays before ray queries can commence. Ray
streams can end up in the latter list if they do not contain
enough rays to be efficiently executed on the graphics pro-
cessor. In addition, there is one list for rays waiting for ray
queries to be performed, and one list for ray streams that
need shading. At any time, the system can have up to N
rays in flight and allocates enough ray streams to store all
of them. We have found that keeping about 256k rays active
simultaneously leads to good utilization on our target archi-
tecture. The size of a single ray stream (and its preferred size
before performing a ray query) is typically mandated by the
underlying hardware. This size, together with N, determines
the number of ray streams that need to be allocated in the
system.

The scheduler balances work so that both CPU cores and
the GPU are as active as possible. Let the different work lists
be named EMPTY, NEEDMORE, TRACE, and SHADE. Ini-
tially all ray streams reside in the EMPTY list and will only
transfer to another list as rays are appended to them. TRACE

contains ray streams large enough to be intersection tested
on the GPU. Ray streams that have fewer rays end up in the

NEEDMORE work list, which the scheduler will attempt to
add more rays to when possible, in the hope that they can
migrate to the TRACE work list. These ray streams will only
be traced if there is no other work to do. Depending on cir-
cumstances, multiple ray streams may be in NEEDMORE at
the same time. SHADE contains all ray streams that have
been traced and are in need of shading. While the ray dis-
patch threads continuously attempt to feed the GPU with ray
streams from TRACE, the host threads can perform a variety
of tasks. When a host thread requests a task, it will receive a
task in the following order of priority:

1. If the number of active rays is less than N, and more eye
rays are still to be traced, return a task to add more eye
rays to a ray stream. The ray stream is taken from NEED-
MORE or EMPTY. In practice this is performed at tile
granularity.

2. If SHADE has a ray stream, return a shading task for that
ray stream, together with a ray stream from NEEDMORE

or EMPTY to contain secondary rays, with priority to
NEEDMORE. Shading tasks also take care to update the
number of active rays as appropriate.

3. If all ray dispatch threads are occupied and TRACE has
a ray stream, a ray query task for that ray stream is re-
turned.

4. If NEEDMORE has a ray stream, a ray query task for that
ray stream is returned.

If all the above conditions fail, the host thread will suspend
until there is a change in the work lists. The rationale behind
the priority of eye rays (#1 above) is that we would like to
start tracing them as soon as possible to avoid long running
chains of secondary rays toward the end of a frame. If there
is no other work, we allow the CPU to perform ray queries
(#3). However, care must be taken not to steal away tasks

submitted to COMPUTER GRAPHICS Forum (9/2016).



R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture 5

from an underutilized GPU, and hence, we add high GPU
activity as a precondition before starting a full ray stream
on the CPU. Note that while this scheduling algorithm may
sound cumbersome, it has low overhead in reality since it
only amounts to popping a pointer from a handful of work
lists. It is also worth mentioning that #4 results in that small
ray streams may be processed towards the end of a frame,
which provides better load balancing.

We have found that tracing an entire ray stream on a CPU
core may occupy the CPU long enough to starve the GPU
from work. In order to avoid this problem, we only allow
CPU cores to process parts of a ray stream, in chunks of
1024 rays at a time. When a CPU core starts processing a
ray stream, that ray stream ends up in a special job slot in
the scheduler. Any other CPU core that wants to trace rays
will be redirected to a subset of the same ray stream until it
has been completed.

Shading may also happen in chunks. The ray stream that is
used to store secondary rays can come from NEEDMORE, in
which case it is already partially occupied. We may therefore
have to shade a subset of the rays and return the task to the
scheduler in order to get a new ray stream to output to. In
our implementation, we always shade in batches of at most
8192 rays and ensure that all ray streams in NEEDMORE

accommodates this number of appended rays.

3.1. Rendering Architecture

While the core of our system handles scheduling of ray
streams on both CPU and GPU as well as intersection
queries, a mechanism is needed for implementing a render-
ing algorithm on top of it. The scheduler provides callbacks
to an external renderer for spawning camera rays and for
shading batches of rays. The tiling mechanism and frame
buffer accumulation strategy is completely up to the ren-
derer. The scheduler simply knows that the renderer can
spawn more rays until a limit is reached and that intersec-
tion tested rays can be shaded.

When a ray stream from SHADE is processed in our sys-
tem, all rays execute the same program as mandated by the
renderer, i.e., after a ray query has been performed. Each tri-
angle in the scene may refer to renderer-specific material in-
formation, such as a BRDF. For efficiency, the shading pro-
gram first sorts rays based on the outcome of the ray query
(hit or miss) as well as the surface material information (in
case of a hit). After sorting, each subset of rays can be pro-
cessed using SIMD execution by processing multiple rays at
once (such as 8 when using AVX2). This work includes at-
tribute (e.g., normal) interpolation, BRDF evaluation, pixel
information accumulation, and potentially new ray genera-
tion, as required by the rendering algorithm. The approach
of sorting per surface material is a very simple, but efficient
technique for extracting shader coherency [ENSB13].

Rays typically need some additional information to be

stored with them to support the underlying rendering algo-
rithm. The renderer is free to allocate additional data for each
ray in a ray stream, which we denote payload, in whichever
way is most suitable. Payloads are typically mapped to ray
streams using a unique index associated with each ray stream
(an integer from 0 to n− 1, where n is the number of ray
streams). In our path tracer, for example, we store the cur-
rent weight of the ray (three 32-bit floating-point values) as
well as the current ray depth and originating pixel encoded
in a 32-bit integer. The payload may also include ray differ-
entials [Ige99] if needed by the renderer, for example.

3.2. Resource Constraints and Recursive Rays

The scheduling algorithm is a good fit for path tracing, where
each light path has at most one active ray (not counting
shadow rays). If a single ray stream is dispatched, there will
always be resources to continue those paths since the rays
in the stream can be overwritten. A number of shadow ray
emissions can trivially be supported at each hit by keeping a
separate ray stream for shadow rays and always process them
before continuing the light paths.‡ It is thus straightforward
to implement a path tracing renderer in our system.

Interestingly, the problem becomes more difficult with,
e.g., Whitted-style ray tracing [Whi80], where a single ray
can spawn multiple rays depending on the surface. Given in-
finite storage for ray streams, it would be possible to have a
surface shader spawn any number of new rays on a hit and
just append them to new ray streams. In practice, however,
resources are limited and the number of rays grows exponen-
tially. For example, if four rays are fired from each hit with a
recursion depth of 16, a single initial ray can result in over 4
billion recursive rays. Storing that many rays does not seem
feasible nor efficient.

A related problem is the existence of interdependencies
between rays. Rays originating from the same initial ray usu-
ally want to accumulate information to the same frame buffer
pixel. If all rays are shaded in parallel, this would likely re-
sult in race conditions or force expensive synchronization
between ray streams. Also, if there is no order between rays,
a surface shader cannot depend on the result of a recursive
ray in the shader, before sending the next ray, which could
be useful for adaptive sampling strategies.

Traditional single-ray ray tracing does not have these
problems because only a depth first set of all recursive rays
are active at any given time. That is, the states of surface
shaders and rays leading up to the current ray are stored on
the program stack. Looking at our previous example, at most
16 rays and shader states are active in memory, regardless
of the number of rays spawned at each iteration. Below, we
propose a method, using what we call loop shaders, to get

‡ This assumes that shadow rays cannot spawn additional rays.

submitted to COMPUTER GRAPHICS Forum (9/2016).



6 R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture

hit

hit

hit

hit

hit

loop

loop

hit
hit
hit
loop
hit
loop
hit

order:

1 2 3

4

5

Figure 3: A hit shader is executed with the hit point infor-
mation each time a ray has been tested against the scene. To
support flexible rendering, our ray tracer may optionally ex-
ecute a loop shader each time a light path ends, that in turn
can spawn more rays from a previous hit point. The five rays
are shot in the enumerated order. Note that two loop shaders
are executed in this example, both after the blue object has
been hit and after ray 4 has been processed. The purple path
shows the order of execution for this simple ray path.

a similar behavior for ray streams. This method can be en-
tirely implemented within the renderer and does not change
the scheduling algorithm.

3.3. Loop Shaders

As previously discussed, the renderer executes a shader over
a ray stream after it has been tested against the scene geom-
etry. For the purposes of this section, we divide the shader
program into two parts (or subroutines), namely the hit
shader and the loop shader. The hit shader refers to the
part that runs over all the rays of the intersection-tested ray
stream. It can immediately spawn a single secondary out-
put ray per shaded input ray, by outputting rays to a new
ray stream. Path tracing can thus be implemented using only
a hit shader, since each hit generates at most a single sec-
ondary ray. Generating more than one secondary ray could
easily result in the program running out of memory in the
general case, as discussed in Section 3.2.

To solve this issue, the loop shader is invoked each time
a ray terminates without spawning a secondary ray (i.e., the
light path reaches its end). It allows the state of the light path
to “loop” back to a previous state in order to send more rays
from that point. This is illustrated in Figure 3. A stack of
loop shader entries is maintained where the head of the stack
is allowed to spawn rays, or perform other computations, on
ray termination. This is similar to how the program stack
behaves for single-ray recursive ray tracing, with the notable
difference that our method works for ray streams. To take
Whitted-style ray tracing as an example, instead of spawning
two rays at each recursion, a single secondary ray is spawned

and a loop shader entry is added that will spawn another ray
on path termination. In the general case, a single loop shader
entry can spawn any number of additional rays.

The data that is accessible to the loop shader is arbitrarily
specified by the shader that puts the loop shader on the stack.
This may consist of information about the hit point, the pre-
vious ray, or simply information about a ray to spawn. A
loop shader can be initiated both from a hit shader or an-
other loop shader.

In practice, memory for storing loop shader data is allo-
cated using a fast bucket allocator and links between each
entry make up a stack. The head of each loop shader stack
is stored in the ray payload. When a ray terminates, the head
field in the payload is checked to determine if any items were
pushed to the loop shader stack. If a stack item exists at the
head, the corresponding entry is put in a temporary buffer to
be processed using a vectorized kernel. The stack items are
then optionally popped. Loop shaders may also terminate a
path without triggering a secondary ray, e.g., when deter-
mining that adaptive sampling is complete. This may in turn
trigger additional stack items to be activated. In these cases,
the entire process of executing and activating loop shaders
must be performed iteratively until no new loop shaders are
activated.

Note that management of loop shaders are entirely done
within the renderer’s shader implementation and does not
change the core scheduling algorithm. Loop shaders were
developed as a way to perform flexible rendering even when
working on the granularity of ray streams.

3.4. Life and Death of a Ray Stream in RayAccelerator

In this section, we exemplify our system by describing how a
ray stream is first created and what happens to the ray stream
over time, up to the time when it is terminated. Our descrip-
tion is in reference to Figure 2. As we have described, Ray-
Accelerator pre-allocates a number of ray streams that to-
gether can keep the machine saturated with work. All ray
streams are initially in the EMPTY work list, and so when
a host thread requests work, it will receive a task that says
that it needs to generate eye rays. The host thread thus in-
vokes renderer-specific code that creates eye rays (typically
for a rectangular tile of pixels) and puts them in the allot-
ted ray stream (store eye rays in Figure 2) in the TRACE

work list. At this point, a ray dispatch thread discovers that
there is an available ray stream (get ray query job), which the
thread obtains from the central scheduler and then feeds the
ray stream to the graphics processor through OpenCL (start
ray query). All the rays in the ray stream are then traced
through the BVH and intersection tested against the relevant
triangles in order to find the closest hit. In case of a hit, it
returns the distance and barycentric coordinates. If there is
no hit, the kernel instead samples the environment map us-
ing the graphics processor’s texture sampler. When all rays

submitted to COMPUTER GRAPHICS Forum (9/2016).



R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture 7

are finished, the result is communicated back to the issuing
ray dispatch thread, which then stores a shading job in the
SHADE work list (store shading job). In RayAccelerator, all
shading is done on the CPU cores and shading is the sec-
ond most important priority (see enumerated list on page 3),
so a host thread will obtain a shading job once no more eye
rays can be generated (due to memory constraints or because
all have been generated). Control then switches to renderer-
specific code for shading. Here, the rays in the ray stream are
typically sorted based on their hit information (hit/miss and
surface material). After that, they are shaded with SIMD pro-
cessing using AVX2. The shading result is also accumulated
to the pixels that the rays belong to. Some of the rays where
terminated due to hitting the environment map, and other-
wise, new rays (due to reflection, path tracing, etc) may be
generated and are appended to a separate ray stream holding
new rays. The output ray stream may be put into the NEED-
MORE work list, if it is not yet full, or otherwise into TRACE.
This goes on until the ray depth threshold is met or until all
rays hit the environment map. Note that if a host thread does
not have any eye generation work or shading work, then it
may request a subset of a trace job as well in order to keep
the machine busy with work at all times.

4. Implementation

We implemented our system as an interactive renderer,
which supports complex scenes and various BRDFs, includ-
ing methods such as importance sampling [PH10]. The CPU
part of the application was implemented in C++ and opti-
mized using the AVX2 vector instruction set. The kernels
running on the graphics processor were implemented using
OpenCL 1.2. Using our framework, we have implemented
both path tracing and a Whitted-style ray tracer, where the
former is a rather simple scheduling problem and the latter
the harder one.

All ray streams were allocated in shared memory to allow
for efficient communication between CPU and GPU. The
system allocates a total of 42 ray streams, each with stor-
age for up to 27k rays and associated hit information. Each
ray requires 32 bytes of memory (origin, direction, and near
& far distance) and each hit point requires 16 bytes (trian-
gle, distance, and barycentric coordinates). Empirically, we
found that 11k rays is enough for efficient tracing on the
graphics processor and this was used as the threshold for
when a ray stream ends up in the traceable list, described
in Section 3. This number likely depends on details of the
GPU’s scheduling system, such as how terminated threads
are substituted for new work, which we have limited insight
into. It is worth mentioning that the GPU used for testing
(see Section 5) supports up to 8960 active threads, so it ap-
pears that a number that is a bit higher than this is beneficial.

Our target architecture (see Section 5) supports 8 CPU
hardware threads. It is usually most efficient to allocate one
operating system thread per hardware thread because that re-

sults in less scheduling overhead. However, the ray dispatch
threads are mostly idle waiting for the GPU to signal com-
pletion of work items. In this case, it makes sense to create
more operating system threads than there are available hard-
ware threads. Therefore we use 7 host threads and 4 ray dis-
patch threads, in order to occupy the 8 hardware threads with
work. This configuration was also found to be the best per-
forming one. Primary rays are fired from screen tiles as de-
manded from the scheduler described in Section 3. Each tile
consists of 128× 128 pixels with 1 sample per pixel, which
amounts to 16k rays fired from each tile. We render a sin-
gle frame at a time and wait until all outstanding rays have
been processed before moving on to the next frame. This
puts more stress on the scheduler to balance a small amount
of work at the end of a frame. Another possibility is to de-
couple frame display from ray tracing and begin the next
frame immediately without waiting. This is simply a matter
of wrapping around to the first tile as the end is reached. We
are, however, interested in the scheduler’s capability to han-
dle difficult scenarios (see Section 5) and leave frame mixing
for future work.

As previously described, shading is mostly done on the
CPU, while the GPU performs ray queries and additional
texture lookups. While the GPU could sample a texture of
the material of the closest intersection, we found no gen-
eral way to pass an arbitrary number of textures with dif-
ferent sizes to OpenCL and access them through a pointer
or an index. Texture arrays were found to be insufficient be-
cause they require all textures to be of the same size. Bind-
less textures [SA14] should make this a non-issue, but on
our OS/architecture combination, OpenCL 2.0 was not avail-
able. Because of these limitations, we only utilize the GPU
texture sampler if a ray misses the scene, in which case an
environmental light probe is sampled and the resulting sam-
ple is returned with the hit information (which indicates no
intersection).

Our path tracer performs efficient shading by initially
sorting active rays in a ray stream based on surface mate-
rial, utilizing a radix sort. The rays are then processed 8 at
a time using AVX2 instructions, performing attribute inter-
polation, BRDF evaluation, and sending of secondary rays.
The BRDF of the first ray is evaluated for all 8 rays in the
batch. Then, it is determined how many rays actually had
the same BRDF associated with them, and we only advance
those rays in the loop. Because the rays are sorted on mate-
rial, this results in little overshading.

In GPU ray tracers, each triangle is often stored using
48 bytes (B) [AL09]. However, for three vertices, only 36 B
are required and the rest is padding. As a small optimiza-
tion in the acceleration structure setup, we examine each
leaf node and search for triangle pairs sharing an edge. We
store these pairs together in 48 B, since the second triangle
only requires one additional vertex (12 B). This gave a total
speedup of about 4–8%. This idea is somewhat similar to the

submitted to COMPUTER GRAPHICS Forum (9/2016).



8 R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture

work by Amanatides and Choi [AC97]. Much more sophis-
ticated systems have been proposed [LYM07], but we opted
for an extremely simple scheme. For triangles not sharing
any edges with other triangles, the storage remains at 48 B,
so there is no extra memory cost. Currently, we insert a de-
generate zero-area triangle for “single” triangles in order to
be able to run the same triangle intersection test for both sin-
gle triangles and shared triangle pairs.

5. Results

All results presented in this section were generated on a
Macbook Pro laptop running Mac OS X 10.11. The configu-
ration includes a Haswell Core i7 (4960HQ) with four cores
and eight hyperthreads. The chip features programmable
thermal design power (TDP) and it ranges from 47 W to
55 W (nominal TDP/cTDP up). The CPU clock frequency
is 2.6/3.6 GHz (nominal TDP/cTDP up) for multi-threaded
workloads and the single-threaded turbo boost frequency is
3.8 GHz. The graphics processor is integrated on the same
die and it has 40 execution units (EUs), whose tasks are
all types of shading. This system is also equipped with a
6 MB L3 cache and a 128 MB EDRAM L4 cache, both
which are shared between CPU cores and the graphics pro-
cessor. The raw peak compute power for the graphics pro-
cessor is 832 Gflops, while it is 332.8/460.8 Gflops (nominal
TDP/cTDP up) for the CPU cores. Our system was compiled
using Xcode 7.2.1 and Embree 2.7 [WWB∗14], which we
used to trace rays on the CPU, was compiled with Intel C++
Composer XE for OS X.

Our BVH trees are built using a top-down greedy sur-
face area heuristic (SAH) [MB90] with improvements to sort
only once per axis [GBDAM15]. Note that our system can
handle dynamic scenes by rebuilding the entire BVH or parts
of it, before ray tracing of a frame commences. While this is
not the focus of our work, we note that it takes only 10 ms to
build the BVH for the BATTLEFIELD scene, for example. To
provide fair measurements, we have used monitoring of the
CPU temperature, and we let the computer be idle until the
CPU temperature is just below 45◦C before starting a mea-
surement. This ensures that approximately the same turbo
effect, i.e., increasing/decreasing clock frequency, is given
to all measurements.

We call our system RayAccelerator, which is described in
Section 3 and 4. Four versions of the system, called RA SIN-
GLERAY, RA PACKET, RA SIMD, and RA HYBRID, have
been evaluated, in order of increasing sophistication. For RA
SINGLERAY, RA PACKET, and RA SIMD, we do not use
the graphics processor at all and thus let the CPU cores han-
dle everything, including using Embree to take care of all
ray queries. Since each system successively adds features,
the performance impact of each improvement can be evalu-
ated. RA SINGLERAY implements the basic scheduling al-
gorithm but does not reap its benefits. A single ray is traced
at a time and shading is scalar. This configuration is thus

Figure 4: BATTLEFIELD rendered using Whitted-style ray
tracing where all surfaces spawn one reflection and one re-
fraction ray at each hit point. The maximum recursion depth
is 8 which means that a single eye ray may spawn up to 256
secondary rays. Rendering performance is 37 Mray/s using
RA HYBRID.

a good data point for determining the overhead of our sys-
tem. RA PACKET improves on RA SINGLERAY by tracing
8 rays at a time against the BVH, which often improves per-
formance. RA SIMD adds vectorized shading evaluation to
RA PACKET, which improves performance further. RA HY-
BRID contains all previous features, but also makes use of
the GPU for ray queries, but lets the CPU help as necessary
as well. The scheduling algorithm for RA SINGLERAY, RA
PACKET, and RA SIMD differs somewhat from RA HY-
BRID in that it instead focuses on shading batches immedi-
ately after traversal because there is no GPU that is at risk
at starving from work. Instead, it is more beneficial to shade
while the ray stream is resident in the CPU cache.

As baseline, we implemented SINGLERAY, which is a tra-
ditional single-ray renderer, very much like Embree’s single-
ray example path tracer [WWB∗14] without using anything
ray stream related. When comparing our SINGLERAY ren-
derer with the Embree single-ray example path tracer, the
performance was approximately the same (as expected).
In contrast to the example renderer provided by Embree,
SINGLERAY renders exactly the same images as our RA-
counterparts (it shares the same shader code), which makes
for better comparisons. Just like the Embree example path
tracer, SINGLERAY has limited vectorization opportunities
since only a single ray is traced and shaded at a time. We
do, however, make use of horizontal SIMD operations when-
ever possible. The comparison between RA SIMD and SIN-
GLERAY is interesting because it highlights the gains from
extracting coherence from ray streams, without offloading
traversal to the GPU.

submitted to COMPUTER GRAPHICS Forum (9/2016).



R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture 9

BATTLEFIELD HAIRBALL CROWN DRAGON BENTLEY SAN MIGUEL

triangles 64k 2.9M 4.9M 7.3M 2.3M 7.9M
bounces 3 3 20 4 10 4

SINGLERAY 28 Mray/s 13 Mray/s 12 Mray/s 14 Mray/s 16 Mray/s 8.1 Mray/s
RA SINGLERAY 27 Mray/s 13 Mray/s 10 Mray/s 13 Mray/s 15 Mray/s 7.5 Mray/s

RA PACKET 33 Mray/s 13 Mray/s 10 Mray/s 14 Mray/s 16 Mray/s 7.8 Mray/s
RA SIMD 36 Mray/s 14 Mray/s 13 Mray/s 16 Mray/s 18 Mray/s 8.3 Mray/s

RA HYBRID 63 Mray/s 22 Mray/s 19 Mray/s 26 Mray/s 30 Mray/s 14 Mray/s

Table 1: Results in mega rays per second (Mrays/s) for our test scenes rendered at 1280×1024 using a laptop with integrated
graphics processor. Note that these timings include the entire renderer, i.e., ray queries, shading, render loop, and frame buffer
updates. All scenes were rendered with path tracing.

3

2

1

0 1 2 3 4 5 6 7 8 9 10

RA SIMD - BENTLEY

Fr
eq

ue
nc

y 
/ G

H
z

60

40

20

0 1 2 3 4 5 6 7 8 9 10
Time / s

Po
w

er
 / 

W

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11

RA HYBRID - BENTLEY

60

40

20

0 1 2 3 4 5 6 7 8 9 10 11
Time / s

3

2

1

0 2 4 6 8 10 12 14 16 18 20 22

RA SIMD - SAN MIGUEL

60

40

20

0 2 4 6 8 10 12 14 16 18 20 22
Time / s

3

2

1

0 2 4 6 8 10 12 14 16 18 20

RA HYBRID - SAN MIGUEL

60

40

20

0 2 4 6 8 10 12 14 16 18 20
Time / s

CPU frequency
GPU frequency
Measured frames
Skipped frames

Figure 5: Frequency scaling under load. The two diagrams to the left were measured using BENTLEY, while the two diagrams
to the right were measured using SAN MIGUEL. It is interesting to see that for our largest scene (SAN MIGUEL), the frequency
of the CPU cores of RA SIMD is decreasing over time, which means that the frequency needs to be scaled down because
of heat issues (cTDP up cannot be maintained). For RA HYBRID, the CPU cores are scaled down to about 2.6 GHz and the
graphics processor scaled up to about 1.25 GHz. We also include power usage over time (CPU+GPU) as reported by the
processor.

Our algorithms were evaluated using six test scenes,
namely BATTLEFIELD, HAIRBALL, CROWN, DRAGON,
BENTLEY, and SAN MIGUEL, of varying complexity. The
major results of the evaluation are shown in Table 1. All
images were rendered using path tracing [Kaj86], which is
a Monte-Carlo technique where only one new ray may be
generated at each hitpoint. This algorithm tends to generate
incoherent rays after a few bounces. We refer to Table 1 for
information on how many bounces were used for our test
scenes.

We first note that RA SINGLERAY is fairly close to SIN-
GLERAY, which indicates that our rendering system has
low overhead. The overhead seems particularly large for
CROWN. This is likely due to a small number of very long
light paths within the scene (up to 20 recursions inside the
gems), which reduces the ability to batch rays toward the
end of the frame. This problem and a likely solution are
explored in more detail below. We note that RA PACKET,
which adds packet tracing to the system, gives an uneven im-
provement in performance, ranging from very good for BAT-

TLEFIELD, to no improvement for CROWN. RA SIMD, that
also adds vectorized shading, improves all scenes by 6–30%.
Interestingly, the improvement is best for CROWN, which
benefited poorly from packet tracing. The improvement is
the most modest for SAN MIGUEL, which is to be expected
since the scene has inexpensive diffuse shading while ray
queries are costly because of complex geometry. Comparing
RA HYBRID to SINGLERAY, we see generous speedups for
all scenes ranging from 1.7× up to 2.3×.

Embree also ships with another example renderer that
renders packets of rays, which is an alternative method to
improve SIMD efficiency in ray tracing. The renderer has
in this case been rewritten using ISPC, rather than C++.
We setup similar scenes for Embree’s example renderers
to see how much performance can be gained from small
packet tracing, compared to single-ray. Running all our test
scenes using the two renderers, the difference in perfor-
mance ranged from no difference for the SAN MIGUEL

scene to about 24% improved performance with packet trac-
ing for the BATTLEFIELD scene. While it is a bit difficult to

submitted to COMPUTER GRAPHICS Forum (9/2016).



10 R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture

compare absolute numbers because of rendering differences,
Table 1 reveals that the relative speedup we get from vector-
ization using ray streams is similar or better than the gains
compared to small packet tracing. When enabling GPU trac-
ing, which is the real goal of our system, our approach is
certainly much faster.

Since our target architecture has both CPU cores and an
integrated graphics processor, both with programmable TDP,
it is interesting to investigate what happens to the frequen-
cies of the CPU and the graphics processor in different con-
figurations of our renderer. In Figure 5, we show our mea-
surements of the frequencies for two scenes and two render-
ers. Note that we always skip a number of seconds worth
of frames, before starting to measure the performance of the
renderer, which was done in order to avoid any type of ini-
tial turbo effect that does not last. In RA SIMD, the graphics
processor is not used, which can be seen in that its frequency
is kept low, while the CPU frequency is a bit over 3 GHz.
However, for RA HYBRID, which uses both the CPU cores
and the graphics processor, we see that the frequency of the
graphics processor goes up to about 1.25 GHz, while the
CPU cores are scaled down to 2.6 GHz. This makes sense,
since the specification says that the max frequency of the
graphics processor is 1.3 GHz and the nominal TDP fre-
quency of the CPU cores is 2.6 GHz. These results clearly
show that using both CPU and the integrated GPU is chal-
lenging since an active integrated GPU lowers overall CPU
performance. Still, our system shows that there are benefits
to be had when work is carefully balanced between the units.

Figure 5 also includes power usage over time, as reported
by the processor. It appears that utilizing both CPU and GPU
uses 15–20% more power than using only the CPU at any
instance in time. Since performance is increased by more
than that, it is tempting to conclude that RA HYBRID is more
power efficient. However, we would like to stress that these
measurements are very rough. A thorough power analysis
using specialized equipment is left for future work.

As a proof of concept of our loop shaders, we have also
used our framework to implement a Whitted-style ray tracer
(using RA HYBRID) and the image in Figure 4 is a result
of that renderer. Even though one reflection and refraction
ray are shot at each hit point, the performance remains quite
high (37 Mrays/s). The CPU time spent in loop shaders and
loop shader data management amounts to about 25% of to-
tal shading time. As another proof of concept, we also im-
plemented a procedural wood shader to test what happens
when shading becomes more expensive. The result is shown
in Figure 6.

We want to emphasize that it is unlikely that porting our
entire renderer to the GPU alone would easily result in good
performance. Our BRDFs have importance sampling, textur-
ing, and may have several nested layers of simpler BRDFs
as well. While this is feasible to port, we expect that perfor-

Figure 6: BATTLEFIELD rendered with path tracing and an
expensive procedural wood BRDF. The majority of render-
ing time is spent computing the wood texture. These com-
putations benefit greatly from vectorization. Performance is
4.6, 18, and 27 Mray/s for SINGLERAY, RA SIMD, and
RA HYBRID respectively.

mance will be rather low due to divergence and the number
of different BRDFs.

In order to determine scheduling behavior and efficiency,
we traced the tasks performed by each CPU thread during
the rendering of a frame (using RA HYBRID). We show
the results from such a trace for BATTLEFIELD, BENTLEY,
and CROWN in Figure 7. As can be seen, the tasks are
very tightly packed, which indicates that our system is well
balanced. However, it is clear that when rendering a sin-
gle frame, parallelism/efficiency is reduced towards the end
of the timeline. This is especially problematic for CROWN,
where long recursions of light paths linger towards the end
of the frame. In practice, this can be avoided by keeping mul-
tiple frames in flight. This is something that we will explore
in future work.

For completeness, we tried disabling two features of RA
HYBRID to see how they contribute to overall performance.
Disabling GPU light probe lookups, hence performing all
lookups on the CPU, resulted in a performance degradation
of 0–10%. BATTLEFIELD benefits the most from GPU light
probe lookups since they represent a significant portion of
the rendering time. For future work, it therefore makes a lot
of sense to attempt to do all texture lookups on the GPU.
Furthermore, we experimented with disallowing the CPU to
help with intersection testing when idle. This turned out to
impact all scenes with a performance reduction of 20–30%.
The reason is likely that the scheduler will have difficulties
building large ray streams towards the end of a frame, which
makes hybrid intersection testing an important feature of our
system.

submitted to COMPUTER GRAPHICS Forum (9/2016).



R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture 11

disp0 16k 2.. 16.. 16k 15k 14k 23k 20k 20k 20k 22k 16k 13k 17k 13k 24k 14k 22k 15k 20k 14.. 14k 18k 20.. 14.. 15..
disp1 16k 1.. 16.. 27k 17k 16k 15k 16k 12k 19k 16k 20k 13k 16k 22k 14k 15k 17k 20k 14k 23.. 21.. 16k 18k 12.. 15k
disp2 16k 1.. 16.. 25k 16k 20k 24k 24k 18k 14k 25k 16k 22k 12k 12k 19k 14k 14k 14k 13k 17.. 17k 16k 12k 17k 16..
disp3 16k 1.. 12.. 19k 14k 16k 18k 13k 16k 26k 16k 16k 13k 14k 19k 17k 19k 23k 17.. 18k 13.. 18k 20.. 19.. 17k 17..
host0 8..
host1 1..
host2 8k
host3 1k
host4 7.. 1k
host5 1k
host6

Eye rays Ray query Shading
(a) BATTLEFIELD

disp0 16.. 16k 1.. 1.. 24.. 14k 17k 16.. 16k 18k 13k 15k 14k 13k 11k 13k 14k 15k 15k 21k 22k 21k 15k 27k 15k 16k 15k 14.. 14k
disp1 16.. 16.. 27.. 16.. 23k 12k 26k 17.. 16.. 13k 16k 13k 13k 15k 16k 13k 14k 13k 23k 21k 15k 17k 12k 18.. 18k 27k 12.. 16k 14k
disp2 1.. 16.. 1.. 22.. 17k 24k 16k 11k 25.. 17k 12k 18k 24k 15k 24k 16k 16k 16k 15k 14k 13k 16k 15k 14k 13.. 21k 15.. 16k 16k
disp3 16.. 16.. 24k 24.. 23k 24k 19.. 14k 14k 16k 13k 18k 16k 26k 22k 23k 17k 25k 12k 21k 19k 14k 16k 19k 14k 16k 13k 11k 16..
host0 1k
host1 1..
host2 8k
host3 8k 8k
host4 5k
host5 1..
host6 8.. 1k

Eye rays Ray query Shading
(b) BENTLEY

disp0 16.. 1.. 24k 1.. 1.. 17.. 16.. 14k 13k 15k 28k 14k 24k 16k 12k 21k 15k 14k 14k 12..
disp1 2.. 16k 12.. 1.. 13k 13.. 14k 14k 16k 14k 15k 17k 19k 17k 15k 18.. 13k 16k 16.. 12..
disp2 1.. 1.. 13.. 13k 1.. 18.. 12k 1.. 16k 13k 13k 27k 15k 13k 14k 18k 14k 13.. 12k 15k 12.. 1..
disp3 1.. 1.. 24.. 19k 16.. 1.. 19.. 16k 16.. 16k 16k 15k 25k 12k 14k 11k 15k 19.. 13k 13k 16.. 1..
host0
host1 8k
host2
host3 1..
host4 1k 8k
host5
host6 1.. 8k

Eye rays Ray query Shading

(c) CROWN

Figure 7: Distribution of work when rendering a single frame of a) BATTLEFIELD, b) BENTLEY, and c) CROWN using RA
HYBRID. Tasks are distributed along a timeline for each thread, where time flows from left to right. The top 4 threads represent
ray dispatch threads and the bottom 7 are host threads. Different tasks are uniquely colored (eye rays are blue, ray queries
yellow, and shading is green) and some tasks indicate the number of rays being processed. It is clear that when ray queries
are cheap (BATTLEFIELD), shading (including the render loop) represents a major part of the CPU workload. However, as
the cost of ray queries increase, the CPU will load balance by spending more time tracing rays. The CROWN trace showcases
what happens when deep light paths are started towards the end of a frame. We believe that these problems can be reduced by
immediately starting tracing of the next frame.

6. Discussion and Future Work

We have presented an optimized ray tracing-based rendering
system that makes use of CPUs with wide SIMD units and an
integrated graphics processor on the same chip by extracting
parallelism using ray streams for both traversal and shading.
Our novel scheduling system, including the addition of loop
shaders, allows for both fast and flexible rendering within the
framework. Note that our target platform had 2× more peak
compute capabilities on the graphics processor compared to
the peak compute power on the CPU cores. However, this
does not imply that it should be possible to get a 3× speedup
when going from using only the CPU to using both the CPU
and the GPU, as discussed in Section 1. We have, despite
this, developed a ray tracer that is between 1.7–2.3× faster
than SINGLERAY running on the CPU (see Section 5). In the
future, we want to explore whether the next frame can over-
lap with the current in order to close the idle gaps towards the
end of a frame. In addition, it would be interesting to gather
expensive shading jobs using the same shader and evaluate
these on the GPU as well. Another important topic is that of

easy shader authoring while maintaining good performance.
To this end, it would be interesting to pursue a vectorizing
shader compiler that automatically splits a single recursive
shader into one hit shader and possibly multiple loop shaders
with minimal state footprint.

Acknowledgements

Tomas is a Royal Swedish Academy of Sciences Research
Fellow, supported by a grant from the Knut and Alice Wal-
lenberg Foundation. Thanks to Martin Lubich for the Crown
model (www.loramel.net). Thanks to Carsten Benthin and
Sven Woop for feedback and help with Embree.

References
[AC97] AMANATIDES J., CHOI K.: Ray Tracing Triangular

Meshes. In Western Computer Graphics Symposium (1997),
pp. 43–52. 8

[AL09] AILA T., LAINE S.: Understanding the Efficiency of
Ray Traversal on GPUs. In High-Performance Graphics (2009),
pp. 145–149. 2, 3, 7

submitted to COMPUTER GRAPHICS Forum (9/2016).



12 R. Barringer, M. Andersson & T. Akenine-Möller / Ray Accelerator: Efficient and Flexible Ray Tracing on a Heterogeneous Architecture

[ALK12] AILA T., LAINE S., KARRAS T.: Understanding the
Efficiency of Ray Traversal on GPUs – Kepler and Fermi Ad-
dendum. Tech. Rep. NVR-2012-02, NVIDIA Corporation, June
2012. 2, 3

[BAGJ08] BUDGE B. C., ANDERSON J. C., GARTH C., JOY
K. I.: A Hybrid CPU-GPU Implementation for Interactive Ray-
Tracing of Dynamic Scenes. Tech. Rep. 9, UC Davis, 2008. 2

[BAM14] BARRINGER R., AKENINE-MÖLLER T.: Dynamic
Ray Stream Traversal. ACM Transactions on Graphics, 33, 4
(2014), 151:1–151:9. 3

[BBS∗09] BUDGE B., BERNARDIN T., STUART J. A., SEN-
GUPTA S., JOY K. I., OWENS J. D.: Out-of-core Data Manage-
ment for Path Tracing on Hybrid Resources. Computer Graphics
Forum, 28, 2 (2009), 385–396. 2

[BvS13] BIKKER J., VAN SCHIJNDEL J.: The Brigade Renderer:
A Path Tracer for Real-Time Games. International Journal of
Computer Games Technology, 2013 (2013), 1–14. 2

[BWW∗12] BENTHIN C., WALD I., WOOP S., ERNST M.,
MARK W.: Combining Single and Packet-Ray Tracing for Ar-
bitrary Ray Distributions on the Intel MIC Architecture. IEEE
Transactions on Visualization and Computer Graphics, 18, 9
(2012), 1438–1448. 3

[CHH02] CARR N. A., HALL J. D., HART J. C.: The Ray En-
gine. In Graphics Hardware (2002), pp. 37–46. 2

[CL07] CHEN C.-C., LIU D. S.-M.: Use of Hardware Z-buffered
Rasterization to Accelerate Ray Tracing. In Symposium on Ap-
plied Computing (2007), pp. 1046–1050. 2

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
Bounding Volume Hierarchies for Fast SIMD Ray Tracing of In-
coherent Rays. Computer Graphics Forum, 27, 4 (2008), 1225–
1233. 3

[DKHS14] DAVIDOVIČ T., KŘIVÁNEK J., HAŠAN M.,
SLUSALLEK P.: Progressive Light Transport Simulation on
the GPU: Survey and Improvements. ACM Transactions on
Graphics, 33, 3 (2014), 29.1–29.19. 3

[EBA∗11] ESMAEILZADEH H., BLEM E. R., AMANT R. S.,
SANKARALINGAM K., BURGER D.: Dark Silicon and the End
of Multicore Scaling. In 38th International Symposium on Com-
puter Architecture (2011), pp. 365–376. 2

[EG08] ERNST M., GREINER G.: Multi Bounding Volume Hi-
erarchies. In IEEE Interactive Ray Tracing (2008), pp. 35–40.
3

[ENSB13] EISENACHER C., NICHOLS G., SELLE A., BURLEY
B.: Sorted Deferred Shading for Production Path Tracing. Com-
puter Graphics Forum, 32, 4 (2013), 125–132. 5

[GBDAM15] GANESTAM P., BARRINGER R., DOGGETT M.,
AKENINE-MÖLLER T.: Bonsai: Rapid Bounding Volume Hier-
archy Generation using Mini Trees. Journal of Computer Graph-
ics Techniques, 4, 3 (September 2015), 23–42. 8

[HMB∗14] HAMMARLUND P., MARTINEZ A., BAJWA A., HILL
D., HALLNOR E., JIANG H., DIXON M., DERR M., HUN-
SAKER M., KUMAR R., OSBORNE R., RAJWAR R., SINGHAL
R., D’SA R., CHAPPELL R., KAUSHIK S., CHENNUPATY S.,
JOURDAN S., GUNTHER S., PIAZZA T., BURTON T.: Haswell:
The Fourth-Generation Intel Core Processor. IEEE Micro, 34, 2
(2014), 6–20. 2, 3

[Ige99] IGEHY H.: Tracing Ray Differentials. In Proceedings of
ACM SIGGRAPH 1999 (1999), pp. 179–186. 5

[Kaj86] KAJIYA J. T.: The Rendering Equation. In Computer
Graphics (Proceedings of ACM SIGGRAPH 86) (1986), vol. 20,
pp. 143–150. 2, 9

[LKA13] LAINE S., KARRAS T., AILA T.: Megakernels Con-
sidered Harmful: Wavefront Path Tracing on GPUs. In High-
Performance Graphics (2013), pp. 137–143. 3

[LYM07] LAUTERBACH C., YOON S.-E., MANOCHA D.: Ray-
Strips: A Compact Mesh Representation for Interactive Ray Trac-
ing. In IEEE Symposoim on Interactive Ray Tracing (2007),
pp. 19–26. 8

[MB90] MACDONALD D. J., BOOTH K. S.: Heuristics for Ray
Tracing Using Space Subdivision. Visual Computer, 6, 3 (1990),
153–166. 8

[MBV∗15] MATTAUSCH O., BITTNER J., VILLANUEVA A. J.,
GOBBETTI E., WIMMER M., PAJAROLA R.: CHC+RT: Coher-
ent Hierarchical Culling for Ray Tracing. Computer Graphics
Forum, 34, 2 (2015), 537–548. 2

[NKL∗10] NAH J.-H., KANG Y.-S., LEE K.-J., LEE S.-J., HAN
T.-D., YANG S.-B.: MobiRT: An Implementation of OpenGL
ES-based CPU-GPU Hybrid Ray Tracer for Mobile Devices. In
ACM SIGGRAPH ASIA 2010 Sketches (2010), pp. 50:1–50:2. 2

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A.,
FRIEDRICH H., HOBEROCK J., LUEBKE D., MCALLIS-
TER D., MCGUIRE M., MORLEY K., ROBISON A., STICH
M.: OptiX: A General Purpose Ray Tracing Engine. ACM
Transactions on Graphics, 29, 4 (2010), 66:1–66:13. 2, 3

[PBPP11] PAJOT A., BARTHE L., PAULIN M., POULIN P.:
Combinatorial Bidirectional Path-Tracing for Efficient Hybrid
CPU/GPU Rendering. Computer Graphics Forum, 30, 2 (2011),
315–324. 2

[PH10] PHARR M., HUMPHREYS G.: Physically Based Render-
ing: From Theory to Implementation, 2nd ed. MKP, 2010. 7

[Pia12] PIAZZA T.: Processor Graphics. In High-Performance
Graphics – Hot3D Talks (June 2012). 3

[RSB07] ROBERT P. C. D., SCHOEPKE S., BIERI H.: Hybrid
Ray Tracing - Ray Tracing using GPU-Accelerated Image-Space
Methods. In GRAPP (2007), pp. 305–311. 2

[SA14] SEGAL M., AKELEY K.: The OpenGL Graphics System:
A Specfication (version 4.4). Tech. rep., 2014. 7

[SAGC∗12] SABINO T., ANDRADE P., GONZALES CLUA E.,
MONTENEGRO A., PAGLIOSA P.: A Hybrid GPU Rasterized
and Ray Traced Rendering Pipeline for Real Time Rendering of
Per Pixel Effects. In Entertainment Computing, vol. 7522. 2012,
pp. 292–305. 2

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting Rid
of Packets - Efficient SIMD Single-Ray Traversal using Multi-
Branching BVHs. In IEEE Symposium on Interactive Ray Trac-
ing (2008), pp. 49–57. 3

[WHG84] WEGHORST H., HOOPER G., GREENBERG D. P.: Im-
proved Computational Methods for Ray Tracing. ACM Transac-
tions on Graphics, 3, 1 (1984), 52–69. 2

[Whi80] WHITTED T.: An Improved Illumination Model for
Shaded Display. Communications of the ACM, 23, 6 (1980), 343–
349. 2, 5

[Wil83] WILLIAMS L.: Pyramidal Parametrics. In Computer
Graphics (Proceedings of ACM SIGGRAPH 83) (1983), vol. 17,
pp. 1–11. 3

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER
M.: Interactive Rendering with Coherent Ray Tracing. Computer
Graphics Forum, 20, 3 (2001), 153–164. 3

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S.,
ERNST M.: Embree: A Kernel Framework for Efficient CPU Ray
Tracing. ACM Transactions on Graphics, 33, 4 (2014), 143:1–
143:8. 2, 3, 8

submitted to COMPUTER GRAPHICS Forum (9/2016).


