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Abstract

Stereo rendering for 3D displays and for virtual reality headsets
provide several visual cues, including convergence angle and high-
light disparity. The human visual system interprets these cues to
estimate surface properties of the displayed environment. Naïve
stereo rendering effectively doubles the computational burden of
image synthesis, and thus it is desirable to reuse as many computa-
tions as possible between the stereo image pair. Computing a single
radiance for a point on a surface, to be used when synthesizing both
the left and right images, results in the loss of highlight disparity.
Our hypothesis is that absence of highlight disparity does not impair
perception of surface properties at larger distances. This is due to
an ever decreasing angular difference between the surface and the
two view points as distance to the surface is increased. The effect
is exacerbated by the limited resolution of consumer head-mounted
displays. We verify this hypothesis with a user study and provide
rendering guidelines to leverage our findings.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture
I.3.m [Computer Graphics]: Miscellaneous—Cognitive science

Keywords: computer graphics, virtual reality, stereoscopic ren-
dering, psychophysical user study

1 Introduction

Consumer-class virtual reality (VR) and augmented reality (AR)
devices have received much attention lately. Several consumer
head-mounted displays (HMDs) from multiple vendors are ex-
pected to be commercially available within a few years. Rendering
to these devices is a large computational burden since the virtual
environment must be rendered in stereo and at a high spatial and
temporal resolution. This burden will likely be placed on main-
stream consumer desktops, laptops, and even phones, which may
be underpowered for this task. It is therefore important to reduce
the computational cost of synthesizing stereo images as far as pos-
sible while maintaining high visual fidelity. In addition, for high-
performance cloud-based rendering services, improving image syn-
thesis efficiency can translate into cost savings.

There are several technologies which are designed to, or can be
adapted to, compute the radiance of surfaces only once while ras-
terizing two images from separate viewpoints. REYES [Cook et al.
1987] computes radiance separately from rasterization, allowing
reuse of computed radiance. On contemporary graphics hardware,
radiance can be computed once, stored in textures, and be reused
during subsequent rasterization of multiple viewpoints [Nehab et al.

Figure 1: A test subject is wearing a head-mounted display and is
classifying whether two stimuli are identical or different using the
mouse buttons. The goal of the study was to find the circumstances
under which highlight disparity could no longer be perceived. Our
findings could be used to optimize VR rendering.

2007; Sitthi-amorn et al. 2008a; Sitthi-amorn et al. 2008b; Liktor
and Dachsbacher 2012; Clarberg and Munkberg 2014; Andersson
et al. 2014]. GPUs could also be modified to allow efficient reuse of
radiance between viewpoints during rasterization [Hasselgren and
Akenine-Möller 2006; Ragan-Kelley et al. 2011; Clarberg et al.
2013; Clarberg et al. 2014].

While generally less accurate, performance can also be significantly
improved by rendering the scene from a single viewpoint only (e.g.,
the user’s left eye) and then synthesizing images of other viewpoints
(e.g., the right eye). This is accomplished by warping the image
from the first viewpoint using an associated depth map [McMillan
and Bishop 1995; Didyk et al. 2010].

Regardless of which technique is employed, shading reuse implies
that radiance is only computed for a single exitant angle. This ef-
fectively precludes rendition of binocular luster, where the surface
luminance is different for each eye. The human visual system inter-
prets such luminance contrast as the material being lustrous [Dove
1851], and removal of this visual cue may cause observers to under-
estimate surface glossiness [Sakano and Ando 2010]. Furthermore,
sharing radiance also causes specular highlights to appear at the
same convergence angle as the reflecting object’s surface. This is
in contrast with physical reality, where specular reflections appear
at a depth different than that of the reflecting surface [Kirschmann
1895; Muryy et al. 2013], an effect called highlight disparity.
Again, this may cause observers to underestimate surface glossi-
ness [Wendt et al. 2010] and even reduce authenticity [Wendt et al.
2008]. Recent studies indicate that physically-correct depiction
may not be desired when synthesizing stereo images. Templin et
al. [2012] found that viewers may prefer a non-physical highlight
disparity in some cases. This was reinforced by Dąbała et al. [2014]
who manipulate disparity to make reflections and refractions easier
to fuse.

Our hypothesis is that highlight disparity is not perceptible at suffi-
ciently large distances. By conducting a user study [Ferwerda et al.
2002] (see Figure 1), we verify this hypothesis under different shad-
ing circumstances and provide rendering guidelines based on our
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Figure 2: Test subjects are presented with one pair of stimulus at
a time in virtual reality, where each pair appears at one of three
distances as shown above. The angle between the stimuli is 0.5 ra-
dians and the sphere radius is 0.1m per meter distance. The task is
to determine if the two presented stimuli looked identical or differ-
ent in a two-alternative forced choice setting.

findings.

2 Experiment

Our virtual experiment setup is illustrated in Figure 2. The test
subjects were tasked with determining whether a pair of stimuli
had identical or different material appearance. Each stimulus pair
is presented at one of three depths, level with the subject’s eyes
and with a size chosen to maintain a constant solid angle from the
viewer’s nominal position. The subjects were able to lean approx-
imately 0.3m in any direction from this position, and their move-
ments were mirrored in the virtual environment. We chose simple
spheres as stimuli since it is harder to judge reflection correctness
of complex objects [Ramanarayanan et al. 2007].

For shading, we use a Blinn-Phong BRDF with a Gaussian spec-
ular approximation [Wang et al. 2009]1 where we varied two pa-
rameters: specular intensity, ks, and glossiness (the standard devi-
ation of the specular lobe), σ. The material parameter configura-
tions used in the experiment are shown in Figure 3. The spheres
have a diffuse marble texture to give visual cues about the surface
position, without distracting from the reflection. An image-based
light probe is used to illuminate the scene. The probe2 was chosen
due to its distinct light sources and is visualized as the scene back-
ground to allow the test subjects to look around and compare the
reflection with the environment. For efficiency reasons, we com-
pute lighting based on high-quality pre-integrated cube maps for
diffuse and specular components, generated using ATI’s CubeMap-
Gen tool. The diffuse component is stored in a separate cube map
and specular reflection is computed by performing a mipmapped
texture lookup based on the glossiness of the material.

As illustrated in Figure 4, the stimuli are either monoscopically lit,
with specular reflections for both eyes computed from a common
viewpoint located between the subject’s eyes, or stereoscopically
lit, with specular reflections for each eye rendered using the correct
viewpoint. For each configuration of depth and material parame-
ters, we show the test subjects two pairs of stimuli: one pair of

1A Gaussian approximation of the Blinn-Phong specular lobe is found
in the supplemental material of Wang et al. [2009].

2Dining room of the Ennis-Brown House, Los Angeles. Courtesy of
University of Southern California.

Figure 3: The different materials used in the test. Glossiness (σ),
from left to right: 37.8◦, 12.6◦, 4.2◦. Specular intensity (ks), from
top to bottom: 0.02, 0.1, 0.5. Diffuse intensity kd is decreased with
increasing ks to keep total intensity approximately constant.

control stimuli with identical spheres (either monoscopic or stereo-
scopic lighting picked at random) and one pair of test stimuli with
one monoscopically lit and one stereoscopically lit sphere (with the
order of the spheres picked at random).

In total, we thus have

3︸︷︷︸
d

distance

× 3︸︷︷︸
ks

spec. intensity

× 3︸︷︷︸
σ

glossiness

× 2︸︷︷︸
control/test

= 54

different stimulus pairs, shown to each participant in random or-
der. The set of parameters spans the most relevant range of values,
based on a pilot study among the researchers using a wider variety
of parameters. The chosen parameter set is also reasonably small,
keeping the test time low (~10 minutes) to avoid fatigue and nausea.

Physical setup For all our tests, we have used an Oculus Rift
DK2 HMD, which has a single low-persistence OLED display with
960×1080 pixels per eye, a diagonal field of view of approximately
100◦, and a display refresh rate of 75Hz. The DK2 has a 6-DOF
tracking system detecting both orientation and position. Our ap-
plication renders the scene at 2× more pixels per degree than the
center of the display, for a total of 2364×2922×2 pixels per frame.
The rendered image is warped to compensate for the HMD optics
using a high-quality filter with 5 bilinear texture lookups per color
channel and display pixel. Our physical setup is shown in Figure 1.

In our application, the subject uses the mouse buttons to vote
whether two presented stimuli are identical or different. A virtual
mouse with buttons labeled “same” and “different” is rendered be-
low and slightly in front of the subject, such that she can glance
down at it at any time for a reminder. When the subject registers a
vote, the stimuli fades to black, moves to a new distance, and fades
back in with a new configuration over a period of 2 seconds. This
process is repeated for all 54 stimulus pairs.

Limitations We had to make several restrictions in order to make
the study practical. While varying depth and material, we limited



Figure 4: Test subjects were shown a training example in VR of
monoscopic lighting (top row) and stereoscopic lighting (bottom
row), and the researchers explained which visual cues to look for
when distinguishing between the two. This figure shows a fusible
image of the presented objects, arranged for crossed viewing.

ourselves to a fixed object shape, size, texture, and environment
light source. We therefore made choices that we believe facilitate
the subjects in the task of perceiving highlight disparity. Since it is
difficult to perceive reflection correctness for complex objects [Ra-
manarayanan et al. 2007], we chose a sphere as it is a simple ob-
ject with familiar shape. The light probe was chosen as it depicts
a simple indoor environment, and contains an intense and distinct
window light source with high-contrast, straight edges. Similarly,
the marble texture was used to provide visual cues of the object
surface, but is deliberately low contrast in order to avoid distracting
the viewer from the lighting.

Perhaps the most significant limitation of our study comes from the
physical limitations of the HMD itself. Table 1 shows the maximum
convergence angle for a point on the object’s surface and a point
from the reflected environment for a viewer with an inter-pupillary
distance (IPD) of 63mm, which is the mean IPD of our test subjects.
With stereoscopic lighting, the reflection appears to lie behind the
surface, which means that it has a slightly lower convergence angle
(refer to Figure 4 for a visual example). The highlight disparity is
the difference between the surface convergence angle and the re-
flection convergence angle. When observed in an Oculus DK2 (the
device used in the experiment), the disparity amounts to only a few
pixels as indicated in Table 1.

Test subjects The test was performed by 36 participants: 26
male and 10 female. The subjects are a mix of students and fac-
ulty members of Lund University, Sweden. Before testing, the IPD
of each subject was measured.

Subjects were educated about the visual artifacts they would en-
counter before performing the test. Written information (available
as supplemental material) was handed out, and the researchers were
available for answering questions and explaining further. In addi-
tion, the subjects were presented with a training stimulus pair of
one monoscopically and one stereoscopically lit sphere in VR, con-
figured to accentuate the differences. The researchers guided them
until they felt comfortable in what visual cues to look for, before
proceeding with the actual test. Figure 4 shows a fusible image,
similar to the training stimuli. The introductory spheres were pre-
sented at a distance of 0.25m, with a radius of 0.05m (2× the rel-
ative size of the other stimuli) and using a highly glossy BRDF

β
δ

γ

Surface Reflection Highlight Highlight disp.
Distance vergence (β) vergence (γ) disparity (δ) pixels
0.5m 3.989◦ 3.780◦ ±0.209◦ ±2.01px
1.25m 1.598◦ 1.514◦ ±0.084◦ ±0.81px
3.125m 0.639◦ 0.606◦ ±0.034◦ ±0.32px

Table 1: Highlight disparity δ = ±(β − γ)/2, is the angular dif-
ference between the convergence angle for a point on the object
surface, β, and the convergence angle for a point at the focus plane
of the reflection (the dashed line), γ. At the distances used in our
test, and the resolution of our HMD, this translates to 0.32–2.01px
disparity between a point on the surface and the reflection.

σ ks d = 0.5m d = 1.25m d = 3.125m

4.2◦

0.02 T: 7 C: 28 T: 8 C: 25 T: 15 C: 24
0.10 T: 7 C: 25 T: 8 C: 26 T: 15 C: 26
0.50 T: 7 C: 28 T: 9 C: 26 T: 21 C: 26
all T: 21 C: 81 T: 25 C: 77 T: 51 C: 76

12.6◦

0.02 T: 10 C: 24 T: 21 C: 18 T: 25 C: 23
0.10 T: 4 C: 23 T: 12 C: 21 T: 21 C: 21
0.50 T: 9 C: 28 T: 16 C: 23 T: 26 C: 26
all T: 23 C: 75 T: 49 C: 62 T: 72 C: 70

37.8◦

0.02 T: 32 C: 30 T: 26 C: 31 T: 31 C: 28
0.10 T: 18 C: 20 T: 25 C: 24 T: 27 C: 26
0.50 T: 11 C: 25 T: 20 C: 24 T: 26 C: 29
all T: 61 C: 75 T: 71 C: 79 T: 84 C: 83

all

0.02 T: 49 C: 82 T: 55 C: 74 T: 71 C: 75
0.10 T: 29 C: 68 T: 45 C: 71 T: 63 C: 73
0.50 T: 27 C: 81 T: 45 C: 73 T: 73 C: 81
all T: 105 C: 231 T: 145 C: 218 T: 207 C: 229

Table 2: Number of “identical stimuli” votes by 34 participants. T
is test stimuli (objectively different), C is control stimuli (objectively
identical). Italic indicates subtotal for one parameter (glossiness
or specular intensity), out of 102 votes. Boldface indicates total for
both glossiness and specular intensity, out of 306 votes.

(σ = 1.4◦, ks = 0.2).

Two out of the 36 participants could not perceive any difference
between the test and control stimuli even at the introductory set-
ting with guidance from the researchers. These two data points are
treated as outliers, and statistical analysis is performed only for the
remaining 34 subjects.

3 Results

The votes are summarized in Table 2. For each of the 27 configura-
tions of {d, ks, σ}, we compute a per-subject score, xi ∈ [−1, 1],
where one point is awarded for identifying the difference in the test
stimuli and one point is awarded for identifying the similarity in
the control stimuli, and we apply a bias of -1. Random guessing
therefore has an expected score of E[x] = 0.0, as does providing
the same answer to the tests and controls. Perfect perception has an
expected score of E[x] = 1.0. Average scores x̄ and standard errors
of means, SEx̄, are tabulated in Table 3, where

SEx̄ =

√√√√ 1

n(n− 1)

n∑
i=1

(xi − x̄)2.

In Figure 5, a plot of the mean score of each participant is shown.
The test subjects gravitate towards classifying the stimuli as be-



σ ks d = 0.5m d = 1.25m d = 3.125m

4.2◦

0.02 0.618± 0.095 0.500± 0.106 0.265± 0.114
0.10 0.529± 0.097 0.529± 0.121 0.324± 0.092
0.50 0.618± 0.085 0.500± 0.106 0.147± 0.105
all 0.588± 0.053 0.510± 0.063 0.245± 0.060

12.6◦

0.02 0.412± 0.096 -0.088± 0.115 -0.059± 0.103
0.10 0.559± 0.086 0.265± 0.106 0.000± 0.103
0.50 0.559± 0.105 0.206± 0.110 0.000± 0.112
all 0.510± 0.055 0.127± 0.065 -0.020± 0.061

37.8◦

0.02 -0.059± 0.059 0.147± 0.075 -0.088± 0.088
0.10 0.059± 0.133 -0.029± 0.108 -0.029± 0.089
0.50 0.412± 0.086 0.118± 0.092 0.088± 0.088
all 0.137± 0.059 0.078± 0.053 -0.010± 0.051

all

0.02 0.324± 0.056 0.186± 0.062 0.039± 0.061
0.10 0.382± 0.065 0.255± 0.068 0.098± 0.057
0.50 0.529± 0.053 0.275± 0.061 0.078± 0.059
all 0.412± 0.034 0.239± 0.037 0.072± 0.034

Table 3: Voting score of 34 participants, x̄±1SEx̄. Random guess-
ing yields x̄ = 0, and perfect perception yields x̄ = 1.

ing identical when not being able to see any difference, and having
more correct than incorrect answers. Some subjects, however, had
a bias towards classifying identical stimuli as “different”, and two
test subjects had more incorrect than correct answers.

The data set contains 54 configurations, with many possible correla-
tions between independent variables and the measured response. If
one were to perform many t-tests to find these correlations, there is
a high risk of finding seemingly significant differences where there
actually are none, as each individual test has a small probability
of indicating significance due to chance. We therefore employ re-
peated measures ANOVA (analysis of variance), which is designed
with this in mind and is commonly used in perceptual user stud-
ies. Its purpose is to reliably identify true correlations, while taking
the increased probability of false positives into account. ANOVA
is based on the F -test, which is used to quantify the ratio of vari-
ance explained by a parameter to the remaining variance. While
the F -test assumes values to be normally distributed, ANOVA has
been shown to be fairly robust when violating this assumption with
a moderate number of samples [Donaldson 1966]. We therefore
deem the normality assumption of ANOVA to be satisfied due to
the reasonably large number of participants in our study.

Statistical analysis of the scores using three-way ANOVA (using
MATLAB’s anovan implementation) shows two significant main
effects: the glossiness σ (F2,915 = 33.11, p < 10−13) 3 and the
distance d (F2,915 = 25.96, p < 10−10). There is also a significant
interaction between σ and d (F4,909 = 3.78, p < 0.004).

The main trends of mean score as functions of σ and d are shown
in Figure 6, where it is clear that the score decreases with both σ
and d. Figure 7 shows the interaction between σ and d, in which
the detection distance increases with surface glossiness (decreasing
σ). For instance, with σ = 4.2◦ there was no drastic difference
between 0.5m and 1.25m, but with a large drop in score to 3.125m,
while the largest drop with σ = 12.6◦ occurs closer, between 0.5m
and 1.25m.

Figure 8 hints at a possible connection between specular intensity
and glossiness. For surfaces with high glossiness, observers may
detect highlight disparity even with low-contrast reflections (low
ks). As glossiness decreases, higher contrast (larger ks) may be
required to perceive the highlight disparity. This interaction is not
significant at the p = 0.05 level, with F4,909 = 2.37, p < 0.051, so
further studies with a larger sample are needed to establish whether
there is a real correlation.

3F is a measure of the effect strength. p is the probability that there is
no effect at all, and that the observed results are just due to chance.
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Figure 5: A plot of the test scores of all participants (datapoints
are accentuated for duplicates). The x-axis shows the test subject’s
bias towards answering “different” or “identical” when guessing,
and the y-axis shows the average test score of each subject with
zero indicating random guessing. The gray triangle shows where
we initially expected the results to lie.

4 Discussion

Score should not be interpreted as “share of viewers who can detect
monoscopic lighting.” The same score can be obtained in different
scenarios: every viewer detects the difference some of the times,
some viewers always detect the difference while others never do,
all viewers detect the differences but sometimes think there may be
one where none exists. A better interpretation is “share of correct
detection unaccounted for by random guessing.” A score of 0 does
not necessarily mean that participants could not tell any difference,
as a participant may deem different stimuli to appear very different
and identical stimuli to appear slightly different. Voting “different”
for both of these yields a score of 0.

Our initial hypothesis was that monoscopic lighting is not dis-
cernible from stereoscopic lighting at large distances. As can be
seen in Figures 6 and 7, our data confirm this hypothesis, and
at shorter distances than we first anticipated. The short detection
threshold distance is most probably caused by the low resolution of
the HMD used in the study (see Table 1). Our results should there-
fore not be interpreted as the overall limits of human perception,
but rather the limits of human perception with such a low-resolution
display device.

We find it remarkable that highlight disparity of only ±0.32 pixels
(see Table 1) had scores above random guessing with the glossiest
materials (see Table 3). As HMD resolutions increase, the distance
threshold at which highlight disparity becomes undetectable will
likely also increase. Assuming that detection rate is proportional to
highlight disparity in pixels, results for a 4K panel can be extrap-
olated by scaling the distances by a factor of 2. However, reliable
detection distances are still short relative to typical scene scales. It
is also worth noting that detection distances for surfaces with low
gloss may not necessarily be limited by resolution, as scores were
near zero for low-gloss surfaces even with ±2 pixels of highlight
disparity.

Monoscopic lighting can theoretically reduce the shading burden
by up to 50% with a variety of different techniques, some of which
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Figure 6: Plot of score averages and standard errors for differ-
ent levels of glossiness σ (left) and different distances d (right).
The circles indicate where the average (x̄) is located, while the
horizontal lines indicate one standard error of means (SEx̄) and
small black circles indicate the corresponding two standard error
of means limit.

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
sc

or
e
x̄

d = 0.5m
d = 1.25m
d = 3.125m

σ = 4.2◦

σ = 12.6◦

σ = 37.8◦

Figure 7: Plot of score for different levels of glossiness (σ) and
distances (d). The square, circles, and diamonds indicate where
the averages are located and the rest of the indicators are the same
as in Figure 6.

were listed in Section 1. To leverage this opportunity, application
developers will need to determine when and where to apply mono-
scopic lighting. Figure 9 shows an interpolation of the data in Fig-
ure 7, and can be used as a rough guideline. The score threshold
used as monoscopic lighting criteria should ideally depend on the
user’s quality settings, with a reasonable range of 0.1 – 0.3. Al-
ternatively, artists could tag their authored objects with detection
thresholds. Further studies are required to understand the resolu-
tion dependence of the detection threshold, but a conservative es-
timate is simply scaling the distance axis by the HMD resolution
(compared to the DK2 used in this study).

Our test is a side-by-side comparison, with the task to determine
whether there is any difference between the two stimuli. Many
participants did not see the difference on the introductory stimuli
without further guidance from the researchers on what to look for,
despite being educated about the nature of the artifacts in advance.
In addition, two participants did not perceive any difference in the
training scene even with extensive guidance. We therefore believe
that the detection threshold without a reference may be much closer
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Figure 8: Plot of score for different levels of glossiness σ and spec-
ular intensities ks. For more glossy surfaces, lower contrast (spec-
ular intensity) may be sufficient to reliably detect the differences. As
p < 0.051, further studies are needed to confirm this correlation.

to the viewer, especially for more complex geometries, and that
even total absence of highlight disparity might be an acceptable ap-
proximation in performance-constrained scenarios. Furthermore,
the user’s preference is not accounted for in our study. One par-
ticipant commented that he preferred the monoscopically lit stimuli
over the stereoscopically lit ones.

For applications that dynamically choose between monoscopic and
stereoscopic lighting, the authors recommend using a stereoscopi-
cally lit transition region in which the IPD value used for lighting
is progressively lowered to zero. This can prevent spatio-temporal
discontinuities in appearance near the threshold.

Applications usually distinguish between large reflective flat sur-
faces (e.g., mirrors and polished floors) and other objects. Re-
flections in the former are usually rendered by re-drawing the en-
tire scene reflected around the plane, or by some image-space ray
marching technique. Reflections in the latter are most often ren-
dered less accurately using environment cube maps. The authors
recommend retaining this distinction, as monocular lighting of a flat
mirror-like surface would be more easily detectable than monocular
lighting of more complex objects, and should probably be avoided.

Future Work For VR, it is important to generate knowledge from
user studies so that informed decisions can be made about which
rendering methods to use for a particular platform and how to
trade performance for image quality. It would be valuable to im-
plement an adaptive algorithm, combining monoscopic and stereo-
scopic lighting as appropriate, in a modern game engine and study
the effects on a wide range of scenes. We would also like to com-
plement our results with an HMD with a higher resolution display
in order to evaluate resolution dependence. It would also be very
interesting to design a study without reference stimuli (in contrast
to our side-by-side test). In addition, studying the psychophysical
effects of level-of-detail techniques with gaze tracking is also an
interesting direction for future work.
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