
Real-Time Multiply Recursive Reflections and Refractions using
Hybrid Rendering

Per Ganestam
Lund University

Michael Doggett
Lund University

2014

Abstract

We present a new method for real-time rendering of mul-
tiple recursions of reflections and refractions. The method
uses the strengths of real-time ray tracing for objects
close to the camera, by storing them in a per frame con-
structed bounding volume hierarchy (BVH). For objects
further from the camera, rasterization is used to create G-
Buffers which store an image based representation of the
scene outside the near objects. Rays that exit the BVH
continue tracing in the G-Buffers’ perspective space us-
ing ray marching, and can even be reflected back into
the BVH. Our hybrid renderer is to our knowledge the
first method to merge real-time ray tracing techniques
with image based rendering to achieve smooth transitions
from accurately ray traced foreground objects to image
based representations in the background. We are able to
achieve more complex reflections and refractions than ex-
isting screen space techniques, and offer reflections by off
screen objects. Our results demonstrate that our algorithm
is capable of rendering multiple bounce reflections and
refractions, for scenes with millions of triangles, at 720p
resolution and above 30 FPS.

1 Introduction

Reflective and refractive objects are an important com-
ponent of reality found in ray traced imagery, but rarely
found in real-time rendering. When these objects do ap-
pear in real-time rendering, they typically only demon-
strate a single bounce using rendered or pre-rendered en-
vironment maps. These reflective and refractive objects

can relay to the viewer information about the composi-
tion of the scene, such as what is hiding behind an object,
or what can be seen through refractive objects.

For example, in modern real-time games, being able to
see movement behind the player in a mirror would add to
the gameplay experience. Also, real-time reflections are
listed by Andersson [1] as a major challenge for real-time
rendering. Modern real-time rendering scenes have a high
triangle count, and most triangle meshes are highly de-
tailed. Storing this data can take a large amount of mem-
ory, and computing complex visibility with reflections is
quite challenging, if all geometry is taken into account.

The contribution of this paper is a general framework
that enables real-time reflection and refraction rays to tra-
verse multiple bounces, while running on graphics hard-
ware. Our method enables complex reflections and re-
fractions with multiple recursions to be computed within
a region near the camera, and more limited interaction in
the remainder of the scene. We use a hybrid approach
that starts with a rasterization of the scene to compute
primary ray hit points. We also generate a cube map of
G-Buffers, that store depth, color, normal and material,
creating an image based representation of the scene from
the camera’s view point. In the area close to the camera, a
bounding volume hierarchy is constructed every frame to
enable fully deformable objects. For the primary ray hit
points that require further tracing, rays are traced into the
BVH, and the G-Buffers. To trace rays in the G-Buffer
we present a new approach to ray marching in the scal-
able, geometry insensitive G-Buffer that represents an en-
tire scene. Rays traced into the image-based G-Buffer that
intersect with reflective objects, can spawn new rays that
trace back into the BVH volume or into other G-Buffers.

1

The different types of rays that are traced are illustrated in
Figure 1. An important objective of our system is to inte-
grate complex viewing rays into large scenes, e.g. where
complex foreground reflections and refractions are inte-
grated with non-reflective, faster to render, backgrounds.

2 Related Work
Real-Time reflections and refractions have long been pos-
sible using environment maps and graphics hardware us-
ing the technique introduced by Blinn and Newell [2].
This method is limited to a single bounce and so immedi-
ately loses much of the realism that reflections and refrac-
tions provide. True photo realism requires more complex
rendering of visibility to capture realistic reflections and
refractions. Realistic reflections and refractions can be
achieved using ray tracing [24], but ray tracing needs to
be integrated carefully into real-time systems in order to
ensure high performance.

Real-time rendering in games has used environment
mapped reflection and refraction for many years. Recent
game engines such as Unreal Engine [3] supports features
such as billboard reflections, where imposters are used to
improve the accuracy of reflections.

More realistic screen space reflections are created in
CryEngine 3 [19] using ray marching in screen space
to create accurate reflections, but are limited to objects
which appear in the view frustum. Recent research on
using non-pinhole cameras for reflections is presented by
Rosen [16].

Wyman [25] makes real-time refraction look more re-
alistic by also representing a second surface. Sun et
al. [20] present a technique for simulating light trans-
mission through refractive objects using the GPU, but at
much lower frame rates than we target in this work.

Our approach also captures the surrounding scene by
rendering a cube map, similar in nature to image based
methods such as presented by McMillan [11] where im-
ages are warped to create the final rendering. Hakura
and Snyder [4] present a hybrid system that uses environ-
ment maps and ray tracing to generate realistic reflections
and refractions. Their system creates multiple environ-
ment maps from different directions and distances from
the reflective or refractive object in a preprocessing stage
that would take significantly more time than our method,

which creates maps of the entire scene’s environment us-
ing the rasterization pipeline, which is significantly faster,
even without modern graphics hardware. Our algorithm
also improves accuracy by tracing rays at each pixel.

Cube maps have been used extensively in real-time ren-
dering to capture lighting. Games, such as Half-Life 2
[12], assign individual cube maps to each object to create
local lighting. Sebastien et al. [18] present techniques for
recent games that solve the parallax issues present in the
cube map technique. Szirmay-Kalos et al. [21] render a
cube depth map, similar to our G-Buffer Cube Map used
here, and uses it for parallax corrected access to lighting
in the environment map. Their approximation to the in-
tersection point is calculated using the point where the
cube maps where created from, and the currently inter-
sected point. In our work we use similar cube and depth
maps, but use ray marching to compute accurate intersec-
tion points and trace secondary rays from those points,
rays that also traverse the depth map to enable much more
accurate visibility from our cube map. Knecht et al. [8]
also use G-Buffers to capture illumination and relight re-
flective and refractive objects.

In recent work, Mara et al. [10] use a two-layer deep
G-Buffer to achieve low frequency lighting effects. They
also show how to use their deep G-Buffer to compute mir-
ror reflections. Although their two-layer G-Buffer cap-
tures objects hidden to the viewer (such as objects behind
a wall), the reflected object still has to reside within the
view frustum. Our approach offers reflective rays in any
direction, even opposite to the view direction, and with a
higher quality if the reflected object is located within the
BVH region.

We use a screen space approach based on deferred
shading [17] to find the hit points of the primary rays
and then use real-time ray tracing to trace secondary rays
through the foreground objects. There is a great deal
of work in real-time ray tracing which will not be re-
viewed here that includes data-structure construction such
as BVHs and kD-trees [27] and optimizations of ray trac-
ing performance, but this paper focuses on combining ray
tracing with image based rendering to compute complex
reflection and refraction effects. Recent work on real-time
ray tracing on GPUs [6], using voxelization and A-Buffers
to create a representation of the scene, is capable of global
illumination at interactive rates using a full GPU pipeline.
The algorithm presented targets higher frame rates and

2

Figure 1: A scene showing the type of complex reflections possible in real-time using our system. The left image
shows the camera and it’s viewing frustum from a distance and the right shows the camera image. On the left three
reflection and refraction ray paths are shown as red lines. The top ray reflects off a mirror sphere and reveals a green
sphere that is occluded in screen space. The middle reflection bounces off a large mirror sphere that is behind our
BVH region close to the camera, but the viewing ray is still traced back into the BVH to show the back of the red
sphere. The lower ray traces through a refractive yellow sphere and is then reflected back into the yellow sphere. All
these complex ray paths are not possible with existing screen space techniques.

3

resolutions in order to fit more easily into modern real-
time rendering engines.

Interactive global illumination attempts to accurately
model the interaction of light and matter by rendering
frames in less than a second. Ritschel et al. [15] survey
the current state of the field and we take a few highlights
from that area that are related to our current work.

Screen space techniques improve upon basic environ-
ment mapping by using the representation of objects in
the scene in screen space, but still screen space does not
handle objects occluded from the view point or objects
outside the view frustum. Reinbothe et al. [14] voxelize
the entire scene so that ambient occlusion can be more
accurately calculated in screen space.

Thiedemann et al. [23] also voxelize the scene to avoid
illumination errors. Ritschel et al. [15] point out that in-
teractive global illumination approaches approximate the
geometry and lighting in the scene to reduce the complex-
ity, because low frequency representations are sufficient
for lighting. For accurate reflections and refractions, ac-
curate geometry is required and for this we use real-time
BVH construction. Recent improvements in accurate in-
direct illumination using BRDFs [26], demonstrate future
directions for improving the image quality of our work,
but since their performance is limited, they are beyond
the scope of this paper.

3 Algorithm
Our rendering algorithm is based on a hybridization of ex-
isting rasterization and ray tracing techniques. It balances
visual quality and performance in such a way that multi-
ple bounce reflections and refractions of complex scenes
are possible in real-time on current graphics hardware.

Distant geometry in the scene is represented by image-
based maps that reduce scene complexity, but still allow
rays to recursively reflect and even refract if the refrac-
tion goes to a sky box. The maps are a set of six G-
buffers arranged in a cube map style. Geometry close
to the view camera is represented in a BVH that is tra-
versed with a real-time ray tracer. In order to facilitate
fully dynamic scenes in real-time, a full rebuild of the
BVH around objects close to the camera is performed
each frame. An overview of the partitioning of the scene
geometry is shown in Figure 2.

BVH

Cube Map

Environment Map

c

z

x

Figure 2: An X-Z 2D diagram of our rendering setup
shows the different regions we break the scene into and
how they are represented for rendering. Objects near to
the camera (c) are inside a BVH. Objects further away are
rendered into 6 G-Buffers that are stored as a Cube Map.
Objects beyond the Cube Map will be represented by the
typical sky box in an outer Environment Map. The Cube
Map faces are rendered with the camera at the center point
c. A blue trapezoid shows the view frustum where three
paths are traced from the primary view G-Buffer into the
BVH and intersect with objects in the BVH (red ray), ob-
jects in the Cube Map (green ray) and going through two
Cube map faces (yellow ray). The red ray shows an ex-
ample where a ray can trace in and out of the Cube Map
and BVH regions.

4

Each frame of our algorithm performs the following
steps:

1. Rasterize primary visibility

2. Render a G-buffer cube map

3. Build the BVH of geometry near the view camera

4. Perform primary shading and generate secondary
rays

5. Recursively traverse the BVH and G-buffer cube
map

These steps are further explained in the following sec-
tions.

3.1 Primary Visibility
The first pass of the algorithm is the same as the first step
of a standard deferred renderer. Primary visibility depth
values and normals are stored in 2D textures that are used
as a G-buffer. The only variation with our G-buffer com-
pared to one commonly used in deferred rendering meth-
ods is that a material index rather than a specularity value
is stored in the alpha component of the normal texture.
These material indices are later used as material identi-
fiers by the ray tracer.

3.2 The Cube Map
The cube map in our algorithm is an image-based data
structure that is updated once every frame. The cube
map is used to reduce scene complexity for ray tracing
by rasterizing distant geometry. It stores the same kind
of G-buffers as the primary visibility pass does, but in-
stead of having one G-buffer, an individual G-buffer is
stored per cube face. The cube origin is set to the view
camera’s world space position and the near planes of the
cube map cameras define the boundary between BVH ray
traversal and image-based ray marching. To avoid issues
when a ray travels parallel to the diagonal planes of the
view frustums of the cube map camera faces, the cube
map cameras’ field of view (FOV) is slightly wider than
90 degrees. In our implementation the FOV is set to 90.2
degrees (Figure 3). By widening the FOV, a ray existing
in one of the cube’s diagonal planes will always belong

BVH

Cube Map

z

x

90

90.2

90.2

Far Plane

Near Plane

Figure 3: It is always possible to get a ray that goes along
the diagonal planes (green ray) that separate the 90 de-
grees frustums of the cube map’s faces. A drawback of
having the view camera centered in the cube is that this
is a frequent event. In our approach we widen the FOV
of the cube map cameras so that the green ray always be-
longs to one or the other cube map side, and once the side
to traverse is picked, the ray will continue in that side and
not risk repeatedly switching sides. The blue ray displays
a case where the ray first only belongs to the red frustum
and then enters the overlapped region. Entering the over-
lapped region doesn’t mean that the ray will switch side.
The blue ray continues in its current side for as long as it
is within the red frustum. A ray aligned with the diagonal
plane of the red view frustum would only be able to switch
to the blue frustum once, since the new switching planes
would then be the blue view frustum’s diagonal planes.

5

to at least one of the cube sides when entering the cube
map. It is not important which side a ray belongs to, the
first side a ray is tested positively against is chosen for ray
marching.

3.3 BVH Construction

Our BVH implementation builds an LBVH, the linear
BVH approach by Lauterbach et al. [9], where tree con-
struction is reduced to a sorting problem. Parallelism
is further improved by applying a tree and axis aligned
bounding box (AABB) construction algorithm similar to
the one by Karras [7].

Only geometry residing inside the cube defined by the
cube map cameras’ near planes is represented in the BVH.
Before the BVH is constructed, a per object culling pass
is performed. If an object’s AABB overlaps with the cube
then all triangles of that object are transformed to world
space and a second culling pass is executed. The sec-
ond pass performs per triangle culling. This is motivated
since any ray that leaves the BVH boundary will enter
the cube map and not continue in the BVH, even if the
BVH contained triangles from partially overlapping ob-
jects. By culling triangles from objects partially over-
lapping the BVH region, no time is wasted on building a
tree that includes triangles that would never be intersected
anyway. Per triangle culling also enables a more balanced
BVH of the triangles that actually are inside the BVH re-
gion. Since a lot of geometry is represented in the cube
map, the BVH becomes much smaller, with the benefits
of both reduced construction time and faster ray traversal.

By introducing a small overlap of the BVH and the
cube map the possibility of a gap at the boundary due to
precision errors is removed. In the overlap, an intersection
occurs either in the map or in the BVH.

It is also possible for objects to have individual pre-
computed BVHs, rather than a per-frame full BVH re-
build, and that rays intersecting an object are transformed
to the local frame of the object before continuing traver-
sal. However, this method only works when applying
rigid body transformations. Our method is capable of han-
dling any types of transformations, as an example, proce-
durally animated meshes.

3.4 Ray Tracing: BVH and Cube Map
Traversal

Our ray tracer approximates Whitted ray tracing by letting
rays recursively traverse through the two different data
structures, the BVH and the cube map. In fact, the cube
map can itself be considered an approximation of a BVH.
And as it is an image based data structure, once rasterized,
ray traversal time in the cube map is constant in relation to
scene complexity. The size of the BVH and cube map can
be chosen arbitrarily and as the BVH is increased in size,
to cover a larger part of the scene, our method converges
towards a complete Whitted ray tracer.

Before ray tracing begins, the view camera G-Buffer
is used to compute shading of the primary intersections
and to determine whether a visible object should generate
secondary rays or not. A spawned recursive ray continues
to traverse the scene until it hits a diffuse surface, exits
through the far planes of the cube map (and intersects a
sky box in an outer environment map), or the maximum
recursion depth is surpassed. The first recursion of a ray
may start either in the BVH or in the cube map. Where it
starts is simply decided by testing if the origin of the ray
is inside the BVH bounding box or not. A recursive ray is
initially defined in world space as

rw(t) = ow +dwt, {ow,dw} ∈ R3, |dw|= 1, t > 0.

If a ray currently traversing the BVH doesn’t intersect
any geometry, then it is instead sent to intersect with the
world space representation of the cube map cameras’ near
planes. Given an intersection in the cube map side i ∈
[1,6] at the parameter value ti > 0, the two points

p0 = rw(ti) and p1 = rw(ti + ε)

can be computed along the ray, where the offset ε > 0 is a
small value that extends the ray slightly into the cube map
side. By multiplying the points p0 and p1 with the view
projection matrix Mi given by the camera that corresponds
to cube map side i, the transformed points

p′0 = Mi p0 and p′1 = Mi p1,

are computed and further used to define the map ray used

6

for ray marching as:

rm(t) = p′0︸︷︷︸
om

+
p′1− p′0
|p′1− p′0|︸ ︷︷ ︸

dm

t

with the components of om and dm in the range [−1,1].
Rays that leave the BVH and enter the cube map use

a similar ray marching technique to that of per-pixel dis-
placement mapping [5] and Parallax Occlusion Mapping
[22]. An important difference is that where previous ray
marching techniques expect an orthogonal height map to
traverse, in our method, each face of the cube map is rep-
resented in perspective. A second difference, and an re-
sult of the perspective projection, is that a ray can exit one
face of the cube map but still be an active ray, and enter a
neighbouring side of the cube map. A ray can also bounce
between the cube map and the BVH and back again, as
many times as the recursive traversal needs before reach-
ing one of the terminating conditions.

If the map ray, rm, currently traversing the cube side
i doesn’t intersect anything in the map, then there are
five alternatives to exit the cube map sides for continued
traversal and one alternative which would terminate the
ray. If the z-component rmz > 1, then the ray exits through
the far plane of the cube and is sent to intersect the sky box
as a final traversal step. If the ray traverses in the negative
z-direction and rmz < −1, then traversal continues in the
BVH, using the original ray rw. The other four alterna-
tives are when the ray exits through the x- or y-axis and
continues in the cube map side j. Given the side i and
the map exit condition it is possible to directly pick the
side j to traverse. Before the ray can continue in cube
side j, rm is transformed back to world space and further
transformed to the cube side j’s space using the jth view
projection matrix. The matrices from any side i to any
other possible side j can be precomputed to speedup the
transition from one cube side to another.

The sampling rate n while traversing a cube map side
depends on the angle between the normal Nw of the in-
tersected plane and the ray direction rw and is computed
in a similar way as it is done by Tatarchuk [22], n =
nmin+Nw ·rw(nmax−nmin). However, once the ray is trans-
formed to normalized device coordinates (from rw to rm)
the transformed normal will always be directed along the
z-axis and Nm ·rm simply becomes the z-component of rm.

To avoid stretching artifacts when a ray that is close
to parallel to the current cube map side intersects an ob-
ject, and since the cube map only stores one layer of depth
values, objects represented in the cube map can be con-
sidered to be thin or thick. The thickness value of an
object is proportional to the amount of stretching per-
mitted by that object when intersected in the cube map.
If a ray, currently traversing the cube map, intersects an
object that is considered thin, instead of stretching the
object, the ray simply misses and continues directly to
the sky box. Whether an object is thin or thick is a per
material property which can be chosen arbitrarily by an
artist. The thickness value ranges between 0 and 1, where
a thickness of 0 represents a perfectly thin object and a
thickness of 1 represents an object that stretches to the
far plane. Smaller moving objects seem to visually ben-
efit from being considered rather thin, and static objects,
such as walls (which shouldn’t let rays pass behind them
anyway), should preferably be considered thick. Refrac-
tive objects in the cube map are always considered thin
and once intersected, ray traversal is cancelled and the re-
fracted ray is sent to the sky box.

3.5 Shadows and Deferred Rendering
It would be possible to compute accurate ray traced shad-
ows inside the BVH, complying to the restriction that
the light sources also reside within the BVH. If the light
sources and thus possible occluders are positioned outside
the extent of the BVH it is no longer possible to guaran-
tee correct shadows using conventional ray traced shadow
rays. However, since our method is highly compatible
with the deferred rendering pipeline, it is straight forward
to incorporate shadow maps, or any other effect or post
processing filter commonly used with deferred rendering,
to our method. Computing shadows using shadow maps
has an insignificant impact on rendering performance.

4 Results
We implemented our method using OpenGL and CUDA
5 on a 32-bit Windows 7 PC with an Intel Core i7 and
an Nvidia GeForce 680, and tested it on several scenes.
For the larger San Miguel scene, we used 64-bit Windows
and an Nvidia Quadra K5000 to generate the full BVH

7

ray traced images. Figure 4 shows two images from each
of our test scenes in comparison to an accurately rendered
image, using a BVH for the entire scene, and a colored
coded image that shows the size of the BVH near the cam-
era. The San Miguel model is from PBRT [13]. The San
Miguel scene uses only per triangle frustum culling, since
per object frustum culling is not possible because of its
file format. We would expect much better performance if
per object culling was implemented as it is for the other
scenes, even so, our method still manages to render The
San Miguel scene at an average speed of 10 frames per
second.

Figure 5 shows the frame time for rendering a 200
frame sequence in the Sponza-Buddha-Bunny model.
Each frame is broken down into the CUDA kernels that
are used for rendering each frame. The breakdown shows
that the ray tracing kernel is the dominant part of render-
ing, with the cube map rasterization of the scene taking
little of the overall rendering time. The results show that
on average our algorithm is four times faster than using a
BVH for the entire scene.

The Chess scene is considered a pathological case
when it comes to computing approximated reflections.
This because of its many reflective convex objects (288
chess pieces and 9 spheres) where many of them reflect
and interreflect each other. Yet, our method accurately
computes reflections nearby the view camera and success-
fully approximates reflections far away. This can be com-
pared to what is possible in, as an example, unreal en-
gine [3], where reflections of dynamic objects only are
achieved in screen space (and only one recursion is pos-
sible), and off screen reflections have to be pre-computed
and stored in reflection environment maps. Since only
static objects are visible in the reflection environment
maps, but all objects in the Chess scene are dynamic, no
reflections at all would be possible from the reflection en-
vironment maps. Figure 6 shows the performance of our
method for the Chess scene compared to the full BVH
version. The results show a similar characteristic for both
methods as the rendering time is dominated by ray trac-
ing for both our method and the BVH version. But our
method always shows significant improvement in perfor-
mance due to the use of the cube maps for storing the
scene.

0

20

40

60

80

100

120

140 Ray trace

Our method

5004003002001001

t (ms)

Frames

Figure 6: Performance comparison for the Chess scene
between our method and using a full BVH for the scene.
Both methods rasterize primary visibility. Our method al-
ways out performs full BVH ray tracing by being at least
twice as fast and up to 4 times faster.

To fairly compare the performance of our method ver-
sus a full BVH ray tracer, we have chosen to rasterize
primary visibility in both methods, which brings the full
BVH ray tracer closer to real-time performance. Even so,
our method always performs better than a full BVH ray
tracer.

4.1 Limitations
While accurate reflections and refractions are achieved in-
side the BVH, this is not possible in the cube map. The
G-Buffers only represent a single depth value without any
thickness. So objects that have some thickness, details
that are behind the front or objects that are hidden behind
this depth value are not represented in the depth map and
appear missing in some rays. This results in some arti-
facts, but our BVH close to the camera ensures that the
artifacts are in distant geometry and are only present for
secondary rays. Even with this limitation, the resulting
images in real-time applications have a more realistic look
when rendering multiply recursive reflections and refrac-
tions.

The first row of figure 7 presents a minor artifact in the
Chess scene where the reflected chess piece on the board
is slightly stretched (dark pixels to the right of the chess
piece) due to its thickness value and that the reflected

8

Our BVH Colored

C
he

ss
Pi

ec
e

Sp
he

re

Figure 7: In the first row a minor stretching artifact is vis-
ible in the reflected chess piece on the board (visible as
darker pixels to the right of the chess piece). The sec-
ond row display an artifact where an object (chess piece)
is covering a reflective object (sphere) in the cube map
and thus important scene information between the two ob-
jects is lost. Neither of the two artifacts can take place in-
side the BVH and so only occurs in the background where
the G-buffer cube map is used to store scene information.
The magnified regions can be located by red boxes in the
Chess scene images in figure 4.

rays’ origins aren’t shared with the cube map cameras’
origin.

Another artifact, also displayed in figure 7, is when an
object is covering a reflective object in the cube map. This
artifact has a lower probability to appear near the cam-
era (and can’t appear inside the BVH) than further away,
due to the increased possibility of having objects cover-
ing each other in the cube map the further away they are
represented. A reflected ray can detect that it is behind
another object, but there is no information about what to
intersect, and as a fallback, the ray is sent to do a look-up
in the sky box.

Rendering performance is greatly affected by the type
of materials in the scene and also by the size of the BVH.
If a scene contains many reflective and refractive mate-
rials, performance is naturally reduced due to the high
recursive ray count. The reduced performance in scenes
containing a lot of reflective materials can be mitigated
by adapting the size of the BVH, thus a trade off between
performance and image quality is made.

Our BVH Colored

Sa
n

M
ig

ue
l

Figure 8: In our method, refractive objects residing in the
cube map cannot truly refract incoming rays due to the
lack of information behind it, and as a fallback method
a typical real-time refraction method is used, where rays
simply does a look-up in the cube map. The magnified re-
gion presented can be located as red squares in the results
image (figure 4) of San Miguel.

A carefully sized BVH is in some cases vital to mini-
mize the presence of possible artifacts using our method.
One artifact that would be too interfering had it not been
pushed to the background by a, for this scene, suitably
sized BVH is displayed in figure 8. The refractive objects
(water pitcher and glasses) in the back of the San Miguel
scene are only stored in the cube map, and thus no infor-
mation about what is behind them exists. Instead of com-
puting accurate refractions, a typical real-time refraction
approximation is used where the objects are considered
thin and rays simply refract only once and do a look-up in
the cube map.

The G-Buffers require a reasonable amount of memory.
If needed, the G-Buffers may be rendered at a lower res-
olution in order to reduce memory usage. However, a re-
duced G-Buffer resolution would also affect image qual-
ity.

5 Conclusion
We have presented an approach for rendering multiple
bounce reflections and refractions in real-time using ras-
terization and ray tracing on modern graphics hardware.
Our technique is capable of rendering objects typically
not seen in previous real-time screen based techniques at
real-time rates of between 30 and 60 FPS for 720p im-
ages. Since the BVH can be arbitrarily sized, our tech-
nique is highly customizable to scene or performance re-
quirements.

9

Since our approach is highly compatible with current
rendering approaches, such as deferred rendering, we
hope it will impact future applications and enable new
types of interactions and improved visibility in real-time
rendering.

Supplemental Materials
A paper web page with additional resources can be found
at:
http://fileadmin.cs.lth.se/graphics/research/papers/2014/r5/.
At the web page we present videos of our test scenes
rendered with our method, full BVH ground truth videos,
and videos visualizing the extents of BVHs and cube
maps.

Acknowledgements
To ELLIIT and Intel Visual Computing Institiute for fund-
ing. Thanks to TurboSquid artist cjx3711 for the chess
piece models.

References
[1] Andersson, J.: Five Major Challenges in Real-Time

Rendering. In: Beyond Programmable Shading
course, SIGGRAPH (2012)

[2] Blinn, J.F., Newell, M.E.: Texture and reflection
in computer generated images. Commun. ACM
19(10), 542–547 (1976)

[3] Epic: Epic games unreal engine. URL http://

www.unrealengine.com

[4] Hakura, Z.S., Snyder, J.M.: Realistic reflections and
refractions on graphics hardware with hybrid render-
ing and layered environment maps. In: Proceedings
of the 12th Eurographics Workshop on Rendering
Techniques, pp. 289–300 (2001)

[5] Hirche, J., Ehlert, A., Guthe, S., Doggett, M.: Hard-
ware accelerated per-pixel displacement mapping.
In: Proceedings of Graphics Interface 2004, GI ’04,
pp. 153–158 (2004)

[6] Hu, W., Huang, Y., Zhang, F., Yuan, G., Li, W.: Ray
tracing via GPU rasterization. The Visual Computer
30(6-8), 697–706 (2014)

[7] Karras, T.: Maximizing parallelism in the construc-
tion of BVHs, octrees, and k-d trees. In: High-
Performance Graphics, pp. 33–37 (2012)

[8] Knecht, M., Traxler, C., Winklhofer, C., Wimmer,
M.: Reflective and Refractive Objects for Mixed Re-
ality. IEEE Trans. Vis. Comput. Graph. 19(4), 576–
582 (2013)

[9] Lauterbach, C., Garland, M., Sengupta, S., Luebke,
D.P., Manocha, D.: Fast bvh construction on gpus.
Comput. Graph. Forum 28(2), 375–384 (2009)

[10] Mara, M., McGuire, M., Luebke, D.: Lighting Deep
G-Buffers: Single-Pass, Layered Depth Images with
Minimum Separation Applied to Indirect Illumina-
tion. Tech. Rep. NVR-2013-004, NVIDIA Corpora-
tion (2013)

[11] McMillan, L., Bishop, G.: Plenoptic modeling: an
image-based rendering system. In: Proceedings of
SIGGRAPH 95, Annual Conference Series, pp. 39–
46 (1995)

[12] McTaggart, G.: Half-life 2 shading. In: Direct3D
Tutorial, GDC (2004)

[13] Pharr, M., Humphreys, G.: Physically Based Ren-
dering: From Theory to Implementation, 2nd ed.
Morgan Kaufmann Publishers Inc. (2010)

[14] Reinbothe, C., Boubekeur, T., Alexa, M.: Hybrid
ambient occlusion. EUROGRAPHICS 2009 Areas
Papers (2009)

[15] Ritschel, T., Dachsbacher, C., Grosch, T., Kautz, J.:
The state of the art in interactive global illumination.
Computer Graphics Forum 31(1), 160–188 (2012)

[16] Rosen, P., Popescu, V., Hayward, K., Wyman, C.:
Nonpinhole Approximations for Interactive Render-
ing. Computer Graphics and Applications, IEEE
31(6), 68 –83 (2011)

10

http://fileadmin.cs.lth.se/graphics/research/papers/2014/r5/
http://www.unrealengine.com
http://www.unrealengine.com

[17] Saito, T., Takahashi, T.: Comprehensible rendering
of 3-D shapes. In: Computer Graphics, vol. 24, pp.
197–206 (1990)

[18] Sébastien, L., Zanuttini, A.: Local image-based
lighting with parallax-corrected cubemaps. In:
ACM SIGGRAPH 2012 Talks, pp. 36:1–36:1 (2012)

[19] Sousa, T., Kasyan, N., Schulz, N.: Secrets of
CryENGINE 3 graphics technology. In: ACM
SIGGRAPH 2011 Courses, Advances in Real-Time
Rendering in 3D Graphics and Games (2011)

[20] Sun, X., Zhou, K., Stollnitz, E., Shi, J., Guo, B.:
Interactive Relighting of Dynamic Refractive Ob-
jects. ACM Transactions on Graphics 27(3), 35:1–
35:9 (2008)

[21] Szirmay-Kalos, L., Aszódi, B., Lazányi, I., Pre-
mecz, M.: Approximate ray-tracing on the gpu
with distance impostors. Computer Graphics Forum
24(3) (2005)

[22] Tatarchuk, N.: Dynamic parallax occlusion mapping
with approximate soft shadows. In: Proceedings of
the 2006 symposium on Interactive 3D graphics and
games, I3D ’06, pp. 63–69 (2006)

[23] Thiedemann, S., Henrich, N., Grosch, T., Müller, S.:
Voxel-based global illumination. In: Symposium on
Interactive 3D Graphics and Games, I3D ’11, pp.
103–110 (2011)

[24] Whitted, T.: An improved illumination model for
shaded display. Commun. ACM 23(6), 343–349
(1980)

[25] Wyman, C.: An approximate image-space approach
for interactive refraction. ACM Trans. Graph. 24(3),
1050–1053 (2005)

[26] Xu, K., Cao, Y.P., Ma, L.Q., Dong, Z., Wang, R.,
Hu, S.M.: A Practical Algorithm for Rendering
Interreflections with All-frequency BRDFs. ACM
Transactions on Graphics 33(1), 10:1–10:16 (2014)

[27] Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-
time KD-tree Construction on Graphics Hardware.
ACM Transactions on Graphics 27(5), 126:1–
126:11 (2008)

11

Our BVH Colored

C
he

ss
Sp

on
za

Sa
n

M
ig

ue
l

Figure 4: Three test scenes rendered from left to right with our algorithm (Our), using the BVH only (BVH), and with
geometry inside the BVH colored blue and geometry in the cube map colored red (Colored). For the colored image,
only pixels that contain reflective material that starts a ray are colored according to which area of the scene the ray
is started in. The number of triangles for each scene is Chess 2,149,944, Sponza Buddha Bunny 1,354,743 and San
Miguel is 10,500,551. 12

0

5

10

15

20

25

30

35

40

Ray Trace

BVH

Cull and Sort

Transform

Cube Map

Misc

200150100501

t (ms)

Frames
0

10

20

30

40

50

60

70

80

90

Ray Trace

BVH

Cull and Sort

Transform

Misc

200150100501

t (ms)

Frames

Figure 5: Rendering time breakdown of the 200 frames Sponza-Buddha-Bunny animation. Our method to the left
compared to full ray tracing to the right. The scene is rendered with a maximum of four ray recursions. The improved
performance is mostly due to the improved ray traversal in the cube map over the cost of BVH ray tracing. For this
scene the BVH has been optimized to give high image quality and good performance. But since the size of the BVH
used is chosen arbitrarily, performance is dependent on this trade-off, and the scene.

13

	Introduction
	Related Work
	Algorithm
	Primary Visibility
	The Cube Map
	BVH Construction
	Ray Tracing: BVH and Cube Map Traversal
	Shadows and Deferred Rendering

	Results
	Limitations

	Conclusion

