
Copyright c� 2014 Intel Corporation. Publication rights licensed to ACM.
This is the authors’ version of the work. It is posted here by permission of
ACM for your personal or classroom use. Not for redistribution. The defini-
tive version is published in ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2014), vol. 33(4), August 2014.

AMFS: Adaptive Multi-Frequency Shading for Future Graphics Processors

Petrik Clarberg1 Robert Toth1 Jon Hasselgren1 Jim Nilsson1 Tomas Akenine-Möller1,2

1Intel Corporation 2Lund University

Reference MSAA A(MF)S AMFS

50k

0

Figure 1: Subdivision surfaces are widely used in offline rendering and an important tool for content creation. However, real-time rendering
of tessellated geometry is still fairly expensive, as current pixel shading methods, e.g., multisampling antialiasing (MSAA), do not scale
well with geometric complexity. With our method (AMFS), pixel shading is tied to the coarse input patches and reused between triangles,
effectively decoupling the shading cost from the tessellation level, as shown in this example. AMFS can evaluate different parts of shaders at
different frequencies, allowing very efficient shading. Our shading cost using a single shading frequency (middle right) is here 26% of that of
MSAA (middle left), while the shading cost using multiple shading frequencies (far right) is only 7% of that of MSAA.

Abstract

We propose a powerful hardware architecture for pixel shading,
which enables flexible control of shading rates and automatic shad-
ing reuse between triangles in tessellated primitives. The main goal
is efficient pixel shading for moderately to finely tessellated ge-
ometry, which is not handled well by current GPUs. Our method
effectively decouples the cost of pixel shading from the geometric
complexity. It thereby enables a wider use of tessellation and fine
geometry, even at very limited power budgets. The core idea is to
shade over small local grids in parametric patch space, and reuse
shading for nearby samples. We also support the decomposition
of shaders into multiple parts, which are shaded at different fre-
quencies. Shading rates can be locally and adaptively controlled, in
order to direct the computations to visually important areas and to
provide performance scaling with a graceful degradation of quality.
Another important benefit of shading in patch space is that it allows
efficient rendering of distribution effects, which further closes the
gap between real-time and offline rendering.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors

Keywords: graphics hardware, pixel shading, tessellation, GPU

Links: DL PDF

1 Introduction

In today’s graphics processors and real-time applications, a large
portion of the computational resources and power budget is spent
on executing pixel shading on the programmable cores of the GPU.
For over twenty years, the prevailing method has been multisam-
pling antialiasing (MSAA) [Akeley 1993], where shading is in-
voked once per triangle and pixel. The cost of pixel shading is
therefore tightly coupled to both the geometric complexity and the
screen resolution, and it has been necessary to keep both low.

This is competing with the developers’ goals of providing a richer
visual environment. Tessellation is a tantalizing means to reach that
goal, as highly detailed geometry can be generated without having
to store and transfer huge polygonal meshes. However, tessella-
tion drastically increases the cost of pixel shading. There is also
a trend towards very high resolution displays in consumer devices,
motivated by the reduction of distracting aliasing. This further in-
creases the amount of shading work. For these reasons, rethinking
the way pixel shading works is necessary, in order to reach a higher
level of visual realism even on low power devices.

We propose a new hardware architecture that addresses these con-
cerns by making the pixel shading work largely independent of
the level of tessellation and screen resolution. Figure 1 shows an
example of the substantial savings possible. Following previous
work [Burns et al. 2010; Ragan-Kelley et al. 2011], we decouple
pixel shading from screen space; similar to Burns et al.’s method,
shading is lazily evaluated in a parametric space defined over each
high-level input primitive, e.g., coarse patch. This means shading is
efficiently reused between all the triangles in a patch. The shading
rate over a patch is in our system, however, not a priori determined,
but instead locally and automatically chosen based on the final tes-
sellated geometry. This avoids potential problems with under/over-
shading due to local curvature or displacement, and limits shading
reuse between triangles with widely differing orientations.

The second and perhaps most important feature of our architecture,
is that it allows lazy shading and reuse simultaneously at multi-

http://doi.acm.org/10.1145/2601097.2601214
http://portal.acm.org/ft_gateway.cfm?id=2601214&type=pdf

u

v

(0,0)

(1,1)

Figure 2: Left: shading requests are sent for the points (blue) on two triangles in a patch, which are being rasterized. Note that the size of
the screen-space footprints on the surface are different for these two points due to the orientation and curvature. Middle: one of the shading
points (blue) is visualized in the patch’s parametric (u, v)-space, and a shading quad of appropriate size is placed in its vicinity. Right: the
four points forming shading quads are shown on the triangles of the patch. Note that the shading points of a quad may map to other triangles.

ple different frequencies. The pixel shading operations can, for
example, be split into a low-frequency component that computes
approximate global illumination at a much lower rate than direct
lighting. None of the existing pixel shading methods support multi-
frequency shading. The overarching goal is to provide flexible con-
trol over the amount of pixel shading work, independently of the
geometry and display resolution. This allows an application to stay
within a given frame time or power budget, while maximizing im-
age quality. In summary, the main features of our architecture are:

. Pixel shading is lazily evaluated in patch-parametric space
and reused between triangles in a patch.

. The shading resolution is automatically adapted based on the
local geometry and user-defined/computed shading rates.

. Shaders can be partitioned into multiple different compo-
nents, which are shaded at different frequencies.

. The method integrates well into existing pipelines, and na-
tively supports motion/defocus blur.

The rest of this paper is organized as follows. First, we will briefly
discuss some related work. This is followed by a system overview
and detailed description in Section 3 and 4, respectively. Our simu-
lator, results, and conclusion are presented thereafter.

2 Related Work

With multisampling antialiasing (MSAA) [Akeley 1993] in current
GPUs, shading is evaluated once per pixel rather than at the individ-
ual visibility samples of each rasterized triangle. The result is writ-
ten to all covered samples within the current pixel (i.e., fragment)
and triangle. In practice, shading is executed at a larger granular-
ity, e.g., quads of 2⇥2 pixels. The total number of shader invoca-
tions thus depends on how many unique triangles overlap each such
screen-space region with at least one visible sample. The shading
cost rises dramatically when triangles become small due to tessel-
lation, or when they are smeared out by motion/defocus blur. This
is a fundamental problem of current screen-space shading methods.

Ragan-Kelley et al. [2011] suggest decoupled sampling of shading
and visibility, where shading is lazily evaluated over a per-triangle
shading grid in image space, and cached for reuse. Their method
elegantly reduces the amount of shading with stochastic rendering,
but it does not address tessellation and shading reuse between prim-
itives. Fatahalian et al. [2010] focus on the latter problem and re-
duce over-shading for small primitives by merging quad fragments
from adjacent primitives prior to shading. Their method operates in
screen space and thus does not allow varying shading rates, and it
was also not designed for stochastic rendering.

In traditional object-space shading methods, exemplified by the
Reyes architecture for offline rendering [Cook et al. 1987], shad-
ing is evaluated at the vertices of a finely tessellated micropoly-
gon mesh and interpolated over connected micropolygons. Since

the shading rate is tightly coupled to the geometric complexity, the
method does not provide the flexibility we seek. Burns et al. [2010]
add flexibility by shading on a uniform object-space grid, separate
from the micropolygon grid. The shading grid is shared within a
sub-patch in the split/dice tessellation stage. Its dimensions are
computed to yield approximately one shading point per pixel by
estimating the projected screen-space area of the sub-patch. The
main difference to our work is that we allow varying shading rates
across a patch, including multi-frequency evaluation.

The Razor ray tracing architecture [Stoll et al. 2006] similarly per-
forms on-demand shading of regularly spaced grids in object space,
which are chosen from a set of predefined power-of-two tessella-
tion grids. However, only modest gains are reported, as each such
grid that is needed by at least one ray is shaded. Gribel et al. [2011]
propose an object-space shading cache designed for high-quality
offline rendering of motion blur. Their solution stores a per-object
mipmap hierarchy of shading values, which is lazily populated dur-
ing rendering. This is similar to our work in that the shading rate is
locally and automatically adapted to the geometry.

Several authors note the importance of locally reducing the shading
rate, e.g., in the presence of blur [Liktor and Dachsbacher 2012;
Vaidyanathan et al. 2012]. These methods are orthogonal and com-
patible with our approach, and are encouraged if stochastic render-
ing is used. A further means to reduce the amount of shading work
is to defer shading until after visibility has been determined [Liktor
and Dachsbacher 2012; Clarberg et al. 2013]. The focus of these pa-
pers is on efficient shading with stochastic rasterization [Akenine-
Möller et al. 2007], while our primary goals are to reduce shading
also in traditional pipelines and to support multi-frequency shading.

Pixel shading at multiple different rates has not been widely ex-
plored in previous work. Current GPUs and graphics APIs support
both per-pixel (MSAA) and per-sample shading, but the two rates
are mutually exclusive. Hasselgren et al. [2007] took a step to-
wards multi-rate shading by executing culling computations over
tiles, prior to the pixel shader. Another strategy is to move compu-
tations to the vertex shader, which is tied to the geometry. Some
techniques for sparse evaluation and caching in offline rendering,
e.g., irradiance caching [Ward et al. 1988], can also be seen as
a type of dual-rate shading. Illumination interpolated from such
sparse representations is often combined with per-sample shading
of higher-frequency effects, such as direct illumination.

While our work is similar to many of the discussed systems [Stoll
et al. 2006; Burns et al. 2010; Ragan-Kelley et al. 2011; Gribel et al.
2011], the application domains differ; we primarily aim to evolve
the current real-time graphics pipeline, without breaking legacy ap-
plications. Our architecture is also the first to support pixel shading
at multiple different rates, unrestricted by the tessellation or visibil-
ity sampling rates, with broad reuse of shading across primitives.
In the following, we describe our approach in more detail.

Parallel

per-pixel

texture

MSAA

AO or GI

1/16th

Hierarchical

expensive

BRDF

(n.h)
s

shading rate

u

v

u

v

u

v

Figure 3: Two types of multi-frequency shading. Top: our ap-
proach can be used hierarchically, e.g., to inexpensively compute a
shading frequency that places more shading samples near the main
lobe(s) of a reflection model. Bottom: parallel evaluation is also
possible, where a texture and diffuse shading is evaluated per pixel,
while ambient occlusion (AO) or global illumination (GI) can be
computed at a much coarser granularity. The total amount of shad-
ing work may be substantially reduced in these examples.

3 Overview

In our system, pixel shading is executed in parametric patch space
rather than in screen space, as illustrated in Figure 2. While ras-
terizing each triangle in a tessellated patch, the rasterizer generates
shading requests. These are answered by defining a small, local
shading grid in patch (u, v)-space, over which shading is computed
and cached for reuse. The scale and placement of the local shad-
ing grids are automatically determined based on the local geome-
try and/or programmatic control. Note that the local shading grids
are not tied to the underlying tessellation, and may thus extend be-
yond the current triangle or over multiple triangles in a patch. In
smooth regions, the grids tend to be similar and shading is automat-
ically reused between triangles. Where there is faster change, the
local grids are more likely to differ in scale, which intuitively limits
shading reuse in difficult regions.

The main use case for our architecture is adaptive multi-frequency
shading (AMFS). Figure 3 shows two examples of this. The top ex-
ample shows how an inexpensive computation can be used to con-
trol the shading frequency of a more expensive lighting model, e.g.,
involving complex BRDFs or light scattering. In this case, more
shading samples are placed around the specular peak(s). The bot-
tom example shows how a shader can be run in parallel at multiple
(in this case two) different frequencies. The texture and diffuse
shading is executed at per-pixel rate, while slowly-changing func-
tions, such as indirect illumination, can be computed at a much
lower rate (e.g., one shading sample per 4 ⇥ 4 grid points). An-
other possibility is to vary the shading rate spatially to allow high-
definition shading centered around the viewing point [Guenter et al.
2012] (although they also reduce the visibility sampling rate).

When using our algorithm at a single fixed shading frequency (i.e.,
approximately once per pixel), we denote it A(MF)S to emphasize
that its multi-frequency (MF) capabilities are unused. Nevertheless,
shading is in both cases effectively reused between the triangles in a
patch, while the shading rate is adapted to the local geometry of the
displaced/curved surface. This is illustrated in Figure 4. Note that
the insertion/reuse of shading points happen automatically, without
relying on a fixed shading grid as in previous work.

Figure 5 shows an architectural overview of our pipeline. The top
row of units represent a traditional graphics processor supporting

level 2 (area 121.4 px) level 4 (area 7.6 px) level 6 (area 0.5px)

M
SA

A
co

st
A

(M
F)

S
co

st

1.30 exec/px (76%) 1.36 exec/px (34%) 1.92 exec/px (8.1%)

Figure 4: The BIGGUY scene at three levels of subdivision using
8 samples/pixel. Tessellation combined with displacement mapping
allows for generation of fine surface detail. However, the smaller
primitives are problematic in current GPUs using MSAA. Our algo-
rithm locally adapts the patch-space shading rate to provide good
image quality without significant over-shading. The middle column
represents our main design point, i.e., moderate tessellations with
5–20 pixels sized triangles, with ⇠3⇥ reduction in shading work
(values in parenthesis are costs relative MSAA).

current APIs, with the exception that pixel shading is now handled
by a shading engine operating in patch space. At a high level, the
shading engine is responsible for lazily evaluating and caching pixel
shading, which is computed over the small local shading grids on
the patch. Shading can thus be shared between, potentially, all the
triangles in a patch. This is in contrast to current pipelines, which
process triangles one-by-one and do not reuse pixel shading.

4 Adaptive Multi-Frequency Shading

We will now describe the details of the operations performed in the
shading engine. For the purpose of this exposition, assume a single
patch is in flight. This does not preclude an actual implementation
from being deeply pipelined to handle multiple patches in parallel.

4.1 Shading Requests

Current GPUs conceptually execute a pixel shader for each triangle
and covered sample, or group of samples within a pixel (i.e., frag-
ment) if multisampling antialiasing (MSAA) is enabled. In our sys-
tem, shading is instead computed by issuing shading requests to our
shading engine, which ultimately returns the color of the requested
sample or fragment. A shading request consists of the parametric
position u = (u, v) on the patch at which to shade, along with its
screen-space derivatives u

x

= @u/@x and u
y

= @u/@y.

The parametric coordinates u 2 [0, 1]

2 (and u+v  1 in case of
triangular patches) represent a contiguous parameterization of the
patch, which is key to enabling shading reuse. The derivatives de-
fine the extent and anisotropy of a screen-space pixel in patch space

VS HS Tessellator
(u,v)

DS

Tessellation Engine

Rasterizer

Displacement
maps etc.

Input patch

OM

(s,t)

Lookup

Cache

Interpolate

PS
w/ interpolated
triangle attribs

PS
[screen
space]

Shading Engine

Textures etc.

Programmable unit

Fixed-function unit

VS$ DS$

Figure 5: Overview of a modern graphics pipeline, augmented with our adaptive multi-frequency (AMFS) shading system. The tessellation
engine (in Direct3D 11 including hull (HS) and domain (DS) shader stages), takes a patch after vertex shading (VS) as input to generate a
set of tessellated triangles. The rasterizer operates on one triangle at a time, and generates barycentric coordinates for each covered sample
that passes a depth/stencil test (omitted). These are shaded and written to the render target(s) by the output merger (OM). We retain the
possibility of executing a screen-space pixel shader (PS). However, the bulk of the shading work is done in a new shading engine. Internally,
it first computes an appropriate small, local shading grid in patch space, and directly returns the shaded result if it is cached. Otherwise,
an interpolation unit performs a patch-to-triangle lookup and fetches the relevant domain-shaded vertices through a cache (DS$) to setup a
shading quad. This is shaded by the (patch-space) pixel shader, and the result is cached and returned.

(c.f., Figure 6). Informally, the two 2D axes, u
x

and u
y

, describe
the change in u when stepping one pixel in x and y, respectively.
The rasterizer analytically computes these values by transforming
the hit point on a rasterized triangle and its derivatives, from triangle
barycentric space to patch space. This is an affine 2⇥3 transform,
which is constant per triangle (see Appendix A). Thus, the oper-
ations associated with issuing a shading request can often be per-
formed in fixed-function hardware. However, we choose to retain
the notion of an (optional) pixel shader operating in screen space,
partly to support legacy applications, but also since certain opera-
tions benefit from knowing the exact screen-space position. Exam-
ples include frame buffer compositing, i.e., programmable blend-
ing, and read/write access to per-pixel data structures.

Our system makes it possible to implement multi-frequency shad-
ing by issuing several different shading requests, either in parallel
or hierarchically, to compute partial results at different frequencies.
For this purpose, we include a shader kernel identifier, k, in the
request. At each request, the issuing shader (screen-space or patch-
space) may also apply an arbitrary scaling and/or translation of the
shading point and its derivatives to locally adapt the shading den-
sity. In summary, the shading engine is formally responsible for
evaluating a function, f , expressed as shown below:

color = f(k,u, @u/@x, @u/@y). (1)

Also note that the screen-space shader (if used) runs at a rate of
either once per sample, or once per fragment if MSAA is enabled,
and thus issues shading requests at that rate.

4.2 Local Shading Grid Computation

The first step performed for each shading request is to compute an
appropriate local shading grid in patch space. This is done by the
unit labeled LOOKUP in Figure 5. Note that the “area” of a pixel
projected to patch space can be approximated as the area of the
parallelogram spanned by u

x

and u
y

:

A

pixel

⇡ |u
x

⇥ u
y

| = |u
x

v

y

� v

x

u

y

|. (2)

Based on this information, we divide the patch into a (local) axis-
aligned shading grid. In the canonical case, to reach a shading rate
of approximately once per pixel, a target resolution of r

u

⇥ r

v

grid

u

v

(0,0)

(1,1)

Apixeluy

ux

Abox

(a) (b)

Figure 6: We compute an axis-aligned target shading resolution
based on the bounds of the partial derivatives, u

x

and u
y

, scaled
to pixel area (red boxes). The ratio ↵ = A

box

/A

pixel

measures
the distortion between screen and patch space, which we take into
account to locally increase the shading rate. The most difficult case
is anisotropically stretched and rotated patches.

points is chosen so that the area of a grid cell is equal to A

pixel

. We
base this computation on the bounding box of u

x

and v
x

(with area
A

box

) in patch space. Note that the distortion due to the anisotropy
and orientation of a patch may cause the grid points to lie signif-
icantly outside the pixel. To reduce this effect, the grid resolution
is locally increased based on the ratio ↵ = A

box

/A

pixel

. These
concepts are illustrated in Figure 6, with details in Appendix B.

Figure 7 (a) shows the magnitudes of the screen-space derivatives,
|u

x

| and |u
y

|, for the scene in Figure 4 (middle). In (b), the value of
↵2 [1, 8] is shown. Note that ↵ is largest for patches rotated around
45 degrees and stretched due to perspective, i.e., near silhouettes,
as expected. The target shading rate using our method is shown
in (c), which is one shading point per pixel, except in a few difficult
regions. The corresponding target shading resolution (r

u

, r

v

) (here
in the range [0, 256]) is shown in (d).

In our system, pixel shading is executed and cached at the granu-
larity of a shading quad, i.e., 2 ⇥ 2 grid points, in order to support
shader derivatives through finite differences. This is standard prac-
tice, and multiple such shading quads may be buffered and shaded
together. If subsequent shading requests map to the same shad-
ing quad and the same grid resolution, the previously computed
results will be reused, as described below. It is thus important that
the number of unique grid resolutions is limited, as otherwise no
reuse would occur. We have chosen to quantize the grid resolution
(r

u

, r

v

) to power-of-twos independently along each dimension, to

(a) derivatives |u
x

|, |u
y

| (b) distortion ↵ (c) target rate (d) resolution r
u

, r
v

(e) quantized resolution (f) final shading rate

Figure 7: Our shading grid computation is based on (a) the screen-space derivatives, and (b) a measure of the distortion. This results in
(c) a target shading rate, and associated (d) patch-space shading resolution. The latter is in (e) quantized to power-of-twos (independently
along u and v), which gives the final shading rate shown in (f).

provide a discrete set of grid resolutions, but still to some extent
respect the aspect ratio of the target resolution. The final quantized
shading grid resolution is denoted n = (n

u

, n

v

) below.

Figure 7 (e) shows the values of n, which correspond to the final
shading rate in (f). The rate varies around once per pixel due to the
local geometry. Since the shading grid computation is performed
locally for each shading request, a patch may be shaded at different
rates in different regions, as shown in the figure. At each transition
in grid resolutions, some over-shading may occur. However, the
effect is limited compared to using a single per-patch rate [Burns
et al. 2010], which has to be conservatively chosen. This is a core
strength of our method, as it allows the shading rate to be automat-
ically adapted to fit the local displaced geometry.

So far we have looked at the canonical case of shading around once
per pixel. To vary this rate, the user can scale the input derivatives
that drive the computation. For example, using ⌘ (u

x

,u
y

) as argu-
ments in Equation 1, the system will shade approximately once per
⌘ ⇥ ⌘ pixels. Note that ⌘ does not have to be an integer, and that it
may be varied spatially and independently along the two axes.

4.3 Cache Queries and Filtering

In our architecture, shading is lazily executed and cached. We have
explored both nearest neighbor and bilinearly filtered lookups. In
the former case, a single cache query is performed and the result-
ing color is returned, while in the latter, four cache queries are is-
sued. Note that it would be possible to extend this mechanism to
higher-order filtering schemes. However, we have found that sim-
ple nearest-neighbor lookups often give sufficiently good results at
shading rates �1, while we use bilinear filtering for downsampled
shading. A more thorough investigation is necessary though.

To perform a cache query, the shading point u is placed at the near-
est grid point at the computed quantized grid resolution n, or at
the nearest four points if bilinear interpolation is used. For each
such quantized shading point, the index of the shading quad q that
it belongs to is first computed (through simple bit shifts), and then
a shading cache lookup is done using the key:

key = h(k, q,n), (3)

where h is an appropriately chosen hash function. The shading
cache is a memoization cache that operates similar to what Ragan-
Kelley et al. [2011] proposed for decoupled sampling. The main
difference lies in Equation 3, i.e., that we include the shader kernel
ID k, and the quantized grid resolution n, in the tag. Cache records
are, in our case, evicted from the shading cache only when a patch
is done or when the cache is full. Note that, similar to their work,
shading is not order dependent since a shading quad at any quan-
tized resolution always evaluates to the same result, independent of
which shading request triggered its (re-)execution.

interpolated
attributes?

(0,0)

(1,1)

(0,0)

(1,1)

(I) (II)

DS

(III)

DS

Figure 8: The position and other attributes of each vertex in a
tessellated patch is computed by executing a domain shader (DS).
Prior to pixel shading, each shading quad has to be filled in with
interpolated attributes at each of its shading points (one shown in
red). There are several options: (I) interpolate from the patch’s
corners, (II) re-execute the DS at the shading point to evaluate its
attributes based on the continuous surface, and the approach we
take, (III) interpolate between the already domain-shaded vertices.

4.4 Attribute Interpolation

Whenever a requested shading quad does not already exist in the
cache, it will be shaded. In this case, the system first performs at-
tribute interpolation, before the shading quad is put in the queue for
pixel shading. The interpolants are attributes output by the domain
shader, e.g., texture coordinates, normals, etc., which are fed to the
pixel shader as inputs. The associated operations are performed in
the INTERPOLATE unit in Figure 5.

In the traditional pipeline, attributes are interpolated in the plane of
each triangle using barycentric coordinates. Things are more com-
plicated in patch space, since a shading quad may overlap many
different triangles. Figure 8 illustrates a few different strategies. In-
terpolating from the patch corners (I) is rarely useful, as it does not
consider the shape of the patch. At the other end of the scale, one
can evaluate the underlying continuous surface (II). This involves
(re-)executing the domain shader (DS), or a subset of it, at each
shading point, which is costly. Another problem is the discrepancy
between the continuous surface and the rasterized triangulated sur-
face. At larger than subpixel-sized triangles this can be significant,
which causes problems with, e.g., shadow maps. Therefore, we opt
for interpolating attributes over the final triangulated patch (III),
which is further described below. This is both robust and efficient,
as it avoids extra DS invocations. However, note that the user may
still manually perform I or II in shader code.

The input to the interpolation unit is a quad with associated (u, v)

coordinates. The unit also gets information from the tessellator
about the currently used tessellation rates and scheme. To evalu-
ate the interpolants at a point u, we start by locating the triangle in
which the point falls. Then, barycentric interpolation between its
three vertices is performed. The task at hand is thus to perform a
mapping P : (u, v) ! (j, s, t), where j is the triangle-in-patch in-
dex and (1�s�t, s, t) are the barycentric coordinates in that triangle.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

16 32 64 128 256 �
Domain cache capacity (vertices)

Domain shading vs TessellaƟŽŶ order
Scanline Morton

Default Hilbert

R
e
la

ti
v

e
 d

o
m

a
in

 s
h

a
d

in
g

 c
o

s
t

16 32 64 128 256 �
Domain cache capacity (vertices)

Domain shading vs TessellaƟon rate (default order)
SubD11 (128 tris/patch)
Bigguy (512 tris/patch)
Bigguy (8k tris/patch)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Re
la

tiv
e

do
m

ai
n

sh
ad

in
g

co
st

Figure 9: Our algorithm accesses triangles in the vicinity of the currently rasterized triangle during patch-space pixel shading, and thus
benefits from a tessellation scheme with good spatial locality. This is not unique to AMFS, as a good triangle ordering also improves memory
coherency for texture/buffer accesses. Left: four different patterns were tested for the scene in Figure 4 (right), with the default (as generated
by OpenSubdiv) giving results close to the Morton and Hilbert space-filling curves. Note that scanline order causes cache thrashing when
an entire row does not fit, as expected. Right: three different tessellation levels were tested. Even at fine tessellations, e.g., 2⇥64 2

= 8k
triangles per patch, a moderately sized (64 vertices) domain shading cache works well (7.0–16.7% DS re-shading).

The attributes are then interpolated as follows:

a(u, v) =

[P]

(1�s�t)aj

0

+ saj

1

+ taj

2

, (4)

where aj

i

are the attributes of triangle j at the vertices i 2 {0, 1, 2}.
These are fetched from the domain shading cache (DS$), shown
in Figure 5, which operates in the same way as a traditional vertex
cache. We have simulated a DS$ that holds the N most recently
used domain vertices. The capacity N necessary for good reuse
depends on many factors, including the ordering of triangles within
the patch, its access patterns, and so on. Figure 9 presents an initial
analysis, where we find that a modest value of N = 64 vertices is
often sufficient, even at high tessellation rates. This is on par with
the capacity of vertex caches commonly used.

Triangle Lookup In its most general form, the lookup function P

can be implemented by traversing a 2D accelleration structure in
(u, v)-space, such as a grid or quad tree, which is built once per
rendered patch. While such a strategy always works, it is unnec-
cessarily costly if the tessellator and interpolation unit are properly
co-designed. We have looked at a few different cases.

With uniform tessellation, the triangle index j can – with knowl-
edge of the tessellator’s triangle output order and split diagonal
– trivially be found by quantizing u to the tessellation grid, and
inverting the space-filling curve along which triangles are output.
This can in most cases be done using simple bit operations. We
have implemented this for OpenSubdiv’s default output order-
ing with uniform tessellation. In Direct3D 11, both uniform and
non-uniform tessellation are relatively easily supported, although
the latter is slightly more involved. With the non-uniform pattern,
each patch edge has its own tessellation factor, resulting in an inte-
rior uniform region and a border with stitched triangles. The inte-
rior is trivial, and for the border, we can locate the relevant section
and do a few specialized 2D point-in-triangle tests.

Once the triangle j has been found, the point’s parametric coordi-
nates (u, v) are transformed to triangle barycentrics using the in-
verse of the affine transform in Equation 7 in Appendix A, at a cost
of 4 multiply-and-add (MADD) operations.

4.5 Pixel Shader Execution

In our prototype implementation, multi-frequency shading is ex-
posed through the function:

shade2D(k,m,u,dudx,dudy)

where k is the shader kernel, and m specifies the filtering mode.
This is analogous to the tex2Dgrad instruction for texture sam-

pling in HLSL. The above function may be executed from within
any screen- or patch-space shader kernel. Once a shader kernel
finishes execution, its results are stored in the shading cache and
returned to the caller.

The value of u and its derivatives are supplied to the issuing shader
as system-generated values, which may be modified to adapt the
shading rate (c.f., Section 4.2) before calling out. The kernel itself
uses an input/output declaration very similar to the pixel shader,
where the input may be any subset of the domain shader attributes.
These are automatically interpolated to the location u, as described
in Section 4.4. The input to the pixel shader unit (the bottom unit
labeled PS in Figure 5) is thus a shading quad with pre-interpolated
vertex attributes. Similar to previous work [Burns et al. 2010;
Ragan-Kelley et al. 2011], we use finite differencing over the lo-
cally regular shading grids to approximate shader derivatives, e.g.,
for texture filtering. These will in our case be expressed as patch-
space gradients, ddu, analogous to ddx/ddy in screen-space shad-
ing methods. Within a shader kernel, any texture filtering mode may
be used, e.g., anisotropic filtering.

To allow different shader kernels k to run simultaneously, we as-
sume bindless shader resources. Instead of relying on a fixed
set of resource bind slots for constant buffers, textures, samplers,
and so on, the shader kernel is self-contained and accesses its re-
sources through handles that refer to resource descriptors allocated
in graphics memory. This is a step away from current graphics
APIs, which run the same pixel shader for all geometry in a draw
call. However, a flexible bindless execution model is a logical next
step, as it has clear benefits also from a usability point of view.

4.6 Task Scheduling

A modern graphics processor has multiple physical shader cores,
each running a large number of logical threads (contexts), in order
to hide latencies due to memory stalls etc. The dedicated register
file is a finite resource that effectively limits the number of simul-
taneous threads. For good utilization, it must thus be ensured that
each execution core receives enough work to keep it busy. Con-
sequently, the hardware must be able to handle a large number of
simultaneous shading quads and use a good load balancing strategy
for work distribution. Also, mechanisms must be in place to handle
out-of-order retirement of shading quads, while ensuring a consis-
tent ordering of the frame buffer updates from frame to frame.

All these things also hold true for our system. However, whereas
the rasterizer is normally responsible for generating a steady stream
of shading quads, the majority of the shading work in our system is
generated at misses in the shading cache. Hence the total amount

j–1 j j+1

screen
space

patch
space

k2
low-freq

kernel

k1
mid-freq

kernel

T
ra

d
it

io
n
a
l

G
P

U
O

u
r

s
h
a
d
in

g
 e

n
g
in

e

k0
screen-space

shader

frame

buffer

access

triangle

Figure 10: Example of a task graph for multi-frequency shad-
ing, using both a screen-space pixel shader k

0

, and two different
patch-space shader kernels, k

1

and k

2

, respectively, where k

2

runs
at a lower frequency than k

1

. The traditional real-time graphics
pipeline implements the lower half of the graph, i.e., screen-space
shading, while we add patch-space shading (upper half).

of work is expected to be smaller than before, although the shading
quads are generated in a more unpredictable fashion. Our archi-
tecture also supports hierarchical multi-frequency shading, which
introduces dependencies between the shading quads.

Task Scheduling To handle this more difficult scheduling prob-
lem, we suggest a distributed task-based scheduling system. Each
execution of a shader kernel for a particular shading quad is a task.
Whenever a kernel issues a shading request that cannot be immedi-
ately answered, a new task is generated. In this case, the original
kernel has a dependency on the newly added task to finish before it
can proceed. Figure 10 shows an example of a possible task graph,
with arrows depicting dependencies between tasks. To demonstrate
that distributed scheduling is a viable strategy, we present results of
scheduling simulations in Section 6.3.

The simulated architecture is specified by a number of execution
cores, a fixed number of execution contexts, and a memory hierar-
chy statistically modeled by cache hit-ratios and latencies. Simula-
tion of execution is performed cycle-by-cycle, taking into account
memory stalls due to texture fetches. Memory accesses are assumed
to occur with even probability throughout the execution of a task.
Our architecture also adds the possibility to stall on other shading
tasks. The main limiting factor can then be the number of stalled
tasks waiting for other shading work to finish, since these consume
valuable register space. It is important that tasks with many depen-
dents finish early, and are given a high priority by the scheduling
algorithm. When multiple tasks are ready for execution, i.e., they
have no outstanding dependencies and have acquired contexts, they
are thus first prioritized on the number of dependents, and thereafter
according to an oldest job first policy.

While stalled, tasks still occupy contexts, which are returned only
on task completion. To guarantee forward progress, we assume
a preemption free architecture with a deadlock avoidance mecha-
nism. By swapping out (spilling) execution contexts to RAM if
available contexts are exhausted, new tasks can be launched. An-
other way is to use some variant of Banker’s algorithm to partition
available contexts to different shader kernel recursion depths (en-
forcing a hard upper limit). In the simplest case, one wants to ensure
at least one free context per level of recursion. While such cases can
indeed arise, none of our simulations required deadlock avoidance.
Note that the user is in either case responsible for avoiding cyclic
recursion. In the worst case, existing timeout mechanisms may have
to interrupt and kill a faulty application.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1024 2048 4096 8192 16384 32768 �
Cache capacity (bytes)

Shading cache capacity

AMFS AMFS+SR A(MF)S A(MF)S+SR

Re
la

tiv
e

sh
ad

in
g

co
st

Figure 11: Executing shading at a single frequency, A(MF)S is very
insensitive to cache capacity for static images. At multiple frequen-
cies (AMFS), a larger cache is required for full reuse. Stochas-
tic rendering (SR) has a different access pattern and is slightly
more cache-demanding. We find that a 16 kB cache is usually suffi-
cient for both non-stochastic and blurry rendering. For the simpler
A(MF)S case, even a meager 512 bytes is sufficient. The DRAGON
scene was used for these measurements, with 20⇥20 pixels defocus
blur added to simulate the impact of SR.

5 Implementation

For the evaluation of our architecture, we have implemented a soft-
ware simulator of the graphics pipeline in Figure 5. The simula-
tor exposes a stateless rendering API, and runs C++ shaders us-
ing SIMD instructions through an abstraction similar to Microsoft’s
HLSL shading language. Internally, we build on OpenSubdiv for
Catmull-Clark subdivision [Catmull and Clark 1978; Nießner et al.
2012], and OpenImageIO for texture sampling and image I/O.
These are commonly used libraries for these tasks. Our simulator
can also load data exported from the standard Direct3D 11 pipeline,
including hardware tessellation.

The simulator is internally multi-threaded, but fine-grained task
scheduling of the shading work is evaluated in a separate, cycle-
based simulator. The rasterizer and shader execution is currently
implemented with 8-wide SIMD instructions using the Intel AVX
instruction set, and we thus shade up to two quads together. The
system includes both a traditional hierarchical 2D rasterizer to
simulate current graphics processors, and a stochastic 5D raster-
izer [Akenine-Möller et al. 2007] for motion/defocus blur.

6 Results

In this section, we present results for several different important
use cases. Our method is compared against quad-fragment merging
(QFM) [Fatahalian et al. 2010], decoupled sampling (JRK) [Ragan-
Kelley et al. 2011], and lazy object-space shading (LOS) [Burns
et al. 2010]. Although we support a wider range of use cases, e.g.,
multi-frequency shading and adaptively chosen shading rates, these
methods share the same goal of reducing the amount of pixel shad-
ing work in real-time graphics pipelines.

We use a shading cache with capacity for 512 entries, motivated by
Figure 11. Using 16-bit half-float RGBA output, which is common
today, our cache is backed by 16 kB of fast on-chip memory. The
same size was used for JRK’s shading memoization cache. We note
that tessellation generally improves locality, as shading requests oc-
cur in the vicinity of each small triangle in shading space as they
are rasterized. While multi-frequency shading increases the capac-
ity requirements, the added shading components are usually evalu-
ated at lower frequencies and thus do not occupy as many shading
quads. For the QFM algorithm, we follow the authors’ recommen-
dation of using a 32-entry merge buffer, but to save memory we

Im
ag

e
C

os
t

Er
ro

r⇥
2
0

MSAA MSAA upscale QFM LOS A(MF)S
SSIM: 98.4% SSIM: 85.9% SSIM: 98.3% SSIM: 98.2% SSIM: 97.7%

Relative cost: 100% Relative cost: 47.1% Relative cost: 43.9% Relative cost: 42.4% Relative cost: 36.2%

Figure 12: Cost and quality for the GIRL scene. This scene contains many high-frequency materials, and the patch-space shading methods
LOS and A(MF)S exhibit some slight, but visible, blurring. For completeness, an upscaled half-resolution MSAA rendering is also shown,
exhibiting a significant loss of quality, while still being more expensive. This is a commonly used method for shading reduction today.

store barycentric coordinates instead of pre-interpolated vertex at-
tributes in each quad fragment. This results in a storage requirement
of around 14 kB, comparable to the size of our shading cache. For
LOS, we have chosen not to limit its memory usage.

To demonstrate realistic results using subdivision surfaces [Cat-
mull and Clark 1978], we include two scenes (GIRL and DRAGON)
based on assets from the Sintel short film. The geometry and
shading networks were exported from the open-source 3D software
Blender, and played back in our simulator. We also show one exam-
ple (SUBD11) of an animated scene using Direct3D 11 tessellation
of bicubic Bézier patches. This scene contains both non-tessellated
geometry and quadrilateral patches. We also include two simple
test scenes, BIGGUY and WOOD, in order to illustrate varying tes-
sellation levels and distribution effects.

6.1 A(MF)S: Per-Pixel Shading

Shading Rates We start by looking at the common use case of
shading approximately once per pixel, and compare our architec-
ture against traditional MSAA [Akeley 1993] used in today’s GPUs.
At increasing tessellation levels, the benefits of MSAA are quickly
lost as shading is not reused between primitives. In contrast, our
technique scales very well and provides nearly constant shading
rates irrespective of the geometric detail. Figure 4 shows BIGGUY
with textured displacement mapping at various level of subdivision.
It is clear that MSAA is not particularly efficient at finer tessella-
tions. For example, at subdivision level 4, MSAA performs about
3⇥ as many computations as our algorithm, A(MF)S. This factor
increases to about 12⇥ at level 6.

Figure 12 shows a more realistic case (GIRL), where the shading
cost in terms of number of executed shader instructions is compared
against our baseline of MSAA for each algorithm. As a simple ap-
proach to reducing shading, we also include an image rendered at
half resolution and bilinearly upscaled. This is a common technique
in today’s game engines, despite the significant loss of image qual-
ity (see Figure 15 for another example). The QFM and LOS archi-
tectures neatly address the problem of reducing shading, and reach
close to the same low cost as our algorithm without multi-frequency
shading – A(MF)S. However, those methods only support a subset

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180 200

ex
ec
/p
ix
el

frame

SubD11: Shading cost, no

MSAA QFM LOS A(MF)S AMFS

Figure 13: The average #pixel shader executions per pixel (lower
is better) throughout the SUBD11 animation, which was rendered
using standard rasterization. Our algorithm A(MF)S, shading once
per pixel, consistently outperforms the others. By further enabling
multi-frequency shading, AMFS, the cost is drastically reduced.

of the flexibility of our architecture, as we will see below. Note that
we did not include JRK here, as its cost and quality are identical to
MSAA for non-stochastic rendering, since each shading sample is
mapped to a static pixel-sized and pixel-aligned shading grid.

Figure 13 shows that the shading costs using our algorithms are
temporally stable, and consistently lower than the competing al-
gorithms. The measurement was done by rendering the SUBD11
animation (of which one frame is shown in Figure 18) unmodified
from the Direct3D SDK, using uniform tessellation to an average
triangle area of 17.6 pixels over time.

Image Quality The different methods give rise to errors with dif-
ferent characteristics, although it should be noted that it is difficult
to define a true reference. Even super-sampled shading is still only
a sampled representation of the continuous surfaces, and relies on
the usual approximations in texture filtering. To give an indication
of the visual quality, we have computed the structural similarity in-
dex (SSIM) [Wang et al. 2004] of each rendered image, compared
to a very densely sampled reference. See Figure 12, 14, and 18.

Im
ag

e
AMFS

reference

AMFS

reference

AMFS

reference

C
os

t

MSAA QFM LOS A(MF)S AMFS
SSIM: 99.92% SSIM: 99.91% SSIM: 99.93% SSIM: 99.84% SSIM: 99.83%

Relative cost: 100% Relative cost: 33.3% Relative cost: 36.6% Relative cost: 26.9% Relative cost: 7.0%

Figure 14: Cost and quality evaluation for DRAGON. Costs are measured in number of scalar instructions and texture lookups, and errors
against a high-quality super-sampled reference. MSAA suffers from inefficient shading due to many small triangles. QFM reduces most of the
inefficiencies of MSAA, but is slightly hindered by the limited capacity of the merge buffer. LOS over-shades highly curved patches in order to
maintain image quality at the lowest-frequency locations, while our algorithm, A(MF)S, locally selects a suitable shading frequency even in
highly curved regions. Mainly due to its insensitivity to cache capacity, the overall shading cost of A(MF)S is lower than QFM. By leveraging
our capability of splitting shader computations into several frequencies, the overall cost of AMFS is significantly lower than all the compared
algorithms. Qualitywise, all algorithms perform very well, with SSIM scores above 99.8%.

The screen-space shading methods (MSAA and QFM) may have an
undue benefit here, as both the reference and those methods were
computed using the 1⇥1-pixel box filter of many current GPUs. For
patch-space shading (LOS and our methods), the shading samples
are not pixel-aligned, and better resolve filters are motivated.

MSAA generally suffers from extrapolation artifacts when the
shading point (i.e., pixel center) lies outside the primitive. This may
show as stray pixels with a distracting color or intensity. The prob-
lem is partially alleviated by centroid sampling, although that may
introduce other errors due to inaccurate derivatives. QFM heuris-
tically merges shading requests from adjacent primitives, and may
thus introduce unexpected visual differences, although in practice,
its quality is often close to that of MSAA. LOS gives results similar
to ours, but their selection of a single per-patch shading rate calls
for a more conservative choice of grid resolution. The shading may
thus be locally slightly sharper (c.f., Figure 16). It should be noted
that we had difficulties controlling their shading rate, as estimat-
ing it solely based on the patch corners often fails to produce good
results. We thus apply their heuristic over a 5⇥5 grid per patch.

6.2 Multi-Frequency Shading

None of the compared methods support multi-frequency shading,
which is a strong argument for our algorithm. The overarching goal
is to compute low-frequency components of the pixel shading at a
rate much lower than once per pixel, in order to drastically reduce
the total shading cost at only an insignificant loss in image quality.

Figure 14 shows an example of multi-frequency shading using high-
quality assets. In this example, the shading networks were parti-
tioned into two or three components, to be shaded at rates of ap-
proximately once per pixel, 0.52/px, and 0.25

2

/px, respectively.

MSAA upscale AMFS (a) AMFS (b)
(1.85 exec/px) (1.47 exec/px) (1.07 exec/px)

Figure 15: Small crop of SUBD11, rendered at 1920⇥1080 pixels
resolution. Left: MSAA at half resolution and bicubic upscaled for
display, yielding an effective cost of 1.85 shader executions/pixel.
Center: AMFS at full resolution, but shading once per 2⇥2 pixels
on average. Right: AMFS, computing surface color once per pixel
on average, but lighting only once per 4⇥4 pixels on average.

This was done manually, but with help of an automated statisti-
cal analysis of the mean and standard deviation of each partial re-
sult in the shading networks created by artists. In this scene, the
low frequency shading was bilinearly filtered to avoid banding and
includes, e.g., diffuse lighting, dim specular lighting, and diffuse
color for smooth materials. The average cost/pixel in terms of num-
ber of shader instructions is reported. In this case, the total cost is
only around 7.0% of that of MSAA, without introducing any per-
ceivable differences in image quality at normal viewing distances.

Figure 15 shows another example, using two different strategies:
uniform downsampling to 0.5

2/px, or computing the lighting only
at an agressively low rate of 0.252 per pixel, on average. The latter
approach was used also for the rightmost example in Figure 18.

Reference MSAA LOS A(MF)S

Figure 16: Crops from SUBD11. MSAA and QFM shade in screen
space and tend to produce extrapolation artifacts at object silhou-
ettes (QFM is very close to MSAA, so omitted). LOS and A(MF)S
operate in patch space and do not suffer from this problem. How-
ever, object-space methods can sometimes blur texture detail (c.f.,
bottom row) due to the misalignment of the shading and pixel grids.

Although there are clear differences, the visual result is very useful
considering its low cost. A game engine may, for example, use
the shading rate as very simple and effective performance knob, in
order to guarantee a constant frame rate. The accompanying video
shows that the shading is also temporally stable.

6.3 Scheduling Simulations

To get an indication of the expected performance of a hardware im-
plementation, we have performed scheduling simulations based on
execution traces from our scenes. GPUs commonly have several
levels in the texture cache hierarchy to reduce the average access
time [Doggett 2012]. Coherent accesses associated with, e.g., tri-
linear mipmapping and anisotropic filtering, are particularly cache
friendly. We simulate texture accesses using a statistical model with
two levels of cache, backed by RAM, thus stalling the issuing thread
for a varying amount of time. Texture fetches are here modeled with
a hit-ratio/latency of 95%/10 cycles for L1, and 90%/100 cycles
for L2, while RAM latency is 1,000 cycles.

Our simulated device has 48 cores, each executing one shading
quad at a time in 4-wide SIMD. The more thread contexts that can
execute per core, the less likely the cores are to stall due to mem-
ory latencies. Figure 17 shows simulated machine utilization and
relative execution times for rendering the DRAGON scene with var-
ious numbers of thread contexts. Dependencies and memory stalls
clearly impact the shorter shading tasks of the multi-frequency
workload (AMFS) the most, requiring more contexts to reach a high
utilization. Without dependencies, simply having twice the amount
of contexts compared to cores is enough to reach 100% utilization
for the other workloads. However, as expected, even at a moderate
amount of thread contexts per core, AMFS clearly outperforms not
only MSAA, but also A(MF)S, despite a relatively low utilization.

Energy efficiency is one of the most important design criteria for
current and future graphics processors. As such, despite a lower
shader core utilization, the much shorter total run times of our shad-
ing architecture should make it a substantially more energy-efficient
alternative than previous methods. It should be noted that there are

0%

20%

40%

60%

80%

100%

48 96 192 288 384

U
til

iz
at

io
n

(li
ne

s)

Thread contexts

Re
la

tiv
e

ex
ec

ut
io

n
tim

e
(b

ar
s) MSAA A(MF)S AMFS

Figure 17: Utilization (lines) and relative execution times (bars)
of our algorithms compared to MSAA, as a function of number of
thread contexts. Most importantly, our techniques significantly re-
duce the total execution times, even at lower utilizations.

additional hardware costs associated with thread launch, schedul-
ing, etc. However, there are also some positive effects not currently
simulated, e.g., shading at lower frequencies means accessing tex-
tures at higher mipmap levels with better texture cache utilization
and lower memory bandwidth as a result.

6.4 Distribution Effects

An important benefit of shading in a parametric space tied to the
geometry, is that distribution effects such as motion and defocus
blur can be much more efficiently rendered using stochastic raster-
ization [Akenine-Möller et al. 2007]. Several authors have noted
the inefficiency of shading in screen space [McGuire et al. 2010;
Munkberg et al. 2011] when blur is added. The problem is ampli-
fied when both tessellation and stochastic rendering is used. Decou-
pled sampling (JRK) partially addresses the problem by shading in
parametric space over each triangle. Our architecture has the addi-
tional benefit, similar to LOS, that it supports the combination of
tessellation and stochastic rendering efficiently. Note that neither
MSAA nor QFM were designed for distribution effects. However,
we do include them in the comparison for completeness, and note
that QFM does provide a small improvement over MSAA.

Figure 18 shows a comparison using both defocus and motion blur,
where our algorithm provides for the lowest shading rates, both for
static and stochastic rendering. Figure 19 shows a case of motion
blur only. In the top row, it is clear that LOS suffers from its sin-
gle per-patch shading rate, as it is locally over-shading along the
silhouettes of the displaced surface. The same effect is present
with blur. Note that both JRK and our algorithm can addition-
ally be used together with per-triangle adaptive anisotropic shad-
ing (AAS) [Vaidyanathan et al. 2012] to further reduce the cost in
the presence of blur, but our algorithm retains its relative advan-
tage. For the LOS method, AAS would have to be implemented per
patch, instead of per triangle, which is less effective.

7 Limitations and Future Work

We have presented a flexible architecture for pixel shading that sup-
ports a wide range of uses. However, there are many areas worthy
of further investigation. First, it would be important to study the
interaction between the screen-space pixel grid and the (unaligned)
patch-space shading grids. This is a sampling and reconstruction
problem, for which the current simple MSAA box reconstruction
filter is unsuitable. We expect that much of the over-blurring com-
pared to screen-space shading methods can be removed (c.f., Fig-
ure 16 for examples).

Second, shading is currently not reused between adjacent patches or
over triangle meshes. Several options exist, although they may add
significant complexity. A parameterization that extends beyond sin-

Static MSAA (100%) QFM (54.1%) JRK (100%) LOS+MSAA (61.4%) A(MF)S (48.0%) AMFS (19.7%)
SSIM: 99.58% SSIM: 99.56% SSIM: 99.61% SSIM: 99.62% SSIM: 99.45% SSIM: 96.92%

Motion & defocus MSAA (100%) QFM (86.5%) JRK (19.1%) LOS (23.8%) A(MF)S (10.6%) AMFS (3.9%)

Figure 18: The SUBD11 scene using Direct3D 11 tessellation to 128 triangles/patch, rendered at 16 spp without blur (top) and with
motion/defocus blur (bottom). The heat maps show the average number of pixel shader executions in the range [0,16]. MSAA and QFM were
not designed to handle blur and largely fails to reduce shading. Given this, it is intriguing to see that QFM still manages to reduce shading a
bit. Decoupled sampling (JRK) operates in a stationary shading space, but it does not share shading between primitives. LOS, as well as our
method, reuse shading within patches. Our A(MF)S algorithm, shading approximately once per pixel, achieves lower rates due to its adaptive
shading grid computation, and scales very well with blur. We also include an example of multi-frequency shading (AMFS) on the right.

gle patches or triangles is required, e.g., geometry images [Gu et al.
2002] or Ptex [Burley and Lacewell 2008]. If interpolation of per-
vertex attributes is necessary, which it most often is, the hardware
must be able to compute the mapping P (Section 4.4) based on the
mesh connectivity and parametric location of patches/triangles. The
geometry processing of the pipeline must also be more dynamic.
There is currently no guarantee that an adjacent patch will reside in
memory when shading is requested, so the geometry pipeline would
have to be able to compute the tessellation on the fly.

As a next step, it would also be interesting to study methods for
automatic decomposition of shaders into multi-frequency parts, in
order to help developers make the best use of our system. The prob-
lem is related to shader simplification [Pellacini 2005; Sitthi-Amorn
et al. 2011], which makes us optimistic that good solutions exist.

8 Conclusion

To reach a higher visual fidelity, while staying within the power en-
velope of modern graphics devices, it is critical to reduce the cost of
pixel shading. We achieve this goal by shading in parametric patch
space, thereby largely decoupling the cost of pixel shading from the
geometric complexity. This allows developers to add fine geomet-
ric detail where needed, without severely increasing the number of
pixel shader executions. Our architecture also brings the possibility
to locally or globally reduce the shading rates for computations that
can be performed at lower frequencies than once per pixel or sam-
ple. This flexibility allows a smooth degradation of image quality
at increased performance, something that is very desirable in order
to keep a constant frame rate in real-time applications.

In conclusion, by reducing the cost of pixel shading with advanced
rendering techniques such as subdivision surfaces and/or stochastic
rasterization, we hope to significantly narrow the quality gap be-
tween offline rendering and real-time graphics. We envision that
future hardware support for these features, in combination with a
powerful system for shading reuse such as ours, will also help bring
down the cost of content development. This is a crucial limiting
factor in game studios today. Admittedly, we have only explored
a few possible use cases, but in the hands of smart developers, the
flexibility of AMFS would be a powerful tool.

Static JRK (100%) LOS (57%) A(MF)S (38%)

Motion blur JRK (16%) LOS (10%) A(MF)S (9%)

Figure 19: A simple tessellated and displaced object (WOOD) with
12.0 pixels average triangle area, rendered with and without motion
blur at 16 samples/pixel. The heat maps show the average number
of pixel shader executions in the range [0,16].

Acknowledgements

We thank Tom Piazza, David Blythe, and Charles Lingle for sup-
porting this work, the anonymous reviewers for their valuable
feedback, and the rest of Intel’s Advanced Rendering Technology
(ART) team. Jacob Munkberg also helped with video editing. The
GIRL and DRAGON scenes are based on the Sintel short film by the
Blender Foundation, for which we are very grateful. The SUBD
and WOOD scenes use assets from the Microsoft DirectX SDK
(June 2010), and BIGGUY was created by Bay Raitt. Tomas is a
Royal Swedish Academy of Sciences Research Fellow supported
by a grant from the Knut and Alice Wallenberg Foundation.

References
AKELEY, K. 1993. RealityEngine Graphics. In Proceedings of

SIGGRAPH 93, ACM, 109–116.
AKENINE-MÖLLER, T., MUNKBERG, J., AND HASSELGREN, J.

2007. Stochastic Rasterization using Time-Continuous Trian-
gles. In Graphics Hardware, 7–16.

BURLEY, B., AND LACEWELL, D. 2008. Ptex: Per-Face Texture
Mapping for Production Rendering. In Eurographics Symposium
on Rendering, 1155–1164.

BURNS, C. A., FATAHALIAN, K., AND MARK, W. R. 2010. A
Lazy Object-Space Shading Architecture with Decoupled Sam-
pling. In High Performance Graphics, 19–28.

CATMULL, E., AND CLARK, J. 1978. Recursively Generated B-
Spline Surfaces on Arbitrary Topological Meshes. Computer-
Aided Design, 10, 6, 350–355.

CLARBERG, P., TOTH, R., AND MUNKBERG, J. 2013. A Sort-
Based Deferred Shading Architecture for Decoupled Sampling.
ACM Transactions on Graphics, 32, 4, 141:1–141:10.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
Reyes Image Rendering Architecture. In Computer Graphics
(Proceedings of SIGGRAPH 87), ACM, vol. 21, 95–102.

DOGGETT, M. 2012. Texture Caches. IEEE Micro, 32, 3, 136–141.
FATAHALIAN, K., BOULOS, S., HEGARTY, J., AKELEY, K.,

MARK, W. R., MORETON, H., AND HANRAHAN, P. 2010. Re-
ducing Shading on GPUs using Quad-Fragment Merging. ACM
Transactions on Graphics, 29, 4, 67:1–67:8.

GRIBEL, C. J., BARRINGER, R., AND AKENINE-MÖLLER, T.
2011. High-Quality Spatio-Temporal Rendering using Semi-
Analytical Visibility. ACM Transactions on Graphics, 30, 4,
54:1–54:12.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry Im-
ages. In Proceedings of SIGGRAPH 2002, ACM, 355–361.

GUENTER, B., FINCH, M., DRUCKER, S., TAN, D., AND SNY-
DER, J. 2012. Foveated 3D Graphics. ACM Transactions on
Graphics, 31, 6, 164:1–164:10.

HASSELGREN, J., AND AKENINE-MÖLLER, T. 2007. PCU: The
Programmable Culling Unit. ACM Transactions on Graphics,
26, 3, 92:1–92:10.

HECKBERT, P. S., AND MORETON, H. P. 1991. Interpolation for
Polygon Texture Mapping and Shading. In State of the Art in
Computer Graphics: Visualization and Modeling, 101–111.

LIKTOR, G., AND DACHSBACHER, C. 2012. Decoupled Deferred
Shading for Hardware Rasterization. In Symposium on Interac-
tive 3D Graphics and Games, 143–150.

MCGUIRE, M., ENDERTON, E., SHIRLEY, P., AND LUEBKE, D.
2010. Real-Time Stochastic Rasterization on Conventional GPU
Architectures. In High Performance Graphics, 173–182.

MUNKBERG, J., CLARBERG, P., HASSELGREN, J., TOTH, R.,
SUGIHARA, M., AND AKENINE-MÖLLER, T. 2011. Hierarchi-
cal Stochastic Motion Blur Rasterization. In High Performance
Graphics, 107–118.

NIESSNER, M., LOOP, C., MEYER, M., AND DEROSE, T. 2012.
Feature-Adaptive GPU Rendering of Catmull-Clark Subdivision
Surfaces. ACM Transactions on Graphics, 31, 1, 6:1–6:11.

PELLACINI, F. 2005. User-Configurable Automatic Shader Sim-
plification. ACM Transactions on Graphics, 24, 3, 445–452.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled Sampling for Graphics
Pipelines. ACM Transactions on Graphics, 30, 3, 17:1–17:17.

SITTHI-AMORN, P., MODLY, N., WEIMER, W., AND
LAWRENCE, J. 2011. Genetic Programming for Shader
Simplification. ACM Transactions on Graphics, 30, 6,
152:1–152:12.

STOLL, G., MARK, W. R., DJEU, P., WANG, R., AND ELHAS-
SAN, I. 2006. Razor: An Architecture for Dynamic Multires-
olution Ray Tracing. Tech. Rep. TR-06-21, Dept. of Computer
Science, University of Texas at Austin.

VAIDYANATHAN, K., TOTH, R., SALVI, M., BOULOS, S., AND
LEFOHN, A. 2012. Adaptive Image Space Shading for Motion
and Defocus Blur. In High Performance Graphics, 13–21.

WANG, Z., BOVIK, A., SHEIKH, H., AND SIMONCELLI, E. 2004.
Image Quality Assessment: from Error Visibility to Structural
Similarity. IEEE Transactions on Image Proc., 13, 4, 600–612.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A
Ray Tracing Solution for Diffuse Interreflection. In Computer
Graphics (Proceedings of SIGGRAPH 88), ACM, 85–92.

A Parametric Patch Space

For each shading request, the patch-parametric coordinates u =

(u, v) and their screen-space derivatives are computed analyti-
cally. Let (1�s�t, s, t) be barycentric coordinates on a triangle.
Perspective-correct interpolation of s = (s, t) at a screen-space po-
sition (x, y) is expressed as [Heckbert and Moreton 1991]:

s(x, y) =
s
w

(x, y)

1

w

(x, y)

=

asx+ bsy + cs

a

1

x+ b

1

y + c

1

, (5)

where the interpolation coefficients (a
i

, b

i

, c

i

) are constant over the
triangle and are computed in the setup (for non-stochastic rasteri-
zation). The partial derivatives of s with respect to screen-space
position follows from differentiation of Equation 5:

s
x

=

@s
@x

(x, y) = . . . = (as � a

1

s(x, y))w(x, y), (6)

with a similar expression for s
y

, and using w = 1/

1

w

. Note that
the rasterizer already computes the hit point s (and hence w), so
the added cost is one MADD operation per partial derivative (four
in total). Given the patch-parametric coordinates (i.e., the domain
points) of the current triangle’s vertices, u

0

, u
1

, and u
2

, the trans-
form from triangle to patch space is an affine 2⇥3 matrix:

M =


u

1

�u

0

u

2

�u

0

u

0

v

1

�v

0

v

2

�v

0

v

0

�
, (7)

where the shading point is transformed as u = M · (s, 1)T , and the
derivatives are transformed as vectors, e.g., u

x

= M · (s
x

, 0)

T .
In the general case, these three transforms carry a total cost of
12 MADDs. For certain tessellation schemes, e.g., uniform tes-
sellation, faster special cases may be implemented. When stochas-
tic rasterization is used, the triangle vertices are functions of the
time/lens position. In this case, we choose to compute exact deriva-
tives at each sample’s location in 5D space.

B Shading Grid Resolution

First, the AABB of the parallelogram spanned by u
x

and u
y

in
parametric space is computed, which has extents b = (b

u

, b

v

) =

max(0,u
x

,u
y

,u
x

+u
y

)�min(0,u
x

,u
y

,u
x

+u
y

), and area A
box

=

b

u

b

v

. Based on this, an (unquantized) target grid resolution of r =

(r

u

, r

v

) grid points is found as:

r =

p
c↵ (1/b

u

, 1/b

v

) , where ↵ = A

box

/A

pixel

. (8)

Note that a correction factor c is included to locally increase the
grid resolution for difficult cases. With c = 1, each of the r

u

⇥ r

v

grid cells would have an area exactly equal to A

pixel

(i.e., pixel
rate shading). Heuristically, we define c = min(max(↵/2, 1), N),
where N is the multisampling rate. The rationale is that correction
is only applied when the distortion is above some threshold, ↵>2,
while being limited to not shade more often than the visibility rate.
Finally, (r

u

, r

v

) is quantized by rounding each dimension up/down
to its nearest power-of-twos, and selecting the combination n =

(n

u

, n

v

) that yields an area as close to 1/r

u

r

v

as possible.

