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Abstract

Edge aliasing continues to be one of the most prominent problems
in real-time graphics, e.g., in games. We present a novel algorithm
that uses shared memory between the GPU and the CPU so that
these two units can work in concert to solve the edge aliasing prob-
lem rapidly. Our system renders the scene as usual on the GPU with
one sample per pixel. At the same time, our novel edge aliasing al-
gorithm is executed asynchronously on the CPU. First, a sparse set
of important pixels is created. This set may include pixels with
geometric silhouette edges, discontinuities in the frame buffer, and
pixels/polygons under user-guided artistic control. After that, the
CPU runs our sparse rasterizer and fragment shader, which is par-
allel and SIMD:ified, and directly accesses shared resources (e.g.,
render targets created by the GPU). Our system can render a scene
with shadow mapping with adaptive anti-aliasing with 16 samples
per important pixel faster than the GPU with 8 samples per pixel
using multi-sampling anti-aliasing. Since our system consists of an
extensive code base, it will be released to the public for exploration
and usage.

CR Categories: I.3.3 [Picture/Image Generation]: Antialiasing;
I.3.7 [Three-Dimensional Graphics and Realism]: Color, shading,
shadowing, and texture;
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1 Introduction

Geometric aliasing is still one of the major challenges in real-time
rendering, as noted by Andersson [2012] among others. Supersam-
pling anti-aliasing (SSAA) is expensive both in terms of memory
bandwidth usage, and in terms of fragment shading since each vis-
ibility sample is shaded individually. Multi-sampling anti-aliasing
(MSAA) is less expensive, since the fragment shader is only ex-
ecuted once per pixel per primitive even though there are more
visibility samples. Still, this incurs a lot of overhead in terms of
rasterization, color & depth buffer memory bandwidth, and shad-
ing usually increases along triangle edges (see Section 2 for more
information about this). At the same time, we note that many desk-
tops and laptops have four or more CPU cores, and often, only a
fraction of them are active during game play. A major goal of our
research has been to develop an adaptive anti-aliasing (AA) algo-
rithm where the CPU cores and GPU cores join forces to solve this
problem using a shared memory architecture.
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Figure 1: Our system generates high-quality edge anti-aliasing.
Two render targets are rendered (top) with one sample per pixel
(spp)—a shadow map and a rendering of the scene using the
shadow map. In addition, our algorithm generate edges (bottom)
and perform sparse rasterization, anti-aliasing (AA), and shading
(bottom) for the edge pixels in the scene (but not in the shadow
map). What is unique about our system is that all the squares in the
middle are located in shared memory, the passes at the top are exe-
cuted by the GPU, and the passes at the bottom are executed on the
CPU, and together they generate a high-quality anti-aliased image
(right) with 16 spp for the edges.

Already in 1977, Crow suggested to apply more expensive anti-
aliasing techniques only to pixels being covered by the geometri-
cal edges [Crow 1977b]. Algorithmic variants based on the same
underlying idea have been proposed [Sander et al. 2001; Aila et al.
2003] after that, but there is still no practically useful algorithm that
also generates high image quality with high performance. Based
on Crow’s observation that only a sparse set of pixels needs high-
quality edge anti-aliasing, we present a novel algorithm for solving
the geometrical edge anti-aliasing problem.

Our algorithm leverages idle CPU cores to perform anti-aliasing
for a sparse set of pixels, while allowing the GPU to render the en-
tire scene quickly using a single sample per pixel (spp). There are
several merits to this approach. First, since accurate anti-aliasing is
calculated for limited parts of the frame buffer, the workload is con-
trol flow divergent. A current CPU is thus a better fit than current
GPUs to perform such calculations. Second, since anti-aliasing is
decoupled from the GPU rendering pipeline, we can anti-alias only
the most important pixels, which is often less than 5% in our experi-
ence, and in the worst case early-out in order to guarantee a certain
frame rate. Third, our target architecture exploits shared memory
between the CPU and GPU, which makes it possible for the sparse
fragment shader evaluation done on the CPU to directly (without
copy) access render targets already generated by the GPU, and also
sparsely update the final image with high-quality anti-aliased pix-
els. Together this makes our algorithm extremely fast. A high-level
illustration of our algorithm can be seen in Figure 1.

2 Previous Work

There is a wealth of literature on the topic of post-process screen-
space anti-aliasing. The first technique in this area is called mor-
phological anti-aliasing (MLAA) [Reshetov 2009], where the idea
was to analyze the rendered image, detect edges, and cleverly fil-
ter over them with the goal of approximating an anti-aliased image.
Since then, many intelligent edge-blur techniques have been pro-
posed, and they are widely used in the game industry, since they are
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fast and power-efficient. We refer the interested reader to the excel-
lent SIGGRAPH course on this topic by Jimenez et al. [2011]. We
note that these techniques are not robust to all kinds of scenarios.

Point sampling techniques, such as SSAA and MSAA (mentioned
in Section 1), are commodity features in graphics architectures to-
day. One potential disadvantage of MSAA is that shading along
edges increases. For example, if a pixel is intersected by an edge
(does not need to be a silhouette) shared by two triangles, and
if there is at least one sample inside each triangle, then shading
will be executed twice, for such pixels, and it will be done on
a per 2 × 2 pixel basis. This can be particularly expensive for
highly tessellated geometrical objects. Fatahalian et al. [2010]
present a hardware-based approach to solve this, where fragments
are gathered and merged in order to avoid unnecessary shading. In
coverage-sampled AA (CSAA) [Young 2007], each pixel stores at
most 2n colors in a per-pixel palette, and each sample may point
into this palette using an n-bit index. For high-quality visibility,
the number of coverage samples per pixel is higher than the num-
ber of colors in the palette, e.g., a pixel may have 4 colors and 16
coverage samples. When more than 4 colors appear in a pixel, a
heuristic is needed to reduce that set of colors down to 4 colors
again. Note that these techniques, including SSAA, MSAA, and
CSAA, are still rather brute-force approaches, since anti-aliasing is
not directed only towards the pixels that are in need of it.

Carpenter’s A-buffer [1984] is another type of MSAA, where shad-
ing is decoupled from color and depth samples. Each rendered
polygon stores a fragment per pixel, where a fragment consists of
a coverage mask, i.e., a bitmask, as well as a color and some depth
representation. A pixel can store any number of fragments in order
to capture transparency effects etc. In addition, merging of frag-
ments can be done in some situations for more efficient processing.

Crow [1977b] suggested that more effort should be spent on edges,
and in particular on geometrical edges. For such pixels, analytical
methods would be used to compute the area of coverage, and accu-
mulated to the pixel color. However, this assumed non-overlapping
polygons, and hence no handling of depth, which makes its usage
less influential. Based on Crow’s observation, however, Sander et
al. [2001] rendered the scene using 1 spp, and then overdrew the
discontinuity edges with anti-aliased lines. This requires the lines
to be rendered in back-to-front order for correct blending, and depth
may not be resolved correctly on these lines, since the depth buffer
is not multi-sampled. Aila et alia presented a hardware mechanism
called the delay stream [2003]. One of their applications was adap-
tive AA on geometrical edges, also based on Crow’s observation.
However, the delay stream is not yet implemented in any hardware
to our knowledge. Our approach is also based on spending more
AA efforts on geometrical edges, but our approach is based on
introducing a sparse rasterizer & shader, and our method exploits
shared memory to efficiently implement complex shading.

Greene et al. presented hierarhical Z-buffering [1993], where a
quad tree of depths is maintained, and each node stores the max-
imum depths of its childrens’ depths. An object-space octree of
the scene geometry is used for hierarchical culling against the Z-
pyramid. Greene and Kass [1994] extended the previous method to
render scenes with guaranteed error bounds. An octree of the ge-
ometry is traversed in front to back order, and occluded geometry
is culled against the quadtree. Potentially visible polygons are in-
serted into the quadtree that contains conservative Zmin and Zmax

of the geometry in the node. Finally, the hierarchical tiling algo-
rithm for high-quality rasterization by Greene [1996] uses a cover-
age hierarchy. Classification of the polygon during traversal of the
hierarchy is divided into inside, outside, or intersecting the nodes.
Similarly, a quadtree node may be marked as fully covered, vacant,
or active. Polygons are traversed in a strict front-to-back order us-

ing a BSP-tree with a Warnock-style [1969] tiler for rasterization.

3 Algorithm Overview

Our algorithm is divided into two parts, where one is executed on
the graphics processing unit (GPU), and the other on the CPU cores.
The idea is to take any application, e.g., a game, and render the en-
tire scene, as usual on the GPU, using either OpenGL or DirectX,
at one sample per pixel (spp). The fragment shaders used for ren-
dering can include all conventional rendering techniques, such as
local illumination, texture mapping, environment mapping, screen-
space ambient occlusion, G-buffer passes for deferred rendering,
light accumulation, shadow mapping, shadow volumes, etc. Most
rendering engines consists of several passes, where each pass may
generate one or more render targets (RTs). The user of our algo-
rithm can choose to apply high-quality anti-aliasing to any subset
of the render targets, and we call these high-quality render targets
(HQRTs). The high-level idea of our approach is to first render to
the RTs and the HQRTs as usual using the GPU with one spp, and
then let the CPU refine the pixels, in the HQRTs, that are in need of
high-quality anti-aliasing.

While the GPU is no more occupied than usual, our novel contribu-
tion is to run our adaptive anti-aliasing algorithm asynchronously
on the CPU cores for the HQRTs. Our CPU rendering pipeline
consists of three stages, namely, i) silhouette edge detection, ii)
sparse rasterization, and iii) sparse anti-aliasing. The number of
pixels containing silhouette edges in an image is relatively small
(often less than 5% in our experience), and more expensive, higher-
quality anti-aliasing will be applied to only this sparse set of im-
portant pixels. The fragment shading for the sparse set of pixels is
done on the CPU, where the render targets are accessed via shared
memory. This makes our CPU shading extremely efficient. Finally,
the high-quality versions of the sparse set of important pixels are
written back to the HQRT, also located in shared memory.

In our experience, it is often sufficient to let only the final render
pass (before any post-processing techniques, such as tone mapping,
etc, are applied) render to an HQRT and let all other render targets
be rendered at one spp on the GPU. This makes the impact of our al-
gorithm very small. An illustration of such a setup is shown in Fig-
ure 2, where the final render pass uses an HQRT. In this setup, the
fragment shader in the final render pass also accesses all previously
generated render targets. Note that this is just an example—there
are essentially an endless number of variations possible.

4 GPU Rendering Pipeline

The task of the GPU is simply to render all RTs and all HQRTs
as usual with only 1 spp. As we will see in Section 5, the RTs and
HQRTs may be accessed from the fragment shader running sparsely
on the CPU, and in addition, the HQRTs will be updated sparsely
with high-quality anti-aliased pixels. Hence, the RTs and HQRTs
need to be shared between the CPU and the GPU. In the worst case,
sharing resources means copying data from the GPU to the CPU
every frame, and in the best case, it simply means reading from
the same memory pointer as the GPU pipeline uses. The latter is a
reality when working with a shared memory architecture, such as
the Intel Ivy Bridge [Piazza 2012] with an integrated graphics pro-
cessor. Therefore, our algorithm is designed around an architecture
that can share the address space between the CPU and the GPU.

Even without shared memory, a duplication of static vertex buffers
and textures generally works well. However, rendering gets sub-
stantially less efficient when there is a frequent use of render tar-
gets. We elaborate on this in Section 5.3.2.
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Figure 2: In this example, we assume that n render targets, with one sample per pixel (spp), are rendered by the GPU, and that for the final
rendering on the GPU, all render targets are read and used in the fragment shader for the final image. One or more post-processing passes
may follow. The work of the GPU is shown at the top, the work done by the CPU cores is shown at the bottom, and the shared memory, which
glues together the work done by the CPU and the GPU, is shown in the middle. Note that the CPU rendering pipeline consists of three stages,
namely, silhouette edge detection, sparse rasterization, and sparse anti-aliasing. The CPU pipeline works on a sparse set of important pixels
(see Figure 1) that are in need of high-quality anti-aliasing. One reason that our algorithm is fast is that it can exploit the render targets
created rapidly by the GPU, and sparsely read from these render targets directly from the CPU, thereby avoiding the often expensive copy
from GPU to CPU. In the same way, the CPU can update a sparse set of pixels directly into the final image since the memory is shared.

5 CPU Rendering Pipeline

As mentioned in Section 3, the purpose of the CPU rendering
pipeline is to detect a sparse set of important pixels that contain ge-
ometrical silhouette edges, and then sparsely apply a high-quality
anti-aliasing algorithm to only these pixels. Our CPU pipeline is
heavily optimized for rasterizing triangles to this sparse set of im-
portant pixels, and in this section, we describe the algorithmic side
of our approach, while the implementation details, which depends
on the target architecture, are described in Section 6. The three
stages of our CPU rendering pipeline are silhouette edge detection,
sparse rasterization, and sparse anti-aliasing, and these stages are
executed for all HQRTs. The following subsections contain de-
scriptions of these stages.

Similar to the GPU pipeline, the input to our pipeline is organized
into draw calls. Each draw call contains information about a group
of vertices with the same format and rendering state, connected into
triangles by an implicit relationship, or explicitly by a list of indices.
The following subsections will refer to vertices and triangles in the
context of all draw calls.

5.1 Silhouette Edge Detection

Here, we describe a straightforward silhouette edge detection mech-
anism, illustrated by the three leftmost gray boxes at the bottom in
Figure 2, used in our algorithm. First, the clip-space positions for
all vertices are computed. Note that we avoid computing other per-
vertex attributes, and defer them until they are possibly needed. As
will be seen later in Section 5.3, the vertex attributes are only com-
puted sparsely for the vertices that are accessed. Next, the triangle
edges are tested to determine whether they are geometrical silhou-
ette edges. The usual convention is to treat an edge as a silhouette

if the edge is shared by one front-facing and one back-facing trian-
gle for closed models, or if the triangle edge is only connected to
a single front-facing triangle [Crow 1977a; Bergeron 1986]. As a
side effect, we mark edges as silhouettes whenever there is a dif-
ference in attributes on the edge, since the vertices are then distinct
in the vertex buffer. For example, all edges of the quadrilaterals
of a cube will be marked as silhouettes because the normals of the
quadrilaterals differ.

All silhouette edges are then clipped against the canonical clip-
space volume. The silhouette edges, which possibly have been
clipped, are then conservatively rasterized into an image, called the
importance map, with the same resolution as the HQRT. Note that
we use the term important to indicate that a more sophisticated anti-
aliasing algorithm should be applied to those pixels. Hence, it suf-
fices with a single bit per pixel in the importance map, where zero
indicates no further need of anti-aliasing. For conservative line ras-
terization, we use the two-dimensional version of Amanatides and
Woo’s DDA algorithm [1987].

Although geometrical silhouette edges are unable to capture alias-
ing from intersecting triangles, a trivial extension can allow addi-
tional important pixels to be specified from, e.g., discontinuities in
the color buffer, where there is no discontinuity in depth. Another
possibility is to allow an artist to paint importance on objects and
rasterize those to the importance map. Yet another is simply to
mark an entire triangle or object as important. This may be useful
when the sampling rate needs to be locally higher for an entire ob-
ject. We refer to these additions to the importance map as manual
additions. Manual additions represent a special case because some
optimizations cannot be applied when performing shading culling,
as described in Section 5.3.1. In particular, we cannot assume that
there are no intersecting triangles that are in need of AA.
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Figure 3: The input from the edge detection phase is an importance
map (left), with one bit per pixel indicating whether there is at least
one silhouette edge overlapping the pixel. Here, the resolution is
16 × 16, but in reality, it may be 2048 × 1024, for example. Tree
construction is done bottom up (illustrated as left to right in the
figure). The bit of a parent is the logical OR of all children’s bits.

5.2 Sparse Rasterization

This subsection describes how our sparse rasterizer, corresponding
to the fourth and fifth gray boxes at the bottom in Figure 2, works.
Early rejection of candidate triangles is one of the most important
design principles of our CPU rasterizer, which makes this stage ex-
tremely important.

The sparse rasterization stage commences by creating a quadtree of
the importance map from the edge detection phase (Section 5.1).
Recall that the importance map contains one bit per pixel, and the
bit is set to one if there is at least one silhouette edge overlapping
the pixel. We call the resulting quadtree a hierarchical importance
map (HIM), which is a full tree since the input is the entire image.
The HIM will be used in the sparse rasterizer to stop traversal if a
triangle does not overlap any pixels that are important. In our case,
the bit of a parent is set to one if at least one children bit is one. An
example is shown in Figure 3. Note that we have chosen a quadtree,
but any hierarchical tree would work.

Next, we describe our sparse rasterization algorithm. The purpose
is to find, for each pixel, a list of triangles that may possibly af-
fect the final pixel color. Note that it does not suffice to loop over
triangles with silhouette edges, because a triangle without a silhou-
ette edge may still be visible within an important pixel, and can
therefore affect the final color of the pixel. A typical example is a
background triangle, and a silhouette edge cutting through a pixel.
Therefore, all triangles are rasterized against the HIM in this stage.

In theory, sparse rasterization is simply the process where a trian-
gle is traversed against the quadtree of the HIM. Traversal continues
down into a child node if the triangle overlaps with the spatial ex-
tents of the child node, and the corresponding bit in the HIM is set
to one, i.e., there is at least one important pixel in the subtree of the
child node. The overlap test between a quad and a triangle can be
done with an efficient tile test using only additions [Pineda 1988;
Akenine-Möller and Aila 2005]. In the following, we will use the
term tile to denote a 2n × 2n region of pixels, where n ≥ 0, and n
can be adjusted for different performance trade-offs. When a node,
whose size is equal to the tile size, is reached during traversal, a
pointer to that triangle is added to the tile’s triangle list so that the
sparse anti-aliasing procedure (Section 5.3) knows which triangles
to process in the important pixels. This means that a triangle list
will be created for each tile, and these triangles are a superset of the
triangles that may affect the final color of the pixels in that tile. In
practice, the entire traversal can be done in a more efficient manner,
depending on the target architecture. Our current implementation
is described in Section 6.

Occlusion culling is very important to performance, and our ap-

proach is similar to zmax-culling used in graphics processors [Mor-
ein 2000; Greene et al. 1993], where conservative tests are used.
For each tile, a ztilemax-value is first initialized to ∞. If an opaque
triangle is processed, and it covers the entire tile, the triangle’s
maximum depth, ztrimax, inside the tile is computed as the max-
imum of the triangle depths at the four corners of the tile. If
ztrimax < ztilemax then the maximum depth of the tile is updated:
ztilemax = ztrimax. Note that all triangles behind ztilemax can be safely
culled for opaque geometry. For all triangles that are processed dur-
ing sparse rasterization, a ztrimin-value is also computed as follows.
The zvertsmin is computed as the minimum of the triangle vertices,
and zcorner

min is computed as the minimum of the depths of the tri-
angle plane at the four corners of the tile. A tight, conservative
estimation of the minimum depth of the triangle in that tile is then
ztrimin = max(zvertsmin , zcorner

min ) [Akenine-Möller et al. 2008]. This
ztrimin-value is stored with the triangle for that tile. All incoming
triangles are culled against the current ztilemax, i.e., if ztrimin > ztilemax

then the triangle is not added to the triangle list of the tile.

Note that our traversal and data structure (HIM) resemble the work
of Greene et al. [1993; 1994; 1996]. However, in our case, the
quadtree is built once and used for the remainder of the process,
while their quadtrees are updated continuously during rendering of
the scene. In addition, our data structure represents a sparse set of
pixels in need of anti-aliasing, and we do not require a strict front-
to-back traversal of all triangles [Greene 1996].

5.3 Sparse Anti-Aliasing

This subsection describes how our sparse visibility computations,
culling, and shading are done (rightmost gray box at the bottom in
Figure 2). The purpose of this stage is to efficiently resolve visibil-
ity among the triangles of a tile and ultimately calculate the color of
each important pixel within. All triangles within a tile are processed
in submission order. This stage defines sequence points where the
blend mode, z-mode, or other pixel back-end state changes. All tri-
angles contained within the same sequence points are treated as a
continuous triangle sequence, even if triangles belong to different
draw calls.

Our current approach to high-quality anti-aliasing is simply adap-
tive multi-sampled anti-aliasing (MSAA), where several visibility
samples are used per pixel and triangle, but only a single shading
sample. We have found 16 visibility samples per pixel to be suffi-
cient for most scenes, but this can be specified on a per-pixel level,
and can even vary across the image. First, inside testing is per-
formed against the edge equations of a triangle, and for each visible
sample, a depth value is computed and a triangle pointer is stored.

Shading is delayed to a point where it is absolutely necessary, gen-
erally reducing the amount of shading performed. In the case of
opaque geometry, the resolve defers shading within the tile until a
triangle sequence with a transparent blend mode starts, or until all
triangles within the tile have been processed. In the case of trans-
parent geometry, fragments are shaded for a small group of triangles
at a time, e.g., 4 or 8. They are then blended with the tile’s samples
in submission order. More details about the shading pipeline can
be found in Section 5.3.2. However, first, we describe a number of
different culling methods that we use before shading is done.

5.3.1 Culling

Depending on the rendering state of the triangle sequence, different
optimizations can be applied. In the common case, where a triangle
sequence represents opaque geometry with depth testing enabled,
all optimizations are active. First, all triangles whose ztrimin > ztilemax

are removed from the triangle list of the tile. The remaining trian-
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gles are reordered to maximize occlusion culling within each pixel.
In our implementation, the triangles are sorted based on ztrimin.

To allow for occlusion culling at the pixel level, a zpixelmax -value, rep-
resenting the maximum depth of the samples in a pixel, is main-
tained. Once all samples in the pixel have been covered by opaque
geometry, the value is used for occlusion culling. When a trian-
gle in a triangle sequence is found with ztrimin > zpixelmax , the rest of
the triangle sequence can be discarded since the triangles are sorted
along ztrimin. This scheme allows for efficient occlusion culling even
when using highly tessellated models.

For opaque geometry, there are also a number of methods to avoid
unnecessary shading, and hence can be seen as shading culling tech-
niques. For example, if a single fragment is to be shaded for an
important pixel, CPU shading is omitted since it would result in the
same shading as already generated by the GPU. As a consequence,
the pixel is discarded. Similarly, if there are two fragments that
belong to two front-facing triangles sharing an edge, which obvi-
ously is not a silhouette edge, the corresponding important pixel
is discarded. Finally, if there are multiple fragments, but none of
the fragments belong to a triangle with a silhouette edge, then there
cannot be any visible silhouette edge within the pixel. Hence, the
important pixel is discarded. The last optimization assumes that
there are no intersecting triangles in need of AA. Therefore, it can-
not be applied if the important pixel is a manual addition.

Note that there is a small risk of increased aliasing when the opti-
mizations from the previous paragraph are used. Since fragments
are created from discrete samples, there is a possibility that a small
triangle ends up between samples when our algorithm is used. The
GPU pipeline, on the other hand, might sample this small triangle,
and hence produce an aliased pixel, which is different from the re-
sulting pixel from our high-quality rasterizer. The risk of this hap-
pening can be reduced to numerical differences by specifying one
of our sample points to coincide with the sample location used by
the GPU. However, this issue is ultimately a sampling problem that
can be solved by increasing the sample rate of our CPU pipeline.

5.3.2 Shading

Self-contained fragment shaders, such as those using static textures
and uniforms, are trivial to implement in the CPU pipeline. More
advanced shaders, in particular those that use render targets (RTs),
may require a more elaborate solution, depending on the underly-
ing architecture. When memory is shared between the GPU and the
CPU, RTs (created by the GPU pipeline) are directly accessible to
the CPU pipeline. However, when the CPU and the GPU are sepa-
rated by a relatively slow memory bus, issuing transfers of all RTs
from the GPU to the CPU each frame, is prohibitively expensive.
One solution is to evaluate RTs lazily when they are accessed by a

CPU shader. However, even though the evaluation becomes sparse,
it would become expensive with many RTs. It is also unclear how
lazy evaluation could be implemented in a feed-forward rasterizer.
For these reasons, we focus on shared memory architectures in this
paper, and we note that with a shared memory architecture many
more different flavors of an algorithm are possible and can become
efficient.

When possible, shading is performed for all deferred samples
within the tile simultaneously. This enables SIMD execution over
fragments from different important pixels and will thus have better
efficiency than traditional quad rendering in our sparse setup. Ini-
tially, the samples within each pixel are compacted into per-pixel
per-triangle fragments with a sample mask. These fragments are
then sorted based on draw call, triangle, and pixel, in that order.
All fragments belonging to the same draw call are processed simul-
taneously so that a single shader invocation can be performed for
all draw call fragments. First, all vertex attributes for the draw call
triangles are fetched into an input buffer. Then, all attributes are
shaded using a single attribute shader invocation. Note that the at-
tributes for each triangle are shaded exactly once within a tile. The
resulting shaded attributes are then interpolated to the individual
fragments. Finally, the interpolated attributes are used as input to a
single fragment shader invocation that calculates the color of each
fragment. The resulting colors are then distributed to the individual
samples and they are marked as shaded. An example of our shad-
ing pipeline is shown in Figure 4. When all triangles have been
processed in a tile, the final pixel color is computed as the mean of
all the samples’ color, which is the last step of our pipeline.

Next, we describe how derivatives are computed in our pipeline.
A common way to compute attribute derivatives for, e.g., texture
mip map selection, is to render quad fragments and estimate the
derivatives as the differences between the samples. In our setup,
this would be very inefficient since we are rendering a sparse set of
pixels. Therefore, we employ analytical derivatives of the barycen-
tric coordinates. These derivatives can simply replace the ordinary
barycentric coordinates for attributes that are to be differentiated,
rather than interpolated, before fragment shading. One issue that
this fails to deal with is derivatives of indirect texture lookups. In
this case, we resort to performing multiple lookups inside the frag-
ment shader in order to perform the differentiation explicitly.

6 Implementation

This section describes our high performance CPU pipeline that im-
plements all the pipeline stages described in Section 5. It is written
specifically for the x86-64 architecture targeted at multicore CPUs
supporting SSE 4.1 instructions at a minimum. Most of our im-
plementation is independent of the architecture’s SIMD width and



simply process more data in Struct of Arrays (SoA) fashion. This
means that the same algorithm can use either 4-wide SSE or 8-wide
AVX, as well as future SIMD widths, without much adjustment.
The inputs to our pipeline, such as vertex buffers, contain regular
Array of Structs (AoS) data. Therefore, we make frequent use of
register transpose to convert loaded AoS data to SoA form.

Our pipeline makes use of a rasterizer based on two-dimensional
edge equations from projected and grid-snapped vertices, with sim-
ilarities to Larrabee rasterization [Abrash 2009]. While this makes
it possible to perform rasterization using fixed point math, we still
resort to AVX floating point computations for efficiency. This is
fine as long as all floating point values are within ranges that guar-
antee an exact result. For example, a 32-bit IEEE 754 floating point
value can represent a 24-bit fixed point value exactly (not counting
the sign bit). In the future, we will investigate using AVX2 since it
extends integer arithmetic to 256 bits.

In order to distribute work among multiple CPU cores, the pipeline
splits the different stages of Section 5 into various tasks that are
consumed by a pool of worker threads. The main thread can queue
multiple independent tasks for processing. Each task has a number
of work items that represent the basic unit of work distributed to the
worker threads. The work items in each task have a global order;
the first work item of the second task is numbered immediately after
the last work item of the first task. This allows all worker threads to
acquire their work in a lock-free fashion by using an atomic incre-
ment of a shared counter. Each task can spawn new tasks when fin-
ished and can thus implement dependency chains. The main thread
have the ability to wait for all tasks to finish in order to synchronize
different stages.

The vertex position shading stage is trivially implemented by pro-
cessing multiple vertices simultaneously in SIMD fashion. Each
task consists of a single draw call, and each work item consists of a
subset of vertices to shade. Once a vertex shading task completes,
it immediately queues a task for performing triangle setup for each
triangle. Triangle setup tests for trivial rejection against the view
frustum, performs clipping, snaps its vertices to a two-dimensional
grid, determines its facing, computes a bounding box, and sets up
edge equations. The facing information is used to speed up the sil-
houette detector, which follows in the dependency chain.

The silhouette detection task checks front facing triangles for sil-
houettes by testing the facing of adjacent triangles. The resulting
silhouette edges are clipped against the view frustum and conser-
vatively rasterized to the importance map. In order to avoid the
synchronization necessary to set individual bits in the importance
map, each entry is instead byte sized. Note that vertex shading, tri-
angle setup, and silhouette detection are performed independently
for all draw calls without any synchronization. Before starting the
next stage, the main thread waits for all outstanding tasks to finish.
Once all draw calls have been shaded, and all silhouettes have been
rasterized to the importance map, the HIM is built. First, a task that
builds tiled subsets of the HIM is executed in parallel. Then a single
thread builds the highest levels of the tree over the generated tiles.
The HIM is used when binning triangles in the next stage.

The sparse rasterization stage creates one task for each draw call,
where a subset of a draw call’s triangles are processed in each work
item. Each work item reads 4 or 8 front facing triangles at a time,
depending on the SIMD width of the CPU, and stores them in vector
registers in SoA form. Active triangles are indicated by a lane mask,
which is updated as triangles get rejected. A bounding box is then
computed around the active triangles, in order to allow for an imme-
diate jump to the lowest possible level in the HIM. This is done ef-
ficiently as int lvl=32-clz(max(bbw-1,bbh-1)), where
bbw and bbh are the bounding box width and height, respectively,

and clz() is an instruction that counts the number of leading ze-
roes. Note that level 0 is the highest resolution level in the HIM.
All active triangles are then simultaneously traversed against the
HIM, while maintaining active triangles in the lane mask. When
the tile level is reached, ztrimin and ztrimax are computed and all tri-
angles, which are currently active in the lane mask, are written to
the tile’s triangle list, after testing for occlusion. In order to avoid
synchronization, each thread has its own per-tile triangle list.

Once all triangles have been binned to tiles, the sparse anti-aliasing
stage creates a single task with work items corresponding to a tile
each. Each work item starts by reserving and clearing samples for
all important pixels within the tile. Then, the draw call triangles
overlapping the tile are read in submission order, by pick sorting
from the per-thread triangle lists created in the previous stage. Once
a whole triangle sequence have been read, and possibly reordered,
the triangles are sample tested. First, the edge equations for a SIMD
width of triangles are read. Then, a lookup table, containing the
result of evaluating the edge equations at the local sample positions,
is set up in order to accelerate the sample tests. For each important
pixel, all loaded triangles are conservatively tested against the pixel
extents in parallel. Then, each triangle, possibly overlapping the
pixel, is sample tested one at a time. Inside- and depth testing is
performed at the sample locations using the previously computed
lookup table, offset by the edge equations evaluated at the pixel.
This is done in parallel over samples. Shading is computed exactly
as described in Section 5.3. Note that since the CPU cores work
in parallel with the graphics processor, our AA algorithm does not
increase the frame latency, which is a highly desired feature.

Our code base is rather extensive, and in order for others to be able
to reproduce the results and make use of our algorithm, the source
code of our CPU rasterizer is released under the MIT license.

7 Results

For all our results, we have used an Intel Ivy Bridge Core i7
(3770K) at 3.5 GHz with four cores (eight threads) and with an in-
tegrated graphics processor (HD Graphics 4000) containing 16 EUs
(execution units) for unified shading. The EUs are capable of a the-
oretical 166.4/294.4 GFLOPS without/with Turbo, while the CPU
cores have a theoretical peak of 224/249.6 GFLOPS. The thermal
design power (TDP) for this chip is 77 W, including both the CPU
and the GPU. Our machine uses Windows 7 as operating system,
and we have implemented our algorithm using DirectX 11 with the
DirectResourceAccess1 extension for shared memory from Intel.

Four different scenes have been used for our experiments. These
are Chess, Sponza, Buddha, and Hairball. Chess and Hairball both
have Phong shading and shadow mapping with one light source.
Sponza also has Phong shading and one shadow map, but also tex-
turing and alpha-textured transparent flowers. Silhouette detection
was disabled for the flowers, because their textures are transparent
towards the edges. This is optional, however. The Buddha scene has
four Phong shaded light sources, each with an individual shadow
map. Percentage-closer filtering (PCF), for shadow mapping, was
implemented in the shader by interpolating four nearest neighbor
samples.2 We compare our asynchronous adaptive anti-aliasing al-
gorithm, which is denoted A4 and is described in Sections 3-6,
against both the integrated GPU and against WARP [Glaister 2008],
which is an optimized software rasterizer used as a fallback in Win-
dows 7. For the GPU and WARP, we use MSAA with 4 and 8 spp,
where 8 spp is the highest setting for these two renderers. For A4,

1Also called InstantAccess.
2Hardware PCF could not be combined with R32 float render targets,

which we use for shadow maps on our current platform.



Scene Chess Sponza Buddha Hairball

# triangles 64k 262k 1.1M 2.85M
resolution R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

% imp. pixels 1.6% 1.0% 0.7% 4.4% 2.7% 1.9% 1.5% 0.8% 0.5% 31% 21% 15%
WARP 4 spp 25 ms 55 ms 107 ms 62 ms 114 ms 208 ms 154 ms 225 ms 349 ms 319 ms 418 ms 530 ms
WARP 8 spp 37 ms 90 ms 169 ms 81 ms 163 ms 310 ms 188 ms 277 ms 433 ms 399 ms 564 ms 761 ms
A4 16spp100% 26 ms 56 ms 101 ms 50 ms 104 ms 186 ms 96 ms 156 ms 247 ms 126 ms 182 ms 254 ms
A4 8 spp 5 ms 9 ms 15 ms 15 ms 22 ms 31 ms 34 ms 40 ms 52 ms 110 ms 149 ms 193 ms
A4 16 spp 5 ms 9 ms 15 ms 16 ms 23 ms 34 ms 37 ms 40 ms 52 ms 119 ms 160 ms 207 ms
GPU 1 spp 5 ms 7 ms 12 ms 8 ms 12 ms 18 ms 25 ms 33 ms 44 ms 40 ms 52 ms 66 ms
GPU 4 spp 7 ms 13 ms 20 ms 14 ms 23 ms 37 ms 30 ms 41 ms 55 ms 64 ms 111 ms 169 ms
GPU 8 spp 10 ms 20 ms 35 ms 20 ms 37 ms 59 ms 34 ms 48 ms 63 ms 112 ms 200 ms 300 ms

Table 1: Statistics for rendering of our four test scenes, where R1 = 1280 × 800, R2 = 2048 × 1280, and R3 = 2880 × 1800 are the
resolutions that we have used. The third row shows the percentage of important pixels after culling in the rendered images, and below that,
results are shown in time (milliseconds) per frame. Note that asynchronous adaptive anti-aliasing (A4) method uses 8 and 16 samples per
pixel (spp), while both WARP and the GPU only use 4 and 8 spp MSAA. In addition, the row denoted A4 16 spp 100% also uses our algorithm
with the difference that every pixel is rendered using the CPU pipeline.

results are shown for both 8 and 16 spp. We have used sampling
patterns which are digital nets for high quality. For example, for
16 spp, we use a (0, 4, 2)-net in base 2. The results have been
generated for 1280×800, 2048×1280, and 2880×1800 resolu-
tions, where the latter is the native resolution of a Macbook Pro 15”
(2012). We use WARP as a reference for software rendering perfor-
mance. In practice, A4 has the advantage of letting the GPU render
all shadow maps. In order to make the comparison more informa-
tive, we do not count the time WARP needs to render the shadow
maps. Note that this gives WARP an advantage over A4 in that it
does not need to wait for the GPU to finish shadow map rendering.

Our main results are shown in Table 1. For A4, we have used a tile
size of 8×8, since that size gave best results for all scenes and reso-
lutions. One row in the table says “A4 16 spp 100%”, which means
that we deliberately set all pixels to be important in our algorithm.
As a consequence, all pixels are rendered using the CPU pipeline
for that setting. It is interesting to see that with 16 spp, A4 100%
is about on par with WARP 4 spp for Chess, but for the rest of the
scenes, A4 100% is significantly faster, despite the fact that WARP
does no shadow map rendering and A4 has overhead for silhou-
ette detection, HIM generation & construction, and is optimized for
sparse rendering & shading. In addition, A4 100% has 4× as many
spp. For the hairball, A4 100% is more than twice as fast. Note
also that our adaptive A4 algorithm with 16 spp is between 3.9–
7.1× faster than WARP at 4 spp, for the first three scenes, and for
the hairball, this is reduced to 2.6-2.7× faster. Hence, our method
generates higher quality images and is faster than WARP.

The other interesting results are just below the A4 100% row, where
the numbers for our A4 algorithm are shown together with MSAA
numbers for the GPU. Note, for example, that A4 with 8 spp always
is as fast or faster than the GPU with 8 spp, for all resolutions and all
scenes, and the gap is bigger, the higher resolution. In fact, for the
highest resolution, A4 is 1.2–2.3× faster than the GPU. Comparing
A4 with 16 spp vs. GPU with 8 spp, it can be seen that A4 is faster
or about the same. Also, our algorithm scales better than the other
algorithms with increasing resolution. This is expected since the
percentage of the pixels with silhouette edges decreases with higher
resolution. We also note that A4 with 8 spp is exactly as fast or just
a little bit faster than A4 with 16 spp, which is a consequence of
that we have focused on optimizing the 16 spp variant more.

Chess Sponza Buddha Hairball
Vertex Position Shading 1.4% 1.7% 4.0% 2.1%
Triangle Setup 6.6% 5.9% 21.0% 13.5%
Silhouette Detection 3.1% 3.5% 10.0% 8.3%
HIM Build 3.1% 0.6% 0.7% 0.1%
Sparse Rasterization 14.4% 16.3% 19.2% 17.3%
Sparse AA - Visibility 40.9% 37.1% 28.4% 36.3%
Sparse AA - Shading 23.0% 30.8% 15.9% 21.3%
Copy to frame buffer 7.6% 4.1% 0.9% 1.1%

Table 2: The time spent in the different stages of our algorithm.

The time spent in the different stages of our pipeline is summa-
rized in Table 2 for our test scenes at 2048 × 1280. As can be
seen, most of the time is spent in the later stages of the pipeline,
much like a real GPU pipeline. The Buddha scene is a bit differ-
ent and spends more time in the earlier stages. This is expected
since Buddha has very few silhouettes compared to the number of
triangles in the scene, which means that most work is culled before
the later stages. It is also interesting to look at the CPU load using
our algorithm, e.g., A4 with 16 spp for the scenes in Table 1. For
Chess, it varies from 52% (highest resolution) to 72% (lowest reso-
lution). For Sponza, the corresponding numbers are 84%-91%, and
for Buddha: 72%-89%. The hairball is more extreme, due to the
many silhouettes, and the CPU load is about 99% all the time. The
CPU load is related to how much A4 needs to be idle and wait for
the GPU to render shadow maps and the frame buffer at 1 spp. The
fact that the CPU load generally decreases with higher resolution is
evidence that the GPU becomes the bottleneck at higher resolution.

To determine how A4 scales with increasing shader complexity,
a shader with varying number of diffuse point lights and no tex-
tures/shadow maps, was applied to all scenes. The results are shown
in Figure 5, where it is clear that our algorithm just becomes a small
offset to GPU 1 spp at some point. One interpretation for this is
that more expensive shaders are beneficial to our algorithm. This
and better resolution scaling are two really important features of
A4. The results also indicate what factors contribute to increased
rendering time when using MSAA, and hence how A4 can improve
performance. The difference in time at zero point lights can be
interpreted as the cost of additional visibility computations, while
the slope of the curve indicates the amount of extra shading. The
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Figure 5: All scenes rendered at different resolutions using a variable number of diffuse point light sources. Each plot represents one scene
at one resolution rendered using both A4 and the GPU at different settings. The number of point lights increase along the x-axis, and the
execution time is indicated by the y-axis. In the framed region at the bottom, CPU load over the number of light sources is visualized for all
configurations of A4 16 spp. CPU usage was measured by polling performance counters provided by the operating system.

amount of redundant shading on the GPU due to quad shading is
hard to estimate, but we note that A4 100% scales best with in-
creased shading complexity. This behavior can be attributed to, e.g.,
reduced quad shading overhead and better occlusion culling.

Next, we will discuss some disadvantages with our method. First,
our current implementation does not handle tessellation. This
would require our vertex position shading stage to also tessellate,
compute the positions of the newly created triangles, and then de-
tect silhouette edges after that. This would require accurate knowl-
edge about how the hardware tessellator works, and therefore, it is
left as future work. Second, for best results, surfaces should not
intersect. This can, however, be avoided by the artists at the cost
of time. Third, our algorithm is designed around the fact that many
scenes have rather few important pixels, which need high-quality
AA. A difficult scene is therefore the hairball (right in Table 1), as
seen in Figure 6. However, the results here were surprising. A4
(8/16 spp) rendered the scene as fast or faster than the GPU at 8
spp. In fact, for the two higher resolutions, A4 100% was also
faster than the GPU at 8 spp.

Finally, we have also measured image quality, in terms of peak sig-
nal to noise ratio (PSNR), at 2048 × 1280 against a ground truth
image rendered with 256 samples per pixel with MSAA. The results
are shown below in dB (decibels), i.e., higher numbers are better.

Chess Sponza Buddha Hairball
GPU 4 spp 48.9 dB 48.5 dB 50.1 dB 33.1 dB
GPU 8 spp 52.8 dB 51.9 dB 53.6 dB 37.1 dB
A4 16 spp 54.9 dB 47.1/52.0 dB 54.9 dB 40.1 dB

As expected, the PSNR is substantially higher for A4 using 16 spp
compared to the GPU using 4 & 8 spp. The exception is Sponza,
where the PSNR drops to 47.1 dB, which is mostly due to our cur-
rent handling of alpha-textured geometry. If transparent geometry
also generates silhouettes, PSNR increases to 52.0 dB, which is a bit

Figure 6: Hair ball rendered with A4 with 16 spp in 207 ms at
2880× 1800. This is a difficult case for our algorithm, since there
are many silhouette edges. All important pixels (after all sorts of
culling) are marked as red. The GPU used 300 ms with 8 spp MSAA.

better than the GPU at 8 spp. Even though the geometry gets trans-
parent toward the edges, there are still some hard edges that could
be resolved with more careful texture mapping. Note also that the
rendering time increases from 23 to 34 ms when transparent ge-
ometry generates silhouettes, which is still faster than the GPU at 8
spp. This rather substantial increase comes from the fact that shader
culling will be inefficient for all tiles with overlapping transparent
geometry in our current implementation. There is no way to cull
before the alpha geometry has been rendered, and at that point, the
tile has already shaded everything for blend operations to work. We
note that this could be resolved by having conservative zmin for all
silhouettes within an important pixel, and perform shader culling if
zsilhouettemin > zpixelmax , but leave this to future work.

As mentioned earlier, it is possible to apply our algorithm to only as
many important pixels as there is time before the target frame time
has been reached. Recently, Guenter et al. [2012] used eye track-
ing to render in high resolution only in a small gaze region of the



viewer’s eyes. With our algorithm, we could use a similar system,
but instead increase the sampling rate only in the gaze regions, for
faster rendering. This is left for future work, but it gives some con-
fidence that our platform provides new and interesting alternatives.
The energy efficiency of A4 is also left for future work, i.e., since
our approach uses both the graphics processor and the CPU cores in
the chip, it may be that more energy is used compared to using only
16×MSAA on the graphics processor. However, since our method
used less time to solve the problem, it is possible (but not certain)
that our method also uses less energy.

8 Conclusions and Future Work

We have presented a real-time hybrid rasterization pipeline, which
uses both the CPU and its integrated graphics processor, for adap-
tive edge anti-aliasing. The key hardware component that glues
together the communication and sharing of resources between the
GPU and the CPU is a shared memory architecture. Our results
are very promising, and in particular, we believe that our results
shows that a shared memory architecture can be of great benefit
to researchers and developers. In addition, the resolutions of com-
modity devices have been increasing rapidly over the last few years,
and our algorithm scales better with higher resolutions. This makes
it an interesting alternative for integrated CPU and GPU architec-
tures, now and for even higher display resolutions (e.g., 3k and 4k).

Most GPU research has focused on discrete graphics cards, but we
believe that shared memory architectures open up for a wide range
of novel rendering algorithms. Our system can be seen as a start-
ing point for a more general platform for hybrid rendering, and in
the future, we would like to investigate other uses, e.g., ray trac-
ing. We also want to explore whether the sampling rate can be
increased adaptively when a small triangle is missed inside a pixel.
Furthermore, we also want to incorporate analytical [Catmull 1978;
Auzinger et al. 2013] and semi-analytical methods [Barringer et al.
2012] into our renderer. It may, e.g., be possible to develop an ana-
lytical method that handles 2–4 triangles per pixel, and then revert
to MSAA for more triangles. For future work, we will also attempt
to augment Crow’s method to motion blur and depth of field.
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