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Abstract
We present user-controllable and plausible defocus blur for a stochastic rasterizer. We modify circle of confusion
coefficients per vertex to express more general defocus blur, and show how the method can be applied to limit
the foreground blur, extend the in-focus range, simulate tilt-shift photography, and specify per-object defocus blur.
Furthermore, with two simplifying assumptions, we show that existing triangle coverage tests and tile culling tests
can be used with very modest modifications. Our solution is temporally stable and handles simultaneous motion
blur and depth of field.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

Digital artists and game developers often want non-
physically-based control over depth of field (DOF) param-
eters. Examples include the possibility to limit foreground
blur or to extend the in-focus range while preserving the
foreground and background blur. With post-processed DOF
approaches [PC81, Dem04, EH07], this is straightforward
since the blur filter is expressed as a user-provided function
of the scene depth. Kosara et al. [KMH01] introduce the term
semantic depth of field, where the amount of DOF is con-
trolled on a per-object basis. Their implementation use a set
of depth-sorted layers or billboards, which are individually
blurred and composited into a final image. However, visibil-
ity is never resolved correctly using the above methods, and
consequently, their use is limited.

A physically-based camera model can be simulated with
distributed ray tracing through a set of lenses and aper-
tures [KMH95]. Kosloff and Barsky [KB09] use non-linear
ray tracing (by tracing bent rays) to simulate non-physical
effects such as multiple focus planes. Each pixel may have
a unique ray distribution. In general, each point in 3D space
can have a different blur value. They also present two other
approaches for generalized DOF: a heat diffusion solver on
a layered depth image and a light field filtering technique.

Lee et al.’s work [LES10] on flexible defocus blur allows
for varying lens parameters for each pixel to emulate ef-
fects like tilt-shift photography, curvature of confusion, and
lens aberrations. Visibility is resolved by ray tracing through
a layered depth image. User-provided camera space DOF
constraints are interpolated using a least-squares fit to de-
rive varying per-pixel lens parameters. We refer to Lee et

al.’s paper for an overview of lens effects and a more com-
plete survey of controllable defocus techniques. It is far from
straightforward to extend these ray tracing approaches to
handle simultaneous motion blur and depth of field.

State-of-the-art stochastic rasterizers, e.g., Render-
Man [AG00], have programmable surface and displacement
shading, and extensive global camera control, where the
aperture shape and density can be adjusted. To the best of
our knowledge, however, there is no publicly known flexible
DOF approach for stochastic rasterizers with local control,
such that the blur amount can be controlled per-vertex.

Our goal is flexible DOF that works directly in a stochas-
tic rasterizer without any layer-generation passes, iterative
solvers, and with minimal impact on pipeline design and
rendering optimizations. Specifically, we want to explore
how user-defined DOF control can be integrated with ef-
ficient tile-based traversal for higher-dimensional rasteriza-
tion [LAKL11, AMTMH12, MAM12].

We let the user specify circle of confusion parameters for
every vertex in a mesh. This enables artistic control of defo-
cus blur, while still supporting the standard thin lens model
as a subset. In addition, we introduce two simplifying as-
sumptions that makes this approach compatible with state-
of-the-art per-tile tests and coverage tests in 4D and 5D ras-
terizers, and handles simultaneous motion blur and DOF.
The streaming nature of rasterization also enables interest-
ing features, such as per-triangle DOF control and reduced
DOF for specific depth ranges, which are not easily sup-
ported by ray tracing-based approaches. Finally, we show
that our model is also a useful tool to reduce performance
variations for scenes rendered with defocus blur.
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Figure 1: Circle of confusion radius in clip space (left) and
screen space (right). The bright yellow curves show the func-
tions obtained by the thin lens model. The dark blue curves
show the functions obtained after limiting the foreground
blur.
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Figure 2: Linearization errors are introduced for triangles
that span discontinuities in C.

2. Algorithm

Let us first revisit the standard assumptions of a stochastic
rasterizer. A clip-space vertex of a triangle is denoted p =
(x,y,w). In the thin lens model, the signed clip-space circle
of confusion radius, C, for p is a linear function of the vertex
depth, w, i.e., C(w) = a+wb, where a and b are constants
derived from the camera’s aperture size and focal distance.
The clip space vertex position for a specific lens position,
(u,v), is given by: p′(u,v) = p+C(w)(u,k v,0), which is a
shear in clip space x and y. The scalar, k, adjusts for non-
square aspect ratios, and the focus plane is located at w = F .

The screen space blur radius, Cs =C/w, goes towards in-
finity for w→ 0, so a small out-of-focus object very close
to the camera can easily cover the entire screen. This is in
contrast to most post-processing DOF methods, where the
screen space defocus blur is limited to a certain max radius,
which is physically incorrect, but has more predictable per-
formance.

Example As an illustrative example, we limit the screen
space blur, Cs(w) = (a+wb)/w, to a certain radius, R, in
the foreground region (w < F). We see that Cs(w) = R for
the depth w = a

R−b . The threshold is denoted α = a
R−b . This

leads to the following definitions:

Cs =

{ a+wb
w , w > α,

R w≤ α,
(1)

which is equivalent to the following formula in clip space:

C =

{
a+wb, w > α,
wR w≤ α.

(2)

Equations 1 and 2 are illustrated in Figure 1.

C is a piecewise linear function of the vertex depth, and
the thin lens property that C can be linearly interpolated over
the triangle does not hold. Therefore, we introduce the as-
sumption that the clip space circle of confusion radius is lin-
ear in the interior of a triangle. With this assumption, we
can compute C in the vertex shader using Equation 2 and
provide these coefficients instead of the global camera pa-
rameters when positioning and coverage-testing the triangle
for a certain lens position. The stochastic rasterizer is es-
sentially unmodified, and the amount of defocus blur is now
an attribute that can be controlled on vertex granularity for
added artistic control.

Any triangle straddling the discontinuity in C will have a
somewhat different circle of confusion in the interior than
what is described by the piecewise linear C function, as il-
lustrated in Figure 2. This effect is most visible on very large
triangles, and is negligible in a micropolygon pipeline. Also,
geometry with T-junctions may show cracks with this as-
sumption. We see this as yet another reason to completely
avoid T-junctions.

2.1. Controllable Defocus Blur in 5D Rasterization

In this section, we generalize the user-controllable DOF
to 5D stochastic rasterization, where the fifth dimension is
shutter time. We assume linear vertex motion in clip space,
i.e., p(t) = (1−t)q+tr. With the thin lens model, the signed
clip space circle of confusion radius, C, of a moving vertex,
p(t), is a linear function in t: C(t) = C(w(t)) = a+w(t)b.
The clip space vertex position for a time, t, and lens posi-
tion, uv, is given by:

p′(u,v, t) = p(t)+C(t)(u,k v,0). (3)

If C is replaced by a non-linear function in t, efficient trian-
gle coverage tests (per tile and per sample) in 5D no longer
work. We therefore introduce another simplification, namely
that the clip space circle of confusion radius of a vertex is
a linear function in time within the frame. The user pro-
vides two circle of confusion coefficients for each vertex per
frame, namely c0 at t = 0 and c1 at t = 1. During rasteriza-
tion, we use C(t) = (1−t)c0+tc1 to determine the triangle’s
position for a time, t, and lens position, uv, in Equation 3.
If the user provides the standard thin lens coefficients, e.g.,
c0 = a+b w(0) and c1 = a+b w(1), the rendered image is
identical to that of a standard 5D rasterizer.

3. Pipeline Modifications

In this section, we outline pipeline differences between a
rasterizer where the clip space circle of confusion, C, is a
user-provided vertex attribute compared to a rasterizer that
assumes a thin lens model.

The sample coverage test of a stochastic rasterizer can be
slightly optimized if C is a linear function of w. Compared
to a test that handles arbitrary C-coefficients, the difference
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in arithmetic cost is 16 vs. 18 FMA (fused-multiply add) op-
erations for a DOF coverage test. For a 5D coverage test, the
difference is 25 vs. 30 FMA operations [LK11a].

Some stochastic rasterizers also perform coverage tests in
5D per tile to quickly discard samples that cannot hit the tri-
angle. It is easy to verify that the tile culling tests from previ-
ous work [LAKL11,AMTMH12,MAM12] still work as long
as C varies linearly over the triangle and varies linearly in t
within the frame, which are exactly the two assumptions we
introduced in Section 2. The same holds for view-frustum
culling and screen space bounding. For example, Laine and
Karras’ screen space bound algorithm [LK11b] works out of
the box with user-provided C-coefficients.

A backface culling test for 5D rasterization [MAM11]
can be optimized for the thin lens model. We show the ex-
pression for a generalized backface test that supports user-
provided C-coefficients in Appendix A and compare it to the
thin-lens version.

4. Results

For all images in this section, we have simply averaged all
samples within a pixel. No motion or defocus-aware recon-
struction filters were used. Also, we deliberately use high-
contrast shading to more easily see the effect of the blur.

With arbitrary circle of confusion parameters, it is possi-
ble to accomplish a wide variety of defocus effects. Figure 3
shows frames from a sequence where the foreground blur is
reduced (Section 2). Figure 4 shows reduced foreground blur
in a scene with simultaneous motion blur and DOF (Sec-
tion 2.1). In our experience, the transition from large blur to
no foreground blur looks plausible. The in-focus range can
be extended by another piecewise linear C(w) function, as
shown in Figure 5.

In general, C is replaced with an arbitrary user-provided
function, expressed as a scalar vertex attribute, which gives
artistic freedom. We achieve a set of highly non-physical de-
focus blurs by computing custom per-vertex defocus radii,
C. For example, we can modify the orientation and shape
of the focus surface to approximate effects such as tilt-shift
photography & curvature of field [LES10]. Given a vertex
p = (x,y,w) we can increase the blur amount radially from
the center with C = (a+ bw)(1+ x2 + y2). Figure 6 shows
an example of a tilted focus surface on a scene with very
complex visibility. In this example, we set C = a+b(w+x).

It is important to highlight that per-vertex DOF control
as presented here is orthogonal to the sample distribution
in xyuvt space. In Figure 8, we show two different sample
distributions over the lens, combined with controlled DOF
where we have disabled DOF (C is set to zero) for some ob-
jects in the scene. Please refer to the accompanying video
for more examples with animated focus parameters, moving
objects and camera, and simultaneous depth of field and mo-
tion blur.

Figure 3: Removed foreground blur on a scene with depth
of field, while leaving the background blur intact. Example
scene from the Microsoft DirectX SDK.

Figure 4: Removed foreground defocus blur on a scene with
both motion blur and DOF, while leaving the background
blur intact. In our software implementation, the right image
renders 3× faster. Note that the motion blur is still present.
The animated hand model is from the Utah 3D Animation
Repository.

In real-time applications, a moving camera may (acciden-
tally) move very close to an object. As illustrated in Fig-
ure 1, the screen space blur is very large for objects close
to the camera, and the performance impact of rasterizing
these heavily defocused objects may be drastic. By bound-
ing the foreground blur, the performance variations can be
reduced. Figure 7 illustrates this use case, where a bounded
foreground blur results in a 4−9× performance increase.
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Figure 5: Circle of confusion radius in clip space (left) and
screen space (right). The bright yellow curves show the func-
tions obtained by the thin lens model. The dark blue curves
show the functions obtained after limiting the foreground
blur and extending the depth of field to a larger depth range.
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tilted focal surface no foreground blur
Figure 6: Examples with complex visibility. Hairball model
from Samuli Laine.
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Figure 7: Defocused foreground triangles cover large screen
space regions. We visualize the number of triangles pro-
cessed per pixel as heat maps. The numbers in parentheses
indicate relative render times compared to the reference in a
software stochastic rasterizer. Bounding the foreground blur
reduces the work substantially. Animated wood doll from the
Utah 3D Animation Repository.

4.1. Discussion

In a rasterizer, the per-vertex circle of confusion parameter,
C, simply indicates how much an object should be sheared
for a specific lens coordinate, and is an object-specific pa-
rameter. In a ray tracer, however, the geometry is expressed
in a global coordinate system, and individual shears per ob-
ject mean that the distribution and angles of rays from the
camera lens are unique for each triangle. This would require
sending “bent rays” through the scene, which makes the
ray traversal step much more complicated. See Kosloff and
Barsky’s work [KB09] for more details of non-linear dis-
tributed ray tracing. Some special cases, like limiting fore-
ground blur can be handled as shown in Figure 9, using a
unique lens per screen space sample, that is inserted in the
scene. This is cumbersome, and is very likely to completely
disable certain traversal optimizations for primary rays. A
stochastic rasterizer, on the other hand, handles these cases
easily with our algorithm, with none or very modest perfor-
mance implications.

reference flexible

Figure 8: Our flexible DOF approach is orthogonal to the
lens sample distribution. Here is an example with circular
(top) & hexagonal (bottom) lens shape combined with per-
vertex control of the blur amount.
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Figure 9: Limiting foreground blur in a ray tracer. The
global lens is replaced by a per-pixel lens, L′ (red), inserted
at depth w = α, centered around the ray through the pixel
and the pinhole camera. Its focal length, f = F

α(F−α)
, is cho-

sen such that the blur in the region w > α is unaffected. Rays
are now traced from a pinhole camera at w = 0 towards the
lens and each live ray is refracted in the lens. This is shown
for two different points, p, on the image plane.

On the other hand, in a rasterizer designed around the
thin-lens model, it is hard to simulate effects that vary as
functions of the position on the lens, such as general lens
aberrations. Our extension with user-provided C-coefficients
per vertex only modifies the amount the vertex is sheared in
x and y in clip space, and is assumed to be a linear function
in u and v, where the shears in x and y are independent. That
said, the rasterizer could be extended with more defocus pa-
rameters per vertex, defining the coefficients of a function
C = f (u,v, t) to support more elaborate lens models. This
would, however, complicate the coverage and cull tests sig-
nificantly. Note also that with arbitrary C parameters, the in-
tegral of the view-dependent shading contribution from all
lens samples may differ from the thin-lens equivalent in out-
of-focus regions.

A difficult scenario for user-defined blur per-vertex is a
large triangle spanning the focus plane. When gradually re-
ducing the foreground blur, the focus distance appears to
move. This is an effect of the assumption that the defocus
blur varies linearly over the triangle (e.g., Figure 2). With
higher tessellation rates, this effect is hardly noticeable, as
shown in Figure 10.

It is important to note that it is hard to guarantee an upper
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reference coarse floor tessellated floor

Figure 10: With coarse tessellation, the linearization as-
sumption gives visible artifacts when the CoCs deviated from
the thin-lens model. The focus distance moves due to the
coarse tessellation (2 triangles) of the ground floor. With a
higher tessellation rate, this effect is hardly visible.

bound, R, for defocus in all cases. For triangles straddling
both w = 0 and w = F , the screen space blur radius is not
bounded by R as C(w = 0) 6= 0. However, with reasonably
tessellated scenes, our approach has the potential to greatly
improve the average rasterization performance.

Requirements for flexible defocus blur may also in-
fluence future API designs for stochastic rasterizers. We
would like to see an output variable from the vertex shader
(OpenGL/Direct3D) or surface shader (RenderMan) repre-
senting the defocus coefficients. The user then has the option
to override the global camera parameters when the primitive
is bounded, positioned, and sampled.

We leave a detailed study of the combination of flexible
defocus and reconstruction filters for future work.
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Appendix A - 5D Backface Test for Flexible Blur

A backface culling test for DOF [MAM11] is expressed as a deter-
minant test:

p′
0(u,v) · (p′

1(u,v)×p′
2(u,v)) > 0, (4)

where p′
i (u,v) = pi +Ci(u,kv,0). This can be expanded to:

p0 ·(p1×p2)+(u,k v,0) ·(C0p1×p2+C1p2×p0+C2p0×p1)> 0.
(5)

If C follows the thin lens model, e.g., Ci = a+ bwi, the expression
can be simplified to:

p0 · (p1×p2)+a(u,kv,0) · (p0×p1 +p1×p2 +p2×p0)> 0. (6)

For user-provided C-coefficients, this optimization must of course
be disabled.

A similar argument holds for the 5D backface test. The 5D ver-
sion of Equation 5 contains terms on the form:

p0(t) · (p1(t)×p2(t)) and (u,k v,0) · (Cm(t)pn(t)×po(t)), (7)

where m,n,o are indices in {0,1,2} and each Cm = (1−t)c0+tc1 is
a linear function in t determined by user-provided vertex attributes
c0 and c1. Thus, Equation 7 contains t3, ut3, and vt3 terms, which
must be bounded over the lens and shutter interval to conservatively
cull a triangle.

The thin lens version of the 5D backface test has simplified terms
(c.f., Equation 6):

p0(t) · (p1(t)×p2(t)) and a(u,k v,0) · (pn(t)×po(t)). (8)

which have lower order polynomial coefficients t3, ut2 and vt2.
Thus, a backface test with user-provided C-coefficients is slightly
harder to bound.


