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Figure 1: Our novel thin curve rendering algorithm used on a test production model to compute accurate visibility. The model has 32,000
unique hair strands, which consists of over one million Bézier curves with varying thickness. As can be seen, our algorithm works at all
different scales, from cases where there are hundreds of hair strands per pixel to zooming in on the hair strands. All images were rendered
at 1024× 1024 pixels with our GPU implementation. The leftmost image took 109 ms to render, while the close-up on the face took 468 ms.
The rightmost image showcases our ability to handle thick curves. Hair model courtesy of Weta Digital.

Abstract

Computing accurate visibility for thin primitives, such as hair
strands, fur, grass, at all scales remains difficult or expensive. To
that end, we present an efficient visibility algorithm based on spa-
tial line sampling, and a novel intersection algorithm between line
sample planes and Bézier splines with varying thickness. Our algo-
rithm produces accurate visibility both when the projected width of
the curve is a tiny fraction of a pixel, and when the projected width
is tens of pixels. In addition, we present a rapid resolve procedure
that computes final visibility. Using an optimized implementation
running on graphics processors, we can render tens of thousands
long hair strands with noise-free visibility at near-interactive rates.

CR Categories: I.3.3 [Picture/Image Generation]: Antialiasing;
I.3.7 [Three-Dimensional Graphics and Realism]: Color, shading,
shadowing, and texture;
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1 Introduction

High quality rendering of thin, curved primitives, e.g., hair, fibers,
fur, and grass, is an important ingredient in today’s computer gen-

erated imagery. This is particularly true for offline rendering for
feature films, but also increasingly so for real-time rendering in
games. One approach is to model such thin curves as ribbons with
varying width, e.g., using RenderMan’s riCurves primitive, and
then sample visibility using point sampling. A similar modeling
and rendering technique was used by Marschner et al. [2003] when
developing an accurate appearance model for hair. Another com-
mon approach is to rasterize lines with alpha blending to simulate
line widths smaller than one pixel [Leblanc et al. 1991; Sintorn and
Assarsson 2008]. A third approach is to model and render hair with
volumetric textures using ray marching [Kajiya and Kay 1989].

While shading for some types of thin primitives, in particular
hair [Marschner et al. 2003; Moon et al. 2008; Zinke et al. 2008;
Zinke 2008; Hery and Ramamoorthi 2012], is well understood,
computing accurate visibility rapidly for a large number of curves
remains a challenge. A major problem is that when point sampling
is used, noise is inevitable unless a very large number of samples
per pixel is used. This is especially true at a macro-scale, when
the viewer is relatively far away from the curves, and the projected
width of the curve is only, say, 10% or less, of the pixel width. In
such cases, hundreds of samples per pixel may be needed for ac-
curate visibility. For comparison, the diameter of a hair strand is
about 0.1 mm [Hadap et al. 2007]. Another problem is that the
ribbon model breaks down at the microscale, i.e., when a curve’s
width project to relatively large number of pixels. In those cases, a
hair strand, for example, does not appear as a cylinder as expected.

As a solution to this challenge, we present a visibility engine based
on line sampling [Jones and Perry 2000] in the spatial domain. Our
curves are modeled as Bézier splines with varying thickness. We
develop a novel intersection algorithm between such curves and
line samples and present a new interval resolve procedure. As can
be seen in Figure 1, our approach renders practically noise-free im-
ages at large spectrum of scales. For rapid rendering, we have also
implemented our visibility engine on a graphics processor running
in parallel.

http://doi.acm.org/10.1145/2366145.2366173
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2 Previous Work

There is a wealth of literature on the topic of simulation, animation,
and rendering of thin curves, e.g., hair strands, fur, and grass. Here,
we will review the most important references to our work, and refer
to the SIGGRAPH course [Hadap et al. 2007] on hair and strands if
more information is needed.

Appearance Models Kajiya and Kay [1989] presented an illumina-
tion model for single-scattering in fur and hair. The fine geometric
detail of fur and hair is represented by volumetric three-dimensional
textures. Illumination is calculated by integrating diffuse and spec-
ular contributions, using a modified Phong model, by ray marching
in the texture. Marschner et al. [2003] present a rich shader model
for human hair that captures more distinguished features such as
inner reflection, eccentricity and surface scales. Fibers are repre-
sented geometrically as procedurally generated flat ribbons and as
transparent elliptic cylinders within the shader model. This work
was extended to include multiple scattering of light using photon
mapping [Moon and Marschner 2006]. Rendering was made us-
ing two passes: first particles were traced through the hair to create
a photon map, and then the hair was ray-traced to compute direct
illumination and indirect radiance gathered from the photon map.
Moon et al. [2008] voxelize the individiual fibers into a rectilin-
ear grid, and populate it with aggregate data of nearby fibers us-
ing sampling of density, median direction, and variance. By tak-
ing advantage of the smoothness of the distributed scattering func-
tion, this approach proved faster and less memory-consuming than
approaches based on photon mapping. Zinke and Weber [2007]
present a shading framework for fibers that have both near and far
field solutions. Recently, Hery and Ramamoorthi have presented
an importance sampling algorithm for hair fibers [2012]. Fast, but
accurate models for shading hair using a dual scattering approxima-
tion, targeting real-time rendering, have also been presented [Zinke
et al. 2008; Zinke 2008].

Visibility and Shadows The deep shadow mapping algo-
rithm [Lokovic and Veach 2000] generates a monotonic function
per shadow map texel, which represents the fractional visibility for
each depth from the light source. This works particularly well for
hair, fur, and smoke. Jones and Perry [2000] presented line sam-
pling in the spatial domain for efficient anti-aliasing. Gribel et
al. [2010] used a similar approach applied to analytical motion blur
with spatial point samples, instead of using it for spatial line sam-
pling with no motion blur. Recently, that method has been com-
bined with spatial line samples, for high-quality spatio-temporal
anti-aliasing [Gribel et al. 2011]. Tzeng et al. [2012] used line
samples over the lens domain to create depth-of-field. A com-
mon rendering technique using graphics processors, is to render the
hair strands as lines with alpha blending [Leblanc et al. 1991], and
composite the fragments in back-to-front order [Sintorn and Assars-
son 2008]. An alternative is to use stochastic transparency, where
multi-sampled anti-aliasing is used to represent transparency in a
pixel [Enderton et al. 2011].

Offsets and Subdivision Our intersection algorithm is based on off-
sets for Bézier curves and subdivision. The offset to a polynomial
curve is not polynomial in general [Elber et al. 1997]. A standard
approach is subdivide the curve until the offset of each subsegment
can be represented by a simpler primitive such as a line or curve.
This can be done recursively [Catmull 1974] (recursive subdivi-
sion) or more sophisticated rules can be used in order to reduce
the number of subdivisions [Hain et al. 2005]. A comparison of
different curve offset methods is presented by Elber et al. [1997].
Tiller and Hansen use quadratic Bézier curves to construct the off-
set curve, where the edges of the control polygon are offset [1984].
A method suited for non-constant curve radius, is to offset each
control point in their respective normal direction [Cobb 1984]. Re-

cently, Ruf [2011] presented a method for fast creation of quadratic
bounding-Bézier offsets of quadratic Bézier curves.

3 Algorithm Overview

In this section, we present a high-level overview and motivation
of some design choices of our visibility algorithm for high-quality
rendering of thin primitives, and we also introduce key terminology
used throughout this paper.

To sample visibility, we rely on line sampling [Jones and Perry
2000] rather than the commonly used point sampling. There are
several appealing aspects of the utilization of line samples when
rendering a scene. As noted by Gribel et al. [2011], compute power
rather than memory bandwidth is used to a greater extent, which
meshes well with recent trends in hardware development. Further-
more, sampling using lines effectively means that scene geometry is
considered through an entire dimension instead of at discrete points,
which means that there is a smaller risk of missing thin primitives
with line samples. As illustrated to the left in Figure 2, a line sam-
ple can be thought of as the triangle defined by the location of the
camera and by a line in screen space, where the triangle extends
towards infinity beyond the image plane. We will refer to these as
line sample planes or simply as line samples, where each line sam-
ple is parametrized by l ∈ [0, 1]. Usually, a small number of line
samples per pixel is required to faithfully sample visibility.

In general, a thin primitive is defined by a three-dimensional Bézier
spline, which represent the “core” of, say, a hair strand. In addition,
a two-dimensional profile is swept along the curve, and this traces
out the geometry that we need to compute visibility for. We call
the generated geometry a thin curve, for the lack of a better term.
A circular profile generates a shape similar to sweeping a sphere
along a curve [van Wijk 1985], and it is also related to computing
offset curves. See, for example, the recent work by Ruf [2011].
In all our examples, we will sweep a circular profile whose radius
varies along the curve, but this can be extended to other profiles.

In broad terms, our algorithm works as follows. For parallel ex-
ecution of our visibility algorithm, we employ a sort-middle ap-
proach [Molnar et al. 1994], where the geometry is binned to rectan-
gular pixel tiles. The geometrical content within each tile is binned
once more to line samples in the tile. Next, the actual intersections
between the curves and their associated line samples are computed.
This is illustrated in the middle in Figure 2. The intersection is ap-
proximated by a set of intervals defined by a start point and an end
point in lz-space, where z is depth. When all intervals for a line
sample in a tile have been identified, visibility has to be resolved by
finding the nearest (in depth) interval segments along the entire line
sample. To that end, we present a simple, yet very efficient resolve
procedure, which is substantially faster than the resolve presented
by Gribel et al. [2010]. An example is shown to the right in Fig-
ure 2. We store intervals in a binary heap ordered according to start-
ing points, and resolve visibility in one pass without extra sorting
and no extra storage. Shading is computed by taking point samples
over the intervals. In the end, the colors from all line samples of a
pixel are weighted to get the final color of the pixel.

Next, we present our visibility engine, which includes a description
of our geometry representation, intersection computations, and our
new resolve procedure.

4 Visibility Engine

In this section, we describe all the involved components and algo-
rithms in our visibility engine for high-quality thin curve rendering.
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Figure 2: Left: a line sample is defined by the camera location and a line (red) in screen space, and parameterized by l. Middle: two curves
with thickness intersect the line sample. Right: visibility is resolved in the lz-plane by finding the closest surfaces in depth, z, along l. As can
be seen, the yellow thin curve occludes part of the green thin curve over this line sample to the right, but not to the left.

First, our representation of thin curves is presented, and then fol-
lows our intersection algorithm between a line sample and a thin
curve in Section 4.2, which is extended in Section 4.3 to handle sit-
uations where the projected width of a curve covers many pixels.
Finally, our novel resolve procedure is presented in Section 4.4.

4.1 Thin Curve Representation

We represent a thin curve by a quadratic Bézier spline, which is
a series of connected quadratic Bézier curves. In addition, the
“thickness”, or radius, varies along our thin curves. A quadratic
Bézier curve segment is defined using three control points [Farin
2002]. We use both spatial control points, pi, as well as radii, ri,
i ∈ {0, 1, 2}, to define the curve’s position, p(t), t ∈ [0, 1], and
interpolated radius, r(t):

p(t) =

2∑
i=0

Bi,2(t)pi, r(t) =

2∑
i=0

Bi,2(t)ri, (1)

where Bi,2(t) are Bernstein basis polynomials. The varying radius
makes it possible for, e.g., a piece of fur to be thicker at the animal
body and thinner towards the other end. Note that the degree two
of the Bézier curves was chosen to make the intersection algorithm
simpler, but in principle, a higher degree can be used at the cost of
a more involved intersection algorithm.

In general, the radius controls the size of a two-dimensional profile
that is used to define the character of the thin curve. In all our ex-
amples, we use circular profiles. The geometry of the thin curve is
defined by sweeping the two-dimensional profile along the Bézier
curve while varying the size of the profile according to the inter-
polated radius, r(t). This is illustrated in Figure 3. Instead of a
circular profile, one can use two connected straight lines, e.g., a
V, which could be used to model grass, for example.1 Exploring
different profiles and developing their corresponding intersection
tests is left for future work. It is important to ensure (at least) G1

continuity when connecting neighboring Bézier curves. Any global
optimization methods [Farin 2002] can be used for this, or simpler
heuristics as desired by the user.

In Appendix A, a memory-efficient representation is presented.
Next, we present our intersection method between a line sample
and a thin curve.

4.2 Thin Curve/Line Sample Intersection

Our visibility engine requires us to compute the intersection be-
tween thin curves and line sample planes. Our approach to solving

1This would require extending each control point with a binormal as well
in order to establish a coordinate system for each t. This is not needed for
circular profiles since they are fully symmetric.
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Figure 3: A thin curve composed of two quadratic Bézier curves. A
circular profile is used in this example, and each control point con-
sists of a three-dimensional position, and a radius of the circular
profile. The spatial Bézier curve to the left is defined by {pi}, while
the one to the right is defined by {qi}, i ∈ {0, 1, 2}. Note that to
ensure G1 continuity, we set p2 = q0, and also make sure that the
tangent directions at that shared position is the same on both sides.
C1-continuity is obtained if the tangents also have the same length.

this efficiently is based on using offsets [Elber et al. 1997; Tiller
and Hanson 1984; Cobb 1984; Ruf 2011]. We will use approxi-
mate offsets, and intersect these with the line sample planes using a
subdivision technique to reach a certain error tolerance. The offset
intersections are then projected to screen space (along the sample
line), connected into intervals, and fed to the visibility engine.

4.2.1 Offsets

The offset, o(t), of a curve can be said to represent all points being
located at a distance, r(t), in the normal direction of p(t). The
normal is defined as n(t) = p′(t)×v(t)

|p′(t)×v(t)| , where p′(t) and v(t) are
the curve tangent and view-vector, respectively. In such a setting,
the two offset curves of p(t) can be described as:

o±(t) = p(t)± r(t)n(t). (2)

A consequence of the presence of the square root in the expression
for n(t) is that, even though p(t) is in polynomial form, its off-
sets o±(t) are, in general, not [Elber et al. 1997]. Hence, to find
the intersections efficiently, we use approximations, o±a (t), of the
real offsets o±(t). The offset approximation by Cobb [1984] is
defined by the control points of the original curve, offset by a con-
stant amount, r, in their respective normal direction, ni. Since we
have varying radius along the curve, we use the following, slightly
modified version of that offset approximation:

o±a (t) =

2∑
i=0

Bi,2(t)(pi ± rini), (3)
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Figure 4: A horizontal line sample (purple) is shown together with
a number of quadratic Bézier curves, p(t), with thickness. The
two offset curves, o+

a (t) and o−a (t), of p(t) are also shown. Since
the offset curves are approximate, we use a subdivision approach
to refine the offsets until the error is sufficiently small. First, an
offset is created from p(t), and then, depending on curvature, it
is subdivided in order to reach the desired error tolerance. The
second curve from the left has modest curvature and requires no
subdivision at all, while the rightmost, which is strongly curved
and even contains a self-intersecting loop, requires several subdi-
visions. Such cases are very rare in practice. Once one or multiple
satisfactory offset segments (fat black curves) are found, they are
intersected with the line sample to produce roots outlining the sil-
houette of the intersection (solid horizontal lines).

where n0 = n(0), n1 = n(0.5), n2 = n(1), r0 = r(0), r1 =
r(0.5), and r2 = r(1). The two offset curves, o+

a (t) and o−a (t), are
illustrated in Figure 4 for several examples. Intersecting Equation 3
with a plane yields a second degree polynomial, and it is therefore
fast and simple to compute these intersections. However, similar to
Cobb’s method, it will produce approximate offsets that, in general,
underestimates the real offset. Given a relative error tolerance, ε,
the offset approximation, oa(t), will meet this tolerance at a certain
t, if the following expression holds:

r(t)2(1− ε)2 ≤ (oa(t)− p(t))2 ≤ r(t)2(1 + ε)2, (4)
which simply is a more efficient calculation of the relative error test:
‖1− ‖oa(t)− p(t)‖/r(t)‖ ≤ ε. To obtain arbitrary precision, we
use a subdivision process, which is described next.

4.2.2 Offset Creation by Subdivision

The approximate offsets, o±a (t), are created by splitting p(t)
through subdivision into shorter segments. As the segments get
shorter, the offset approximations become more accurate. Hence,
accuracy is traded for increased cost of subdivision and offset gen-
eration. The nature of the approximation in Equation 3 implies that
the end-points of the offset approximation will correctly match the
real offset, and subdivision will therefore ensure convergence to-
wards the real offset due to the end-point interpolation property of
Bézier curves [Farin 2002].

To avoid unnecessary work, we cull away and abort subdivision for
offset segments that will not end up intersecting the line sample.
Since the control point triangles of o±a (t) do not necessarily bound
the real offset, these control point triangles cannot be used for this
purpose. Instead, we cull against the offset bound of p(t), which
we define as the convex hull of circles of radius, ri, located at the
control points, pi. Once an offset bound is above or below a line
sample, the corresponding offset curve can be culled safely.

To be as memory efficient as possible, the algorithm subdivides
successively by maintaining a stack of t-intervals that are eligi-
ble for intersection. The starting element of the t-stack is set to
∆t = [0, 1], meaning that the entire offset is eligible initially. We
will use subdivision [Farin 2002] of the Bézier curve in our algo-
rithm, and will use the notation p∆t

i for the control points of a
subdivided Bézier curve, derived from pi, which is valid over ∆t.
Given a curve p(t), defined by pi, and a line sample, L, the algo-
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Figure 5: Left: evolution of curve offset through subdivision. An
offset curve, o+

a (t) is created by displacing the control points of the
original curve, p(t), in the normal direction. With no subdivision,
N = 0, the offset always underestimates the true offset. As N in-
creases, the core curve is split into smaller and smaller segments,
and the accuracy of the offset increases. Right: Up to six intersec-
tions may arise along a line sample in cases with self-intersection.
Here, only four are kept: two from the outer offset, and the outer-
most two from the inner offset.

rithm has the following steps, applied to one side (either o+
a (t) or

o−a (t)) of the offset at a time:

1. Pop the top element, ∆t, from the t-stack, and subdivide the
curve using De Casteljau’s algorithm to obtain p∆t

i . If the
t-stack is empty, then exit algorithm.

2. If L does not intersect the offset bound of p∆t
i then goto 1.

3. Create approximate offset to p∆t
i according to Equation 3.

4. If the error test, according to Equation 4, of the approximation
is fulfilled: compute intersections between the approximate
offset and L and project them to screen space. Else, split ∆t
into two halves and push to the t-stack. Goto step 1.

In a final step, intersections between the end-cap lines of the thin
curve and L are computed. The output from the intersection al-
gorithm for a complete curve, including both offset curves and the
end-caps, is up to four intersection points. See Figure 4.

The termination criteria in step 4 with the user-defined error toler-
ance, ε, is preferably complemented with a maximum subdivision
depth, Nmax. The t-stack will then contain at most 2Nmax ele-
ments, and each element ∆t can be stored using 2 · 16 bits of mem-
ory. In addition to the storage for the stack, storage is needed for
the current subdivided control points, p∆t

i , its offset approximation,
and the roots in t, generated from solving the second degree poly-
nomial. The memory requirements are thus bounded and relatively
small. For practical reasons, we evaluate the error function, e(t), in
Equation 4 at two discrete positions spread uniformly over the in-
terval ∆t. The end points of ∆t are not included since the error is
zero there. As a heuristic, we require that the error tolerance is to be
met at these two locations before terminating the subdivision. For
thin curves, we have observed that tolerances of ε = 0.5%−1% are
typically sufficient. The left part of Figure 5 illustrates convergence
of the offset by subdivision for a heavily bent curve.

Next, the intersection points are connected into intervals using a
few simple heuristics. If only two intersections are present, they
are obviously connected and we are done. For four intersections,
there will be two intervals that are either disjoint or overlapping,
depending on the curve parameter, t ∈ [0, 1]. See Figure 4. The in-
tervals are formed in a disjoint manner if the first two and last two
intersections along L are disjoint with respect to t (third example
in Figure 4). However, if the t-spans of the first pair and last pair
overlap, the intervals are consequentially formed to overlap, simply
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Figure 6: To compute the intersection between a curve whose width
projects to many pixels, and a line sample plane, the time ts and te
are first computed. These are the times when the moving circle (as
a function of t) first intersects the line sample plane, and when it
exits. In this case, we generate three extra circles between ts and
te, and all circles are intersected against the line sample plane.
Together these form a tessellated approximation (right) to the true
intersection.

by connecting the first intersection point with the third, and the sec-
ond with the fourth (rightmost example in Figure 4). Overlapping
intervals is a result of curves that undergo self-intersection. Self-
intersecting curves, such as the right curve in Figure 5, may in fact
give rise to as many as six intersections along the sample line. For
simplicity, our algorithm keeps only the outermost two, limiting the
number of intersections to four for the entire curve.

Though self-intersection may seem somewhat abstract and unintu-
itive since real-world objects usually do not self-penetrate [Tiller
and Hanson 1984], it is nevertheless commonplace in our setting as
curves are projected from 3D to 2D. In other words: a curve with
no self-intersection in 3D-space may self-intersect when projected
to 2D from a certain point of view. It is for this reason necessary
for our algorithm to robustly handle all kinds of curve behavior.

4.3 Visibility for Large Projected Curve Widths

When the projected width of a curve covers many pixels, it should
become possible to see the geometrical shape of the curve. For
example, a hair strand should look like a curved cylinder. The al-
gorithm in Section 4.2 only gives the endpoints of an intersection
between a thin curve and a line sample. When the projection is
rather large, this is not sufficient. Here, we present a simple exten-
sion which solves this case.

Recall that the curve is described by a Bézier curve, p(t), and a
radius, r(t). For circular profiles, this can be interpreted as a circle
with varying radius that moves along the curve, p(t), as a function
of t, and we need the intersection between the thin curve and the
line sample plane. This intersection consists of one or more closed
curves.

To this end, the normal used for thin curves in the previous section
is replaced by an expression that generate offset curves above and
below the thin curve along the y-axis:

n(t) =
p′(t)×

(
p′(t)× (0, 1, 0)

)
|p′(t)×

(
p′(t)× (0, 1, 0)

)
|
. (5)

Next, we use the method from the previous section to compute
the first time, ts, where the moving circle touches the line sample
plane, and the time, te, when the moving circle exits the line sample
plane. This is illustrated in Figure 6. Given the time interval, we
essentially use a tessellation procedure to compute an approxima-
tion of the true intersection curve, which, in general, is a complex

Figure 7: An extreme example of thin curves whose widths project
to a large number of pixels (about 20 at the base). Note that each
hair strand’s width transitions to subpixel size towards their outer
end points.

high-order curve. First, n uniform t-values between ts and te, are
computed, i.e., ti = (1 − αi)ts + αite, αi = i/(n − 1), where
i ∈ {0, 1, . . . , n − 1}. In our implementation, we use n = 32.
However, any number can be used, and it may be beneficial to cal-
culate a suitable number based on the thickness of the curve. Next,
n circles are generated centered at p(ti), with radius r(ti), and the
normal of the plane equation in which the circle lies is p′(t), i.e.,
the tangent of the curve. These circles are intersected with the line
sample plane, and the points connected to form a closed tessellated
curve. This is shown to the right in Figure 6. The lines of this
tessellation are inserted (as usual) as intervals into our visibility en-
gine. An example of possible results using this technique is shown
in Figure 7.

As discussed previously for thin curves, a single curve can create
multiple disjoint intersections with a line sample. One such exam-
ple is the third curve in Figure 4. Self-intersecting curves, such as
the right curve in Figure 5, exhibits a similar behavior except that
the two intervals overlap. For thick hairs, each such interval is tes-
sellated independently of others.

4.4 Interval Resolve Procedure

As described in the previous subsections, the intersection computa-
tions between thin curves and a line sample generate a list of inter-
vals. In order to determine the visibility along a line sample, and
ultimately determine the color of the pixels overlapping the line
sample, we need to find the (clipped) intervals closest in depth to
the camera. By replacing t (time) for l (the parameter along the line
sample), it would be possible to use the resolve procedure by Gribel
et al. [2010]. However, we have devised a novel resolve algorithm,
specialized for opaque geometry, which is simpler, uses less mem-
ory, and is therefore faster. Our algorithm is described below.

All intervals are stored in a binary heap [Cormen et al. 2009], or-
dered by their starting interval point. Note that the intervals are
not sorted and we simply perform a build heap operation which
takes O(n) time. This enables us to do efficient insertions, and
removals, while avoiding the dependent memory accesses inherent
in any kind of self-balancing search tree. Our algorithm performs
a single sweep over the line sample and process two intervals at a
time. For each pair, the space that separates them can be resolved
immediately and accumulated to the exposed pixels. The sweep
continues with the interval closest to the camera. If the occluded
interval spans past the point of occlusion, it is reinserted into the
heap at a point where it may be visible again. The details are shown



in Algorithm 1. An illustration of how our resolve works in a simple
situation is shown in Figure 8.

The most expensive parts in the resolve procedure are the removal
from and the insertion to the heap. As such, it is very important to
realize that these operations can be performed simultaneously. We
can read the minimum element from the heap by inspecting the first
value in its array. Removal moves the last element in the array to the
first position and then restores heap order. Insertion puts the new
element last and restores heap order. By delaying the removal of
the minimum element until the very end of the loop, we can choose
whether to replace the minimum element by the interval that is to
be reinserted, or by the last element of the heap. We can therefore
get away with a single restore of heap order. This also ensures that
instruction divergence is kept to a minimum since we only need a
small branch deciding what element to put first in the heap. This
property is very important for GPUs.

Note that each interval is stored only once in the heap which means
that given n intervals, we need to store only n items. The memory
requirements are thus predictable as they do not depend on the geo-
metric relationship between intervals. Given n intervals, the previ-
ous resolve [Gribel et al. 2010] needs to store at least 2n items, and
in the worst case, 1

2
(3n + n2) items depending on the number of

intersections. Another benefit of our algorithm is that we only inter-
sect intervals against the interval closest to the camera, resulting in
far fewer intersections than when finding all intersections between
all intervals. The number of intersections are kept to a minimum
since our algorithm includes a form of occlusion culling. When an
interval is (partially) occluded, it will be discarded from all calcu-
lations until a point where it may be visible again (if such a point
exists). When the interval is no longer occluded by the previous
occluder, it is checked again against the interval closest to the cam-
era. If it is still occluded, it will be discarded again. An interval
can thus be efficiently occlusion culled even if it is only occluded
collectively by multiple intervals.

The algorithm shown here includes intersections between intervals
for completeness only. In our current implementation, all intervals
are treated as flat, i.e., after projection, the interval gets the aver-
age depth of the two end points. This approximation is acceptable
because our intervals are very thin (even for thick curves as they
are tessellated into multiple thin intervals). This makes the perfor-
mance improvement with respect to intersections less important for
our purposes. Disregarding intersections, our resolve is still more
efficient than the previously described algorithm as they first need
to sort all intervals and then maintain an additional sorted list of ac-
tive intervals during the sweep. In contrast, we only need a single
data structure that is manipulated very efficiently.

5 GPU Implementation

Our GPU pipeline resembles a recent software sort-middle
pipeline [Laine and Karras 2011]. The major difference is that our
pipeline is used for rendering thin curves efficiently using line sam-
ples, rather than rendering triangles using point samples. In this
section, we describe the different stages, namely, setup, binning,
rasterization and sample blend, of the pipeline. The discussion in
this section refers to pixels in the context of two line samples per
pixel. A straightforward way to increase the number of line samples
per pixel is to render the image in higher resolution, and then down
sample the resulting image to the desired resolution. Our current
implementation uses either two (no down sampling) or four (2×
down sampling) axis-aligned line samples per pixel.

Algorithm 1 Resolve

insert all intervals into heap ordered by start
ivala ← removeMin(heap)
ls ← start(ivala)
while heap 6= ∅ do
ivalb ← removeMin(heap)
le ← start(ivalb)
accumulate ivala ∈ [ls, le] to current pixel
ls ← le
if end(ivala) ≤ ls or ivala occluded by ivalb after ls then

swap(ivala, ivalb)
end if
i← intersect(ivala, ivalb)
if i 6= nil and i > ls then

clip part of ivalb before i
reinsert ivalb in heap

else if end(ivalb) > end(ivala) then
clip part of ivalb before end(ivala)
reinsert ivalb in heap

end if
end while
le ← end(ivala)
accumulate ivala ∈ [ls, le] to current pixel

5.1 Setup

The input to the pipeline is a set of thin curves, defined by quadratic
Bézier curves (BCs) with varying thickness (Equation 1). Our
pipeline can either use interpolation of thin curves using the method
in Appendix A, or directly render the curves without interpolation.
For interpolation, we use thin control curves. Each thin control
curve consists of a series of control Bézier curves (CBCs).

The purpose of this stage is to generate a record for each BC of each
thin curve. A BC is identified by a 32-bit BC identifier, where the
high 24 bits identify the thin curve index, and the low 8 bits identify
the BC index. When interpolating a BC from the CBCs, the weights
and base CBC indices are fetched using the thin curve index. To get
the actual CBC indices, the base CBC indices are offset by the BC
index. Each final record stores the projected bounding box as well
as BC identifier. In the current implementation, each such record
requires 16 bytes, where the last 4 bytes are used as padding to
preserve alignment. If we instead opt to recompute the bounding
box when needed, we can get away with as little as 4 bytes, which
might be preferred in cases where memory is scarce. In addition,
each BC is culled against the view frustum. If a BC is culled, it is
only flagged as such to maintain a fixed input-to-output mapping.
The flagged BCs are removed in the next stage.

In order to handle thick curves, the width of a curve is estimated
by calculating the projected radius of each control point. If this
radius is larger than a pixel, the curve is flagged as thick. A parallel
partition is used to make sure that all thick curves appear before any
thin curves. This order is conserved throughout the pipeline.

5.2 Binning

This stage subdivides the screen into tiles of 128 × 128 pixels.
The BCs are binned to per-tile lists, called bin lists. In order to
avoid excessive synchronization, a large thread block is allocated
per streaming multiprocessor (SM), so that only a single thread
block is active in each SM at any given time. These thread blocks
are kept running until all input data have been processed, similar
to persistent threads [Aila and Laine 2009]. We use thread blocks
with 16 warps, i.e., 512 threads. For each tile, a separate bin list is
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Figure 8: Illustration of our resolve procedure (from left to right). We have two intervals, one red and one blue, and desire to find the closest
interval segments along l. The fat lines indicate resolved color, which will be accumulated to the final pixel color. First, all intervals are
ordered in a binary heap by their starting position along l (first diagram). The algorithms then works by sweeping l, keeping track of the
interval currently being closest to the camera, that is, with the smallest z-value. At each encountered starting point, the closest interval is
selected while the occluded interval is moved to the next-coming starting point (diagram 2). At intersections, the interval being occluded
initially is clipped into a (potentially) visible part (diagram 3). This way, only two intervals needs to be processed at a time.

kept for each SM, which allows for parallel insertion without inter-
SM synchronization. The number of SMs on an NVIDIA GTX 580
GPU, for example, is 16, which makes this a reasonable approach.
Each thread block reads chunks of BCs, and may compact them due
to culled segments. More chunks are read until we have 512 seg-
ments within the view frustum to process (or until all segments have
been fetched). This ensures that all threads within the thread block
have work to do. Shared memory is used to efficiently coordinate
bin list insertion between threads [Laine and Karras 2011].

5.3 Rasterization

This pipeline stage is divided into two separate kernels, coarse and
fine rasterization. First, coarse rasterization is performed using the
bin list of the tile, and then fine rasterization is performed to calcu-
late the intersections with the line samples.

Coarse Rasterization Here, the BCs in each 128 × 128 tile is
binned to the line samples within each tile. To determine whether
a BC overlaps with a line sample, the BC’s bounding box is simply
tested against plane of the line sample.

Fine Rasterization During fine rasterization, each warp pro-
cesses a single line sample. The line sample is divided into 32 4-
pixel regions associated with memory for storing intervals overlap-
ping that region. The current size of each list is kept in shared mem-
ory. This memory is allocated for each thread of a warp when the
kernel is launched and is reused for each line sample processed by
a warp. Typical memory requirements for these lists can be found
in Section 6.

First, all BCs corresponding to thick curves are processed for the
line sample. Each thread calculates the tessellated intersections for
a single BC. The resulting intervals are shaded and appended to
overlapping interval lists using shared memory atomics. Then, all
remaining BCs are processed. Each thread calculates the intersec-
tion between the line sample and a BC. The resulting intervals are
once again shaded and appended to overlapping interval lists using
shared memory atomics. Once all BCs have been processed, each
thread becomes responsible for a 4-pixel region and its associated
interval list. Each interval list is then resolved according to the al-
gorithm in Section 4.4 in parallel. Occlusion culling is performed
both using the bounding box of each BC as well as for each interval
before it is put into an interval list.

5.4 Sample Blend

After rasterization is complete, we essentially have two copies of
the frame buffer; one for horizontal line samples and one for verti-
cal line samples. The purpose of this stage is to combine the result
of these sampling directions in a smart way. For each pixel, we
blend between two line samples using a similar heuristic for curves
that Jones and Perry [2000] use for triangle edges. As an extension,
the contribution by a curve is multiplied by its visible length along
the line sample. The purpose of this extension is that misaligned oc-
cluded curves should not change how the weighting is performed.
Also, we attempt to punish misaligned curves by providing a neg-
ative weight for them. Below we give the details of this weighting
for the reproducibility of our work.

If the curve tangent is projected to screen space, the angle, α, from
the line sample to the tangent influences the weight. In particular,
we use the weight:

w =

+
(

sinα−sin β
1−sin β

)2

, if α > β

−
(

sin β−sinα
sin β

)2

, otherwise
, (6)

where β is the threshold were the curve is assigned a negative
weight. We use β = 15◦. This weight is integrated during the in-
terval resolve procedure along with the color of the interval. During
sample blend, we have two weights, wh and wv , and two colors, ch
and cv , that represent horizontal and vertical line samples respec-
tively. If any of the line samples have a negative weight, the sample
with the largest weight will be picked. Otherwise, the following
formula, using a smoothstep function, is used to blend between the
samples:

cp = ch + (cv − ch) · s2(3− 2s), (7)
where s = wv

wh+wv
and cp is the final color of the pixel.

Sample blending is not perfect, e.g., when a single near horizontal
curve is in front of multiple near vertical curves. In this case, both
sampling directions may contain significant error. A simple way
to deal with those cases is to use more than two line samples per
pixel.

6 Results

Our implementation runs on an NVIDIA GTX 580, and all images
in this paper were rendered at 1024× 1024 pixels. For all our tim-
ings, we report how much time it took to render primary visibility
and local shading. The shadows were baked into the control points



HAIRY GUY Zoom 1 (furthest) Zoom 2 Zoom 3 Zoom 4 Zoom 5 Zoom 6 (nearest)
Our 110 ms 65 .33 dB 130 ms 60 .83 dB 140 ms 56 .23 dB 140 ms 52.05 dB 220 ms 48.65 dB 250 ms 47.39 dB

CudaRaster 1700 ms 56.62 dB 1150 ms 53.24 dB 660 ms 49.39 dB 550 ms 45.40 dB 670 ms 42.05 dB 800 ms 40.38 dB
OpenGL 20 ms 61.33 dB 30 ms 58.51 dB 90 ms 56.22 dB 80 ms 54 .75 dB 140 ms 52 .26 dB 160 ms 51 .13 dB

Table 1: Rendering times for the teaser scene compared to other algorithms. Each of the six leftmost zoom-levels in the image are included
here. Higher PSNR indicates closer resemblance to ground truth and is thus better. OpenGL is consistently faster, but overall only by a modest
factor. At far distances, our algorithm achieves better image quality than OpenGL does. CudaRaster requires 3− 15× more rendering time
than our algorithm, while also exhibiting lower PSNR.

Figure 9: Some different types of fur rendered with our algorithm.
From left to right, these models contain 50k, 100k, and 150k fur
strands, where each fur strand consist of 8, 16, and 16 Bézier
curves, respectively. The rendering times were (left to right) 78
ms, 358 ms, and 531 ms. Zoom in the pdf to explore the quality of
the visibility.

of the Bézier curves using opacity shadow mapping [Kim and Neu-
mann 2001] with line sampling. If n layers are used, we have seen
that the shadow map generation takes approximately n ·tms, where
t is the time for computing primary visibility. For simplicity, all
our images were rendered with Kajiya and Kay’s phenomenologi-
cal appearance model for hair [1989]. In the case of thick curves,
we apply a simple normal variation that integrates to the same color
as the corresponding thin curves. Our focus in this research is on
accurate visibility, but we note that other appearance models, such
as the one by Marschner et al. [2003], should be possible to use as
well. In all our images, we use two horizontal and two vertical line
samples per pixel.

To make comparisons, we use two additional algorithms, namely,
a modified version of Laine and Karras’ CudaRaster [2011] and
OpenGL. CudaRaster is modified to support 64 samples per pixel
and, since it does not support tessellation, the thin curves were tes-
sellated in a separate stage and fed to the pipeline as triangles. In
this separate stage, we tessellate until the screen-space area of the
triangle formed by the control points of a curve is smaller than a
threshold of 0.5 or 1, depending on the scene complexity. We take
care to only tessellate curves within the view frustum in order to
make the comparison as fair as possible. The time required for
this tessellation stage have been excluded from all measurements
of the performance of CudaRaster. The OpenGL implementation
uses multi-sampling anti-aliasing (MSAA) and hardware tessella-
tion with pre-tessellation frustum culling to achieve maximum per-
formance. An MSAA rate of 8 was used in combination with down-
sampling from a render target enlarged 4 × 4, for an effective rate
of 128 samples per pixel. It should be noted that 128 is the maxi-
mum, single-pass sampling rate available for OpenGL, due to size
restrictions of the render target. To reach a comparable curve qual-
ity, we implemented adaptive tessellation to sub-pixel size (0.25
pixel). We measure the quality of the algorithms by calculating
peak-signal-to-noise (PSNR) figures between ground truth images
and images produced by each of the algorithms. For ground truth,
we use OpenGL with tiling to increase the sampling rate to 8192
samples per pixel.

In Figure 1, we show that our visibility algorithm can render prac-
tically noise-free visibility of a complex model from many differ-
ent distances. The hair strands in this model are each unique, i.e.,

Figure 10: Closer rendering of the fur shown to the right in Fig-
ure 9.

the thin control curve interpolation method in Appendix A was not
used. As mentioned in the caption, the image to the left (where the
camera is farthest away) renders in 110 ms, and the most detailed
close-up of the face renders in 470 ms. Note that the leftmost im-
age is relatively difficult to process quickly since there are many
hair strands per pixel, which increases intersection computations.
The rightmost image showcases our ability to render thick curves.
Rendering times and PSNR figures for the different algorithms for
this scene is shown in Table 1. It is clear that our algorithm outper-
forms CudaRaster in every case, both concerning PSNR and ren-
dering time. OpenGL is usually better than our algorithm, but it is
worth noting that we gain performance as we zoom in to the image.
Our quality is also better when looking at the model from far away.
It should be noted that when the model is far away, PSNR increases
by default due to the presence of more white pixels.

In Figure 9 and 10, we show some renderings of different fur with
different shader parameters with many fur strands per object. These
models use the interpolation technique from Appendix A with
5,762 thin control curves. The fur ball to the right can be seen as a
stress test for our algorithm, since it consists of 16 · 150k= 2,400k
Bézier curves. We show a detailed performance comparison of the
ball in the middle in Table 2 at different zoom levels. From far
away, we have better PSNR than OpenGL, but OpenGL is faster. In
the close up, OpenGL is slower, but have better PSNR. CudaRaster
performs worse than the other algorithms in all cases.

It is clear that OpenGL outperforms our algorithm in almost every
scene. We are, however, very close and would like to stress that it



MINK
Our 140 ms 56 .24 dB 360 ms 41.37 dB 130 ms 44.19 dB

CudaRaster 1420 ms 48.70 dB 1200 ms 34.91 dB 690 ms 38.58 dB
OpenGL 60 ms 53.49 dB 230 ms 43 .30 dB 140 ms 50 .63 dB

Table 2: Rendering time comparisons for the middle ball of Fig-
ure 9 at various distances. Up close (right), our algorithm is able
to cull large parts of occluded geometry and performs faster than
OpenGL, even though PSNR is lower. At a distance (left), however,
while being slower than OpenGL, our rendering has better PSNR.

Figure 11: Our algorithm renders the GRASS scene, containing
150k straws with a total of 3 million curve segments, in 406 ms.

is quite remarkable that a software-only approach can be this close
performance-wise to a pipeline accelerated by fixed-function tessel-
lation & rasterization units, and by color & depth compression units
(which our algorithm cannot use, nor can CudaRaster). If the same
algorithms were implemented on a CPU, we argue that the perfor-
mance would be more comparable to the comparison between our
algorithm and CudaRaster. Still, the fact that our algorithm runs
extremely well on a GPU shows that it lends itself well to massive
parallelization.

We investigated how our algorithm performs with respect to image
resolution. For the fur ball to the right in Figure 9, we obtained the
following rendering times:

512× 512 768× 768 1024× 1024
328 ms 422 ms 531 ms

As can be seen, the time per pixel decreases with higher resolutions.
In fact, the time per pixel for 1024 × 1024 is less than half of that
for 512 × 512, for example. This is to be expected since there
will be fewer intervals per pixel the higher resolutions we use, and
also better parallel utilization of the GPU. The rendering time of a
frame is typically divided into about 2.5% for coarse rasterization
and 97% for fine rasterization, while the sum of the other stages
(setup, binning, sample blend) is negligible. Hence, it is clear that it
is the fine rasterization stage that should be optimized for improved
performance. We leave this for future work.

Below we show the memory usage of our pipeline when rendering
the fur ball in the middle in Figure 9:

BC records Bin lists Tile lists Interval lists Total
25.9 MB 9.7 MB 150.7 MB 38.4 MB 225MB

Here, BC records are the records created in the setup stage, bin
lists represents the memory used for binning, tile lists represents the
memory used for coarse rasterization, and interval lists represents
the memory used for storing intervals during fine rasterization.

Another test scene rendered with our algorithm is shown in Fig-
ure 11.

7 Conclusions and Future Work

We have presented a novel visibility engine for thin curve rendering.
Contrary to previous work, our method uses a single, continuous
geometric representation from all view directions and at all scales.
Our new resolve procedure for intervals contributes significantly to
high performance, while using our intersection algorithm between
thin curves and line samples contributes to high-quality visibility.
There are many avenues for future work. First, it would be interest-
ing and challenging to extend our approach to handle motion blur,
perhaps with a method similar to how motion blur was dealt with
for line sampled triangles [Gribel et al. 2011]. Using stochastic sim-
plification [Cook et al. 2007] of the thin curves, so that fewer, but
fatter curves can be rendered from far away also seems worthwhile
to explore, since performance would increase. It is clear that hair,
especially blond hair, is transparent, and we believe that the method
by Gribel [2010] for resolving for visibility could be used off the
shelf for this. However, we would also like to research faster meth-
ods for transparent resolve. Finally, we will also continue working
on extended shadow mapping techniques. If the intervals are com-
pressed, it should be possible to use a line sampled shadow map.
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A Compact Representation

Here, we present a method that makes thin curve representation
more memory efficient. To do this, we define thin curves by in-
terpolating thin control curves that emanate from the vertices of a
triangular control mesh. This means that there will be a thin con-
trol curve defined at each vertex of the triangle, and thin curves
generated “over” the triangle using interpolation of the three thin
control curves. An interpolated thin curve is represented by three
thin control curve indices, (i0, i1, i2), and barycentric coordinates,
which are used to compute the starting point inside the triangle and
to blend the thin control curves. See Figure 12. This is similar to the
approach taken by Nguyen and Donnelly [2005], with the exception
that we keep this efficient representation throughout the rendering
pipeline as well, rather than only using it for simulation. Conceptu-
ally, the triangular control mesh can be thought of as the scalp when
performing hair rendering, and the landscape mesh when perform-
ing grass rendering, for example. With this approach, geometry
is amplified by interpolating the thin control curves, which causes
nearby curves to clump and align with each other. This behavior
can be observed in, e.g., hair [Bertails et al. 2003]. In practice, in-
terpolated thin curves are generated by distributing point samples
over the triangular control mesh. It should be noted that this com-
pact representation is not a requirement for our visibility algorithm.
Instead each, e.g., hair strand, can be defined as a complete thin
curve without interpolation. In Section 6, both methods are used.


