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Figure 1: An octopus in motion casting a complex motion blurred shadow rendered by our algorithm. With the same input
samples, our algorithm has significantly less noise compared to time-dependent shadow maps (TSM). At equal time, the noise
level is still largely reduced. The animated octopus mesh is taken from the Alembic source distribution.

Abstract
Given a stochastic shadow map rendered with motion blur, our goal is to render an image from the eye with
motion blurred shadows with as little noise as possible. We use a layered approach in the shadow map, and
reproject samples along the average motion vector, and then perform lookups in this representation. Our results
include substantially improved shadow quality compared to previous work and a fast GPU implementation. In
addition, we devise a set of scenes that are designed to bring out and show problematic cases for motion blurred
shadows. These scenes have difficult occlusion characteristics, and may be used in future research on this topic.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Motion blur in photographed images, offline rendering, and
in real-time graphics provides the viewer with a sense of mo-
tion direction and also reduces temporal aliasing [NSG11].
When motion blur is present, the shadows of moving objects
should be motion blurred as well. However, while shadow
rendering has received a lot of attention in the research com-
munity for static scenes [ESAW11], rendering of motion
blurred shadows has remained relatively unexplored.

Accumulation buffering can be used to generate motion

blurred shadows [HA90], but the algorithm only supports
using identical sample times for all pixels in the shadow
map [Wil78]. This often shows up as banding artifacts unless
many full-screen passes are used, and that is often not pos-
sible within the time budget for real-time rendering. Instead,
one can use stochastic sampling when generating the shadow
map [AMMH07]. This removes banding artifacts by allow-
ing samples to have unique times, but the resulting image
is often too noisy at affordable sample rates. Deep shadow
mapping [LV00] is a technique originally intended for ren-
dering shadows for hair, smoke, fur, etc. Motion blurred
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Figure 2: Left: a blue line segment is moving parallel to the
image plane of the light, in front of a static red line segment.
Right: the light space epipolar image, i.e., a spatio-temporal
plot in x and t. The blue segment partially occludes the red
line for a certain time interval.

shadows can also be generated using deep shadow maps,
however, they are only correct when the receiving object is
static. A thorough review of previous work can be found in
Section 2.

Since the receiver, the shadow caster, and the light source
can all move at the same time, rendering motion blurred
shadows is a notoriously difficult problem, and largely un-
solved in the domain of real-time rendering. Our approach
to motion blurred shadows is to generate a time-dependent
stochastic shadow map (TSM) [AMMH07] from the light
source, and then develop a novel filtering algorithm in or-
der to reduce shadow noise. In our algorithm description, we
make extensive use of epipolar images (see Figure 2). Exam-
ples of our results can be seen in Figure 1. We also imple-
ment our algorithms on a graphics processor and provide in-
teractive or near real-time rendering performance with sub-
stantially reduced noise levels compared to TSM, and in ad-
dition, our algorithm handles more cases correctly than pre-
vious methods.

2. Previous Work

The number of publications for shadow rendering is huge,
and for a comprehensive overview, we refer to the book by
Eisemann et al. [ESAW11]. For an overview of motion blur
in graphics, we refer to the state-of-the-art report by Navarro
et al. [NSG11]. Most of the shadow rendering algorithms
have been developed for static scenes, while the number of
methods that incorporate motion blur is sparse.

Akenine-Möller et al. introduce time-dependent shadow
mapping (TSM) [AMMH07], where multiple shadow maps
are created using stochastic rasterization. Each shadow map
represents a time slice of the full exposure and stratified sam-
pling is used to ensure that exactly one sample falls into
each time slice. In a second pass, the scene is rendered us-
ing stochastic rasterization from the camera’s point of view.
Again, stratified sampling is used to draw one sample from
each time slice. The shadow test is performed using the
shadow map sample at the time slice corresponding to the

x

tx

z
A

B

Incorrect shadow

Correct shadow

Figure 3: Left: two objects are moving in opposite direc-
tions at different distances from the light source. Middle: the
light space epipolar image reveals that the green segment
only covers the blue segment for a brief moment, as indi-
cated by the black, dotted outline. By omitting time informa-
tion, the green occluder appears to cast a shadow on the blue
receiver throughout the entire exposure time, as indicated by
the red dotted outline. Right: collapsing the time dimension
produces a smeared shadow (A). The correct shadow is gen-
erated by taking temporal occlusion into account (B).

camera sample. This means that they are close in time and,
given a static or slowly moving light source, in space, though
they do not match exactly.

The idea behind deep shadow mapping (DSM) [LV00] is
to store multiple semi-transparent occluders in each pixel
of a shadow map. The visibility of a point, p, can then be
computed as ∏

pz<zi

(1−αi), where zi and αi are the depth

and transparency of the i:th occluder. The authors show that
DSM can be used for motion blurred shadows by treating
each moving occluder as a semi-transparent layer. The scene
is rendered from the light’s point of view using stochastic
rasterization. For each pixel in the shadow map, the sam-
ples are clustered into distinct depth layers and each layer
is given an opacity proportional to the number of samples
drawn from that layer. The layers are then encoded into the
DSM and are treated like transparent occluders. Since the
time dimension is collapsed, i.e., motion blur is treated as
transparency, certain problems can occur, e.g., for moving
receivers. An example of this problem is illustrated in Fig-
ure 3.

McGuire and Enderton [ME11] present an alternative to
DSM called colored stochastic shadow mapping (CSSM),
where a transparent layer is encoded stochastically by allow-
ing a proportional amount of shadow map samples to pass
through the transparent layer, and instead get the depth value
of the layer behind, similar to stochastic transparency. The
shadow map lookup is filtered by drawing a number of spa-
tially coherent samples and using the averaged shadow term.
Stochastic motion blur rasterization and stochastic trans-
parency is analogous, and therefore the samples generated
by a stochastic rasterizer could be used directly as input to
the CSSM algorithm to extend it to handle motion blurred
shadows. However, similar to DSM, the time dimension is
collapsed in CSSM, and hence inherits the same problems.

While the results of multiple depth tests can be filtered
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together [RSC87], filtering the depth values prior to the
depth test, however, will not yield the correct result. The
problem of creating a filterable shadow map representation
has been given a lot of attention, most notably variance
shadow mapping (VSM) [DL06], convolution shadow map-
ping (CSM) [AMB∗07], and exponential shadow mapping
(ESM) [AMS∗08]. VSMs have also been extended to ren-
der plausible soft shadows [YDF∗10], where the filter size
is computed based on the average occluder distance to the
receiver and the light source [Fer05]. We rely on variance
shadow maps to create a representation where the time di-
mension can be efficiently filtered. We also experimented
with using ESM, but saw no convincing benefit in neither
quality nor performance. As our shadow map representa-
tion is split into a set of depth layers, we avoid most of the
shine-through artifacts from VSMs, similar to layered vari-
ance shadow maps [LM08].

Lehtinen et al. [LAC∗11] present a motion and defocus
blur reconstruction algorithm, which also supports the case
of motion blurred and soft shadows by taking the entire 7D
light-field into account during reconstruction. Their algo-
rithm uses a dual acceleration structure, one for the sam-
ples visible from the camera, and a second for the depth as
seen from the light source. When reconstructing a camera
space point p = (x,y, t), the corresponding light space sam-
ple at (lx, ly, t) is reconstructed and a binary shadow test is
performed. While their algorithm produces very high qual-
ity images, results rely on reconstructing and filtering many
(∼128) locations per pixel. The reconstruction time is over
10 seconds even for high-end discrete GPUs on 5D examples
(excluding motion blur shadows).

Egan et al. [ETH∗09] use frequency analysis [DHS∗05]
of the motion blurred light field to derive sheared filters for
reconstruction and to drive adaptive sampling. Frequency
analysis can also be used to derive filters and adaptive
sampling techniques for shadows from complex occlud-
ers [EHDR11], directional occlusion [EDR11], soft shadows
filtering [MWR12], diffuse indirect lighting [MWRD13],
and multiple distribution effects [MYRD14].

Our shadowing approach has similarities with recent
reconstruction algorithms, most notably the work by
Munkberg et al. [MVH∗14] and Hasselgren et al. [HMV14],
who use a similar layered representation and sheared 5D-
filter to reconstruct primary visibility for motion blur and
depth of field. Their work does not handle reconstruction of
motion blurred shadows and as such, our work can be seen
as an important complement. In addition, we extend on their
work by taking into account the correlation between time of
samples in the shadow map and samples relating to primary
visibility. We also propose a novel filtering approach.

3. Theory

In this section, we briefly present the theory behind our setup
for motion blurred shadow rendering. The outgoing radiance

from a point x in a direction ωo is given by:

l(x,ωo) =
∫

Ωi

v(x,ωi) f (x,ωi,ωo)l(ωi)dωi, (1)

where v is the visibility function, f is the BRDF (including
the cosine term), and l(ωi) is the incoming light. We only
consider direct lighting from a set of discrete point or direc-
tional light sources, {li}, and the expression for the outgoing
radiance can therefore be simplified to a sum over the light
sources:

l(x,ωo) = ∑
i

v(x,ωi) f (x,ωi,ωo)li. (2)

Now, we assume that the scene is dynamic, where the ob-
jects, lights, and the camera can move. The corresponding
expression for the outgoing radiance at a certain time, t, can
be expressed in a coordinate system following x as:

l(x,ωo(t), t) = ∑
i

v(x,ωi(t), t) f (x,ωi(t),ωo(t))li. (3)

This expression shows the outgoing radiance at x, but does
not take occlusions into account between x and the camera.

To render motion blurred shadows, we want to evaluate
the occlusion term v(x,ωi(t), t). In a ray tracer, one can sim-
ply answer this query with a shadow ray through the dy-
namic scene. In a stochastic rasterizer, one can instead query
a time-dependent shadow map [AMMH07], which stores a
light space depth value (z) for each spatio-temporal coordi-
nate (xl , t). To do this, the query coordinate x and direction
ωi(t) is remapped into the moving coordinate system of the
light (denoted with subscript l): (x,ωi(t), t) 7→ (xl(t), t). If
the shadow map depth is smaller than the light space depth
of x, the light source, li, is occluded from x at time t.

To determine the color for each pixel, we want to in-
tegrate over t to compute a blurred value over the open
interval of the camera shutter. Hence, due to motion and
the spatial pixel filter, many points will contribute to the
blurred radiance value of each pixel. The shading evaluation
may include multiple shadow map lookups within a spatio-
temporal footprint, as illustrated in Figure 4.

Furthermore, there may be discrete changes in primary
visibility, as different primitives move over the pixel’s view
frustum over the temporal interval. In the general case, the
camera, all objects, and all lights may move in time. To
approximate this result, one often take a large number of
spatio-temporal Monte Carlo (MC) samples. However, with
an estimate of the footprint in the spatio-temporal shadow
map of hit points on visible primitives, one can apply fil-
tered lookups in order to reduce shadow noise. This is the
main goal in this paper.

Due to perspective motion, xl(t) may be a rational poly-
nomial in t. However, similar to recent motion blur fil-
ters [ETH∗09, MHBO12, MVH∗14], we make a linear mo-
tion assumption in our shadow map representation.
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Figure 4: Left: scene A shows a static light source and a
moving occluder, while scene B instead shows a moving light
and a static occluder. Right: the two different scenes produce
the same light space epipolar image, yet the observed shad-
ows are very different. This is a consequence of the receiver
being static in light space in scene A, while the receiver
point move in scene B (due to the moving light source). The
footprint for the receiver point is shown by the dashed lines
in the epipolar image.

4. Algorithm

We propose a layered, filtered shadow mapping algorithm
for motion blurred shadows. The algorithm is divided into
two passes, namely a shadow pass and a lighting pass. The
shadow pass renders the scene using stochastic rasteriza-
tion [AMMH07] and generates a time-dependent shadow
map augmented with per-sample motion vectors. The sub-
sequent lighting pass renders the scene from the camera’s
point of view, and performs a shadow query for each sample
seen from the camera.

In contrast to time-dependent shadow mapping (TSM),
wherein the shadow query gives a binary result, i.e., if the
sample is in shadow or not, our algorithm estimates the tem-
poral integral of the visibility term (discussed in Section 3),
which results in smoother motion blurred shadows.

Our algorithm is based on the assumption that the mo-
tion in a small spatial region of a depth layer is slowly vary-
ing, which has been a successful approximation in previ-
ous work [MVH∗14]. During the shadow pass, we divide
the stochastic shadow map into texture space tiles, and split
samples of each tile into depth layers. We then process each
such tile and depth layer individually.

First, we compute an average motion vector d for each
depth layer in each tile. If all spatio-temporal samples,
{(xi, ti)}, in the depth layer move with the same motion vec-
tor d, then each sample’s movement is described by the fol-
lowing equation:

xi(t) = xi +d(t− ti). (4)

At t = 0.5, a sample has a spatial coordinate:

x′i = xi +d(0.5− ti). (5)

With this observation, we create a compact time-dependent
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Figure 5: A simple scene illustrating the clustering ap-
proach that we use. The minimum and maximum depths, z,
as seen from the middle of the shutter interval, t = 0.5, are
found, and this interval is split uniformly. Each bin that con-
tains at least one sample is marked with a 1. Finally, the
resulting bit mask for the bins is used to find a small set of
depth layers.

shadow map by reprojecting all samples along the depth
layer’s average motion vector, d, to t = 0.5 using Equation 5,
and storing this layered, reprojected, shadow map in mem-
ory for use in the subsequent lighting pass. To perform a
shadow lookup in the lighting pass, we offset this represen-
tation along the layer’s motion vector to get the depth layer
represented at a particular time.

4.1. Shadow Pass

Creating the shadow map representation involves a number
of steps, which are covered in detail in this section.

Visibility sampling First, the scene is stochastically raster-
ized with N samples per pixel in (x,y, t) light space. For each
sample, we store depth and motion vectors. The motion vec-
tors are comprised of the shadow map texture space motion
in xy and depth motion in z.

Depth clustering Next, the samples in a tile in shadow map
texture space are clustered in depth to obtain a set of depth
layers of samples. To find suitable depth layers, we perform
a simple depth clustering [AHAM11] step over all samples
within a search window centered around each tile. We per-
form the layer split at the middle of the exposure interval, by
offsetting the sample depths to t = 0.5 with their respective
motion vector. Next, the depth range [zmin,zmax] of the re-
located samples is computed, which is then subdivided into
uniform intervals. Intervals containing samples are flagged
as occupied. Layer delimiters are then introduced where the
largest stretches of unoccupied intervals are found. This pro-
cess is illustrated in Figure 5. In our current GPU implemen-
tation we use 64 uniform intervals, which are clustered into
(up to) four depth layers.

Per-layer motion We assume that the motion is slowly
varying within each depth layer of the tile. We find a com-
mon representable motion vector, d, for the layer by averag-
ing the motion vectors of the samples in the layer.
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Figure 7: Left: an epipolar image of a simple scene with two objects and a static background layer. Middle: the samples
are reprojected to t = 0.5 for each layer, using the layer’s motion vector. Samples within a layer (black outlines) increase the
opacity. Samples behind the layer (gray outlines) (farther away from the light source) decrease the opacity. Samples in front of
the layer (red crosses) are discarded. Right: the shadow map can be queried at different times using the reprojected samples at
t = 0.5 for each layer along with the layer’s motion vector
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Figure 6: A: a moving disc, viewed from the light source. B:
we consider a single tile in the middle of the image. Samples
from within the guard band will be used for this tile. C: the
average motion direction is found, and a new coordinate sys-
tem, (u,v), is constructed. The u-axis is scaled and aligned
with the motion vector. D: the epipolar images for v= 0 (left)
and u = 0 (right). The final, reprojected layer representation
contains samples within the gray borders, which are derived
from the guard band size, f , and the motion vector, d.

Grid setup The reprojection step builds upon previous
work for motion blur filtering [MVH∗14], with the differ-
ence that we work with depth values instead of color. How-
ever, unlike previous work, we reproject onto a stretched
grid, which is aligned with the average motion direction,
d. For clarity of presentation, we let the (x,y) coordinates
have origin at the center of the tile. We parameterize the
stretched grid with coordinates, (u,v), where the u-axis is
aligned with the layer’s motion vector, d, and the v-axis is
perpendicular. As illustrated in the epipolar images in Fig-
ure 6, any sample originating from within the guard band,
f, of a tile may reproject anywhere within a region that is
f + ||d|| wide. Therefore, we use a grid scaling factor of

f
f+||d|| along the u-direction, which ensures that no samples

will be reprojected outside our scaled grid. We now define a
rotation and scaling transform, M, for each layer, such that
Md =

(
f ||d||

f+||d|| ,0
)

. If we apply this transform to a moving

sample: xi(t) = xi +d(t− ti), cf. Equation 4, we obtain the
corresponding sample in the stretched grid as:

(ui(t),vi) = Mxi +

(
f ||d||

f + ||d|| ,0
)
(t− ti) . (6)

In presence of motion, the grid stretches outside the tile
bounds, as shown in Figure 6D. The scaling factors of M
used in our implementation are discussed further in Sec-
tion 5.

Sample reprojection For each layer, each sample is trans-
formed to the local coordinate system and is moved along the
layer’s motion vector to the middle of the shutter interval, by
using Equation 6 with t = 0.5. Additionally, the depth of the
sample at t = 0.5, zreproj

i = zi +(0.5− ti)dz is computed. The
sample’s position in uv-space maps to a texel location.

The next step is to compute the coverage and depth con-
tribution of the sample to the texel. We track four quanti-
ties which are used for filtering later in the lighting pass de-
scribed in Section 4.2. First, we need the depth value for
the shadow test. We use the filterable variance shadow map
(VSM) representation with the first and second depth mo-
ments (z and z2) [DL06]. The next quantity is the opacity,
α, which tells us how much each texel in each layer should
contribute to the final shadow result. The remaining quantity
is the weight, w, of the filter kernel used in the reprojec-
tion. Each sample will contribute with different αi and wi
values for each layer. For each texel, (u,v), in the shadow
map, these quantities are accumulated into a tuple with four
elements on the form:

T (u,v) =
(

∑wiαizi, ∑wiαiz
2
i , ∑wiαi, ∑wi

)
, (7)

i.e., a weighted sum of the first and second depth moments,
a weighted opacity, and the total weight.

The values of wi and αi for the current layer are calcu-
lated as follows. If a sample lies in or behind the current
layer (i.e., farther away from the light source), then wi has
a non-zero value based on the filter used. Otherwise, wi = 0
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(i.e., the sample does not contribute to this layer). In our im-
plementation we use a box filter, and thus wi corresponds to
the number of samples falling in a pixel. The opacity value
is one (αi = 1) if the sample lies within the layer, and is zero
otherwise. The idea behind this is that if a sample that be-
longs to a background layer is visible through the foreground
layer, then the foreground layer must be transparent for that
sample. Since fewer samples affect layers farther back, this
implies that the opacity estimate is better for foreground lay-
ers. This accumulation strategy is discussed in further de-
tail in Vaidyanathan et al.’s [VMCS14] reconstruction work.
Figure 7 illustrates a simple example of the reprojection pro-
cess.

4.2. Lighting pass

In the lighting pass, the scene is rendered from the camera
using stochastic rasterization [AMMH07], and we search for
the amount of light that reaches a receiver sample, (xr,zr, tr).
For every receiver sample, the corresponding tile in the
shadow map is found, and the visibility contribution of its
layers are combined to a final shadow term.

Our shadow map is compactly represented as a set of tiles
with a set of layers at t = 0.5 with the accompanying co-
ordinate transforms, M. To retrieve a shadow map value for
a particular layer at receiver time tr, the receiver sample is
reprojected using Equation 6 with t = 0.5. The reprojected
coordinate maps to a location in the shadow map.

Furthermore, we account for the camera filter footprint
when performing a shadow map lookup. Since the camera,
light, and receiver point may move, this is an anisotropic
footprint in xyt. We make the assumption that the receiver
point is static in camera space for a short duration around
the receiver sample time tr. The duration is inversely pro-
portional to the number of samples per pixel, N, used in the
lighting pass. The camera filter footprint is approximated
by transforming the receiver point to light space at times
tr − 1

2N and tr + 1
2N . Figure 8 shows two examples of how

footprints are computed. Should the footprint stretch outside
the layer’s allotted region in the shadow map, it is clamped
to avoid fetching invalid data from a neighboring tile. The
size of the guard band, f , used in the coordinate transform
M, determines how far outside the original tile the footprint
may stretch, as illustrated in Figure 6.

The shadow map location, along with the footprint axes as
gradient vectors, are used in the hardware anisotropic filter-
ing to retrieve a tuple on the form given in Equation 7. From
this, we derive:

z̄ = ∑wiαizi

∑wiαi
, z2 =

∑wiαiz2
i

∑wiαi
, ᾱ =

∑wiαi

∑wi
. (8)

With z̄ and z2, we compute a visibility term, V , using a stan-
dard variance shadow map (VSM) test [DL06] with two mo-
ments. We base the test on the receiver point depth moved

x

t

A

B
A

Bt = 0.80

t = 0.15

Figure 8: Two examples of how we calculate the filter foot-
print for a moving layer. In case A, the camera and the light
are static, and thus the filter in the light space epipolar im-
age is a vertical line. Reprojecting the filter end points along
the motion vector gives the final filter footprint. In case B,
the camera is moving in the opposite direction to the layer
motion and thus produces a slanted trail in the light space
epipolar image. The footprint stretches outside the region
that can be reconstructed for this layer, and is clamped. In
these examples, we use 4 samples per pixel, and thus have
filter footprints stretching over 1

4 of the time interval.

to the reprojected shadow map time zreproj
r (tr) = zr +(0.5−

tr)dz − b, where tr is the receiver sample time and b is a
VSM shadow bias term. It should be noted that moving the
receiver sample to t = 0.5 is equivalent to moving the depth
of the shadow casting sample to the time of the receiver sam-
ple, tr. Given z̄ and σ

2 = z2− z̄2, the variance shadow map
visibility is computed as follows [DL06]:

V =
σ

2

σ2 +(zreproj
r − z̄)2

. (9)

Combined with the opacity of the layer at the point of
lookup, ᾱ, we can approximate the visibility of the receiver
point through this particular layer as:

Vl = 1− ᾱ(1−V ). (10)

The visibility through all layers is accumulated using
Vtotal = ∏l Vl to get a final visibility approximation.

5. Implementation

We implemented our algorithm and TSM in a GPU software
stochastic rasterizer, similar to McGuire et al. [MESL10],
which we have extended with time-dependent shadow maps
(TSMs) [AMMH07] and faster coverage tests [LK11].

Apart from the tile size and guard band used to derive the
scaling factors in the coordinate transform, M, in Equation 6,
an additional parameter, o, is used, such that:

(su,sv) =
o
f

(
f

f + ||d|| ,1
)
, (11)

where su and sv are the scaling factors in the matrix, M. Here,
o controls the resolution of the output grid, and thereby also
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Figure 9: This figure shows the need for the various parameters and additional smoothing used in our algorithm. The camera
is positioned so that the shadowed region in the red (top) inset from Figure 1 is viewed closely from above (instead of from an
angle). Three tentacles are moving in different directions and create complex shadows on the receiver floor. From the raytraced
reference, the detailed geometry from the suction cups are visible as they produce a striped pattern in one of the shadow layers.
We use the same sample set for TSM and our algorithm to create the shadow. In inset (A), we have reduced the number of
maximum layers from 4 to 3, and subsequently a single depth layer is created from two of the tentacles, with an incorrect
shadow as the result. Similar artifacts are visible when the clustering step fails to produce proper splits between layers with
vastly different motion and/or depth characteristics. Inset (B) shows our algorithm without the stochastic neighbor selection
enabled, leading to visible tile boundaries. Finally, in inset (C), the v-direction filter for large motion is disabled, with some
streaking artifacts as a consequence. In this particular case, note that there are some streaks in the reference image, which we
slightly over-blur with the v-filter enabled. Also note that, in general, one might want to increase the shadow map resolution
and the number of samples per pixel to increase the quality further.

the resolution of the shadow map. In our implementation,
for each 8×8 pixel tile in the input depth and motion maps,
we use an output shadow map tile size o = 16, and a search
region f = 16. Or more intuitively, in absence of motion,
for each input pixel in an f × f neighborhood around each
tile, o

f output texels are produced. As motion increases, the
output grid grows proportionally, while its resolution in the
shadow map is retained, essentially trading spatial detail for
covering a larger volume in xyt, as illustrated in Figure 6.

During the lighting pass, described in Section 4.2, we may
sometimes end up with a total weight of zero, ∑wi = 0. This
happens when the shadow map density is too sparse com-
pared to the filter (or size of motion), and is more likely to
happen for layers further back as most of the samples will
be caught by the layers in front. We alleviate this problem
by expanding the filter size until a valid sample (wi 6= 0) is
included. This is similar to how the problem is solved in pre-
vious work [MVH∗14]. They use an exponential filter and
therefore samples further away can be used if there are no
local samples, and giving them an insignificant weight if lo-
cal samples exist.

Furthermore, we note that Munkberg et al. [MVH∗14] ex-
hibit some streaking artifacts in regions with large motion
and low circle of confusion. In order to reduce such streak-
ing artifacts, we apply a small filter aligned with the v-axis
in such tiles. In our current implementation and selection
of scenes, we found that a small tent filter with pixel width
wv =max(0,0.05 (||d||−2)), where d is the average motion
vector, works well in practice.

In areas with varying motion vectors, we may get tile arti-
facts due to the rotated grids not aligning at tile borders. We

remedy this using an approach similar to the one proposed
by Guertin et al. [GMN14]. When performing a shadow map
lookup, we compute a probability based on the distance be-
tween the lookup position and the tile border. We then use
that probability to stochastically perform the lookup in ei-
ther the current tile or the neighboring tile. This means that
the region in which a valid shadow test can be performed for
a tile in somewhat increased, i.e., it depends on that a suffi-
ciently large f -parameter is selected. In practice, we found
that using a linear ramp starting at 1/3 from the tile center
and going up to 50% probability for selecting a neighbor at
the tile border produces visually pleasing results, and works
well with the selected f = 16.

In Figure 9, the benefits of border smoothing and streak
reduction are shown. In addition, we show the quality impact
of using too few layers.

Memory Consumption The memory requirement for the
shadow map depends on the number of layers, the output
tile sizes, and the input depth and motion map resolution.
In addition, for each tile and layer, we store the transform
M using two values (scale and direction of major axis), the
motion in z and the layer split position. We use 32 bit floats
for the four tuples in Equation 7, and 16 bit floats for the tile
data. For a 10242 pixel shadow map at 4 spp, the total cost
amounts to 90 MB per depth layer. TSM stores one depth
value for each sample, and the same input consumes 16 MB.
It should be noted that we have optimized our algorithm for
speed rather than size. There are, however, several avenues
for reducing the memory usage. For example, using ESM
instead of VSM, reducing the precision of the opacity and
weight in Equation 7, or dynamically allocating output tiles.
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Shadow map
sample

Receiver
sample

Figure 10: An illustration of a self shadowing issue with
TSM, where a surface is moving towards the light source.
The surface should be fully lit since it is visible from the
light source throughout the animation. Left: the shadow
map lookup for the receiver sample (red) returns the clos-
est shadow sample (green) in (x,y). Since the shadow sam-
ple is closer to the light source than the receiver sample, it
will falsely report that the sample is in shadow. Right: within
each time slice, the probability of encountering an occluder
sample increases with the distance to the light source. In the
resulting image, the time slices are visible as striped self-
shadows. Our dynamic bias decreases the likelihood of such
events.

We leave this for future work since it would require further
investigation on how these changes would affect the shadow
quality.

5.1. Dynamic bias for TSM

In TSM, the exposure time is partitioned into N slices, each
containing a subset of the samples. When a shadow test is
performed for a sample at a particular time, the correspond-
ing enclosing pixel and time slice in the shadow map is
found. However, due to the discretization, there is a discrep-
ancy between the receiver sample time and the shadow map
sample time. This difference may be as large as 1

N of the
exposure time, and can lead to self shadowing artifacts, as
illustrated in Figure 10. In some cases, a shadow map bias
alleviates the problem, where the bias incorporates the dis-
tance in depth that any object travels. This quickly becomes
problematic, since contact shadows will disappear when the
bias is increased.

As discussed in Section 4, in our algorithm, we compen-
sate for the discrepancy in time between the receiver sample
and the shadow map sample. Depth motion is accounted for
by moving the samples along the average motion vector’s
depth component based on the sample time difference. We
improve TSM in a similar way, but use the samples’ own mo-
tion vectors. The receiver point is translated to the shadow
map sample’s time to get a new receiver depth:

żi = zi +dzi(tr− ti), (12)

In Section 6, we will show how this adjustment improves

image quality of TSM and makes motion blurred shadow
map rendering more robust.

6. Results

We have constructed a set of scenes, shown in Figures 11, 12
and 13, to test difficult cases, where both the receiving and
shadow casting geometry move relative to the light source
in various ways. The pillar scene illustrates the difficult case
with a moving light source. Although the pillars are static
as seen from the camera, they move a large distance in light
space. The other two scenes show variations of moving re-
ceivers and shadow casters.

To evaluate the quality and robustness of our algorithm,
we compare the quality against time-dependent shadow
mapping (TSM) and deep shadow mapping (DSM), as well
as against the reference images rendered using the Em-
bree [WWB∗14] ray tracing kernels with 128 stratified rays
per pixel. For the quality comparison, we use four samples
per pixel for our algorithm and TSM. To accentuate the qual-
ity differences, we use fairly low resolution shadow maps of
5122 pixels. An input tile size of 4× 4 pixels was used for
our algorithm, with the parameter settings f = 12 and o = 8.
We implemented DSM by sampling the scene with 128 sam-
ples per pixel (spp) from the light source. This way, we can
build a high quality visibility function for each shadow map
pixel. Lokovic and Veach [LV00] suggested using a lower
sampling rate and computing the visibility function by filter-
ing over a larger footprint in the shadow map. However, the
size of the filter is not well described, and therefore we chose
to use a high quality (but inefficient) DSM implementation,
which illustrates the algorithm’s asymptotic behavior at high
sampling rates.

The results of our quality evaluation can be seen in Fig-
ures 11, 12 and 13. DSM has problems with self-shadowing
due to the assumption of a static receiver. Furthermore, the
shadows from the pillars become smeared in Figure 11.
The same behavior can be seen in the depth motion exam-
ple in Figure 12, where a moving object incorrectly causes
self shadowing. The scene has two moving objects, where
the orange object cast a shadow on the moving green ob-
ject, and both objects shadow a static ground plane. As can
be seen, the shadow on the moving receiver is washed out
for DSM. The correlation between the receiver and shadow
caster must be captured to faithfully recreate the shadow for
these cases. In all scenes, our algorithm and TSM produce
results similar the reference. However, at equal samples per
pixel and shadow resolution, our algorithm has considerably
less noise.

In addition to the stress test scenes, we use another set
of test scenes, shown in Figure 14, which have substantially
richer geometrical detail and much higher occlusion com-
plexity. We focus on evaluating performance of our shadow-
ing algorithm compared to TSM, since the other competing
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Figure 15: The number of milliseconds spent in each of the
algorithms steps for our approach and TSM. All results are
measured on NVIDIA GTX 980.

algorithms collapsed samples over time, which generated se-
vere artifacts as shown in Figures 11, 12 and 13. All results
were measured on an NVIDIA GTX 980. We include both an
equal input and an equal time comparison. For equal input,
we use 4 spp both for the primary visibility and the shadow
map. The resolution of the shadow maps for both algorithms
is 10242 for all test scenes. For the equal time comparison,
when constructing the shadow map for TSM we used 8 spp
and increased the resolution to fit within the same frame
budget. For low complexity scenes, such as Wrecking ball
(8k tris), TSM achieves slightly better quality at equal time.
However, at higher polygon counts, the cost of stochastic
rasterization is non-negligible, and our algorithm produces
better quality shadows at equal time. This is visible in the
Sponza runner scene and in Figure 1. The Tree scene has a
moving light source, which makes it difficult to get an accu-
rate result with TSM, although having more time slices in the
shadow map alleviates the problem. The image resolution is
1280×720 for all scenes.

Figure 15 shows timing for the different steps in our algo-
rithm and TSM. Although we store motion vectors when ren-
dering from the light (visibility sampling), the cost for that
step is very similar for both algorithms. Our algorithm then
converts the incoming depth and motion buffers to its lay-
ered shadow map representation, which takes 3 – 5 ms. The
cost of stochastic rasterization from the camera is roughly
the same for both algorithms. However, the shadow lookup
and shading pass are more expensive with our algorithm as
we perform filtering in this step.

Finally, in the accompanying video, we show the temporal
behavior of our algorithm.

7. Conclusions

We have presented a novel time-dependent shadow mapping
algorithm, which supports high-quality filtering and accu-
rately handles time dependencies between shadow casters
and receivers. Our algorithm has real-time performance for
reasonably complex scenes and scales with the number of

samples, rather than geometrical complexity. This can be
seen in that our best results were obtained with the most
complex scenes.

For future work, we note that the weakness of our algo-
rithm is when the depth complexity is too high or when there
is large local motion variation within a small depth range.
The clustering algorithm is crucial for both performance and
quality, and we would like to explore clustering using ad-
ditional attributes, apart from depth, such as the direction
and magnitude of the motion vector. However, this is a non-
trivial extension, which requires a solution to intra-layer vis-
ibility if layers have overlapping depth ranges.
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Figure 11: Shadows are produced by a light source, moving upwards, away from the pillars. This scene is difficult since points
on the receiver plane that remain static viewed from the camera travel long distances in light space. Due to perspective, the
sample paths through light space are non-linear. Some over-blurring is apparent, but our linear motion approximation works
reasonably well. TSM also exhibits some additional blurring. When a shadow map lookup is performed, the camera sample is
transformed to light space at the camera time tc to obtain the lookup coordinates. The time ts for the sample at this location
is (almost) always different from tc. During this time discrepancy, the light source may have moved arbitrarily, potentially
resulting in a poor match between the camera and shadow map samples in xyt-space. DSM does not account for moving light
sources either, and get severe self-shadowing artifacts.
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Figure 12: Two rapidly moving quads at different depths with motion directions orthogonal to each other. Both our algorithm
and TSM are able to capture the diagonal shadow stripe that appears on the green, moving receiver, whereas DSM does not.
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Figure 13: Two quads with perspective motion in light space, one moving towards and the other moving away from the
light source. Our algorithm performs well, even though there is a high degree of motion along the z-axis, which violates our
assumption of linear sample paths. With our dynamic bias from Section 5.1, TSM does not exhibit self-shadowing artifacts. The
bias in DSM cannot be fixed with an increased bias value, since the movement of the quads is larger than the gap between them
and the ground plane.
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Figure 14: Our algorithm has significantly less noise compared to time-dependent shadow maps (TSM) and handles complex
occlusion. The animated wooden doll model in the wrecking ball scene is from the Utah 3D Animation Repository. The chess
scene was created by Rasmus Barringer. The Sponza model was made by Frank Meinl at Crytek, and the skinned runner model
by Björn Sörensen. The tree scene with a moving light source was created using Autodesk Maya.


