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Figure 1: A chess scene with motion blur rendered with stochastic rasterization with 49 point samples, our semi-analytical visibility algorithm
in the temporal domain with four line samples in the spatial domain, and finally with stochastic rasterization with 256 point samples. Our
work focuses on spatio-temporal visibility, and for 49 samples it takes 3.8 seconds to compute visibility and simple shading (ambient occlusion
not included) at 1024 x 768 pixels. With these settings, our algorithm computes the middle image in 3.6 seconds. Note that the image with
49 samples is rather noisy, and even with 256 samples, there is still some noise, while the motion in our image is essentially free of noise.
Furthermore, the quality of the spatial anti-aliasing (look at the static edge at the top) in our image closely matches that of 256 point samples.

Abstract

We present a novel visibility algorithm for rendering motion blur
with per-pixel anti-aliasing. Our algorithm uses a number of line
samples over a rectangular group of pixels, and together with the
time dimension, a two-dimensional spatio-temporal visibility prob-
lem needs to be solved per line sample. In a coarse culling step, our
algorithm first uses a bounding volume hierarchy to rapidly remove
geometry that does not overlap with the current line sample. For the
remaining triangles, we approximate each triangle’s depth function,
along the line and along the time dimension, with a number of patch
triangles. We resolve for the final color using an analytical visibil-
ity algorithm with depth sorting, simple occlusion culling, and clip-
ping. Shading is decoupled from visibility, and we use a shading
cache for efficient reuse of shaded values. In our results, we show
practically noise-free renderings of motion blur with high-quality
spatial anti-aliasing and with competitive rendering times. We also
demonstrate that our algorithm, with some adjustments, can be used
to accurately compute motion blurred ambient occlusion.
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1 Introduction

Visibility computations is a fundamental core research topic in
computer graphics, and it has been active and vivid for more than
45 years. Algorithms for visibility play a central role in essentially
any type of rendering including, for example, rasterization, ray trac-
ing, two-dimensional graphics, font rendering, shadow generation,
global illumination, and volume visualization.

During the 1970’s and 1980’s, research on analytical visibility for
spatial anti-aliasing [Catmull 1978; Weiler and Atherton 1977] and
motion blur [Korein and Badler 1983; Catmull 1984; Grant 1985]
was rather popular. However, after Cook et al.’s stochastic point
sampling approaches were presented [1984; 1987], such techniques
pretty much fell into oblivion. Instead, visibility was either solved
using a depth buffer [Catmull 1974] or using ray tracing [Whitted
1980], and most often with some type of point sampling.

An interesting observation by the computer science community is
that the gap between available compute power and memory band-
width is large, and continues to grow rapidly [Hennessey and Pat-
tersson 2006; Owens 2005]. In addition, the power consumption by
amemory access and a floating-point operation differs by at least an
order of a magnitude [Dally 2009]. Hence, common advice today
is to refactor an algorithm so that it instead uses more computations
and fewer memory accesses. With this development of computer
architecture, one logical consequence is that it makes more sense to
(again) explore analytical visibility computations, which are com-
putationally more expensive than point sampling techniques.

To that end, we present a new visibility engine which is loosely
based on previous work on analytical visibility for spatial anti-
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aliasing [Catmull 1978] and on analytical motion blur with spatial
point sampling [Gribel et al. 2010]. Our goal is to generate high-
quality images with near-perfect anti-aliasing in both the spatial do-
main and in the temporal domain. To reduce the dimensionality of
the problem, we use line samples [Jones and Perry 2000] in screen
space, and solve for analytical visibility along such lines and over
time. We present a novel visibility engine for this, and show that
our algorithm can rapidly generate practically noise-free images on
many-core computers. We also show that a variant of our technique
can render ambient occlusion with motion blur.

2 Previous Work

There is a wealth of research in the visibility field, and in this
section, we review only the research that is most relevant to our
work. This means that we avoid discussing approaches based on
point sampling visibility, such as multi-dimensional adaptive sam-
pling [Hachisuka et al. 2008], for example.

Cook et al. [1987] presented the REYES rendering system using
rasterization of motion blur and depth of field with stochastic point
sampling [Cook et al. 1984]. Lately, much effort has been spent
on stochastic rasterization of (micro-)polygons for motion blur and
depth of field [Akenine-Moller et al. 2007; Fatahalian et al. 2009;
McGuire et al. 2010]. Ragan-Kelley et al. present a hardware ar-
chitecture for rasterizing motion blur and depth of field [2011]. By
decoupling shading from visibility, they essentially extend the con-
cept of multi-sample anti-aliasing to motion blur and depth of field.
While REYES’ target was offline rendering, this later line of re-
search is targeting interactive or even real-time graphics. In our
current work, point sampling is only used for shading.

Catmull [1978] presented a visibility algorithm that processes the
polygons from top to bottom, and from left to right in order to ex-
ploit coherence of the scene. A per-pixel clipping algorithm is ap-
plied where each edge clips the existing polygons into two groups
recursively in order to compute the exact polygon coverage, with
excellent spatial anti-aliasing as a result. The algorithm by Weiler
and Atherton [1977] is rather similar, but also describes how to ren-
der shadows and transclucent geometry. Korein and Badler [1983]
presented an analytical visibility algorithm for motion blur, where
each spatial point sample computed analytical coverage of disks
over time. After all geometry had been processed, a hidden surface
removal algorithm was applied to resolve for final sample color.
The details of how this technique can be extended to linearly mov-
ing triangles are given by Gribel et al. [2010]. Korein and Badler
were also the first to present accumulation buffering, which can be
used for all sorts of point sampling on a per-frame basis. Accumula-
tion buffering has been used for spatial anti-aliasing, depth of field,
and motion blur [Haeberli and Akeley 1990; Wexler et al. 2005].

Sung et al. [2002] decouple shading from visibility on a per-object
basis, somewhat similar to Burns et al. [2010], and use point sam-
pling for spatial antialiasing, with analytical visibility over time per
point sample [Korein and Badler 1983]. In our work, we also use
decoupled shading from visibility, and fall back on point sampling
of shading, with efficient reuse using a cache [Ragan-Kelley et al.
2011; Burns et al. 2010].

Jones and Perry [2000] presented a “near-analytic” screen-space
anti-aliasing technique that uses line samples to reduce dimension-
ality of the problem. All polygons in the scene are projected onto
these lines, and visibility resolved along the line with linear depth
per polygon. They use horizontal and vertical line samples through
the center of the pixels, and blend the results of these according to
the edges inside the pixel. A similar line of work was presented by
Gribel et al. [2010], where point sampling was used in screen space,
and “line samples” were used to analytically compute motion blur.
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Figure 2: At the top, a configuration of three triangles (in screen
space) intersecting a line sample (dotted line) is shown, and just
below, the depth functions, d, for the three triangles on the line
sample are illustrated. To the right, we have resolved for the closest
depth segment over the parameter; 1.

They also presented a lossy compression algorithm in order to han-
dle a large number of triangles per pixel. In our work, we combine
the work of Jones and Perry, Gribel et al., and Catmull to obtain an
algorithm for high-quality spatial anti-aliasing with motion blur.

Recently, Manson and Schaefer introduced wavelet rasteriza-
tion [2011], which can analytically rasterize polygons and Bézier
curves in two dimensions, and also three-dimensional meshes into
voxel grids. They rasterize the primitives into a hierarchical Haar
wavelet tree representation and show that it is robust to degener-
ate input. This is really interesting work that could potentially be
applied to motion blur as well. Finally, we refer to the survey by
Sutherland et al. [1974] for an overview of ten visibility algorithms
pre-dating the depth buffer [Catmull 1974], and to the overview by
Sung et al. [2002] for spatio-temporal anti-aliasing.

3 Algorithm Overview

In this section, we present an overview of our algorithm for gen-
erating images with high-quality spatio-temporal anti-aliasing. In
addition, we will first explain some key concepts around our sam-
pling strategy using analytical visibility computations. We assume
that the geometry consists of triangles, and that each triangle vertex
can move linearly in world space over time, ¢ € [0, 1].

Instead of using multiple point samples over a pixel for spatial anti-
aliasing, we choose to use a set of line samples [Jones and Perry
2000]. We define a line sample as an arbitrary straight line over
one or more pixels, and we will compute visibility analytically over
such lines. Over each line sample, Jones and Perry determine which
triangles overlap with the line sample, and compute the depth, d, at
the end points of each visibile segment. The depth, d = z/w, is
linear in screen space [Blinn 1992], which means that the depth at
the end points are sufficient to store. See Figure 2 for an example.

Geometrically, a line sample can be thought of as a three-
dimensional triangle with one vertex at the camera position, and
going through the end points of the line sample in world space, and
extending infinitely. Occasionally, we will refer to the plane of this
triangle as the line sample plane. A line sample is illustrated as a
blue line to the left in Figure 3. We parameterize along each line
using a parameter, [ € [0, 1]. A core difference compared to other
spatio-temporal visibility algorithms is that we resolve visibility in
the I¢t-space, where ¢ € [0, 1] represents the time dimension, and
l € [0,1] is the parameter along a line sample. For a static trian-
gle, the intersection between the triangle and the line sample plane
will be a single line,! which is the same for all values of . This is
illustrated in the [t-space to the left in Figure 3. When a triangle
starts to move, however, the moving triangle’s line of intersection

'Except when the triangle lies in the plane, in which case we will cull it
from further processing.



Figure 3: Left: a static triangle rendered over a 12 x 7 pixel grid. We show a single line sample (blue line) extending through a row of pixels.
The line sample plane is defined by the camera position and the line sample. The lt-space shows the triangle coverage over the line sample
and over time, which in this case is a rectangle covering the entire time interval. Right: a triangle being translated over t € [0,1]. The
triangle is visualized as green att = 0, red at t = 1, and each vertex moves linearly in between. As can be seen, when the triangle moves, it
traces out a different region in the lt-space. Each point, (1,t), will also have a depth, d, but that is not visualized here—see Section 4.

will change over time, and will trace out a different region in the
lt-space. An example is shown to the right in Figure 3.

The motivation for using line samples is manifold. First, a line sam-
ple can be thought of as infinitely many point samples on the line,
and therefore has potential for fast convergence. Second, as men-
tioned in the introduction, trading computations for bandwidth is
a general advice on today’s computing architectures. Finally, us-
ing line samples instead of performing a full analytical resolve in
the xyt-space reduces the problem from three to two dimensions
which makes it more tractable. In practice, we use sampling pat-
terns so that 2—4 line samples will intersect each pixel, and these
patterns are discussed in Section 7.

On a high level, our entire algorithm works as follows. First, a
bounding volume hierarchy (BHV) is built over all geometry in the
scene. A small rectangular region, called a tile, of the entire image
is rendered at a time. This allows for parallel execution on many
threads since a core can render to a tile independently of others. For
each tile, the BVH is traversed so that only geometry that overlaps
with the tile is processed. In the next step, each line sample inside
the tile is processed one at a time. Every triangle that intersects
a line sample is represented as a depth patch in ltd-space, where
each point, (I,t), has a depth, d. These depth patches can form
complex surfaces, and in Section 4 and in Appendix A, we present
how we construct these patches and approximate them with, what
we call, patch triangles in the ltd-space. We call our algorithm
semi-analytical, since most computations are analytical, except for
the approximation of the depth patches.

The patch triangles approximating a depth patch are sent to our visi-
bility engine (Section 5), which resolves for depth visibility over the
lt-space. This part of our algorithm was inspired by Catmull’s ana-
lytical screen-space anti-aliasing algorithm [1978]. When all trian-
gles have been processed, final visibility is resolved, and for each
pixel, the contribution of the line samples overlapping the pixel is
accumulated to that pixel’s color. In Section 6, we also show that a
variation of our algorithm can be used to compute motion blurred
ambient occlusion using “line samples” on the hemi-sphere.

4 Depth Patches

As illustrated in Figure 3, each moving triangle intersecting a line
sample will give rise to some region in [t-space. In addition, each
point, (I, t), will also have a depth, d. We call these surfaces in [td-
space depth patches. Figure 4 shows that these depth patches can
form rather complex surfaces, and it is quite obvious that there is
little hope in finding an analytical representation of these that also
is fast to process. Therefore, our approach is to approximate the
exact depth patches with a number of triangles, here called parch
triangles, in ltd-space. We use the following notation for a triangle
in world space. A linearly moving vertex is denoted p(¢t) = (1 —

t)q + tr, and a triangle is simply three vertices, pop1p2. Hence,
the triangle at t = 0 is qoq192, and the triangle at ¢ = 1 is rorira.
The term motion vector is used for r; — q,, and triangle edge for
any triangle edge at ¢ = 0 or ¢ = 1. Next, we describe how our
patch triangles are constructed.

Note that the entire surface of a moving triangle consists of the
triangles at ¢ = 0 and ¢ = 1, and three bilinear patches, each gen-
erated by a moving edge. The intersection between such a moving
triangle and a line sample plane will trace out one or more con-
nected regions in /t-space. The boundary of such a region is called
a patch outline, and consists of connected straight lines and curves.
This is illustrated in Figure 4. The straight lines originate from
the intersections between the line sample plane and the triangles at
t = 0 &t =1, and the curved segments will be generated by the
intersections between moving edges and the plane. Next, we argue
that the points in [¢-space, where lines and/or curved segments are
connected, are easily generated. We call them feature points.

First, we observe that the triangles at ¢ = 0 and ¢ = 1 will inter-
sect the line sample plane in lines in the /¢-space, and hence the
intersections between the plane and the triangle edges are feature
points. Second, we note that a moving edge traces out a bilinear
patch, which is a ruled surface. This means that the intersection
curve(s)® between a bilinear patch and a plane will be curves that
start and end in the intersection points between the plane and the
four edges of the bilinear patch. Hence, these intersection points
are also feature points. Therefore, we define the feature points as
all the intersections between the line sample plane and the triangle
edges & the motion vectors. The triangles att = 0 and ¢ = 1 can
each give rise to at most two feature points. In addition, each mo-
tion vector can give rise to one feature point. In total, this sums to
at most 2 4 2 4 3 = 7 feature points per moving triangle.

These feature points are marked with red crosses to the left in Fig-
ure 4, and at each feature point, it is straightforward to compute its
depth, d. Depending on the configuration of these feature points,
they need to be connected in a certain order. This is an impor-
tant implementation detail, and so in Appendix A, we describe how
the feature points are used to tessellate the true depth patch into a
number of patch triangles. In that appendix, we also describe how
the tessellation can be adapted to rapid change in the depth patch
function. For the next section, we assume that our visibility engine
receives a stream of patch triangles approximating the true depth
patch in [td-space for each moving triangle.

5 Visibility Engine

The purpose of our visibility engine is to analytically resolve vis-
ibility for a spatial line sample and ultimately compute the color

2There can be one or two such curves—see Appendix A.
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Figure 4: Left: illustration of a moving triangle intersecting the line sample plane (gray). The triangles at time t = 0 and t = 1 have black
outlines, and the motion vectors are purple. The feature points are marked with red crosses, and are all the intersections between the line
sample plane and the triangle edges and motion vectors. Middle-left: visualization of the bilinear patches that are traced out over time with
linear motion per vertex. Middle-right: the true depth patch in ltd-space. We generated this image using point sampling. Right: for this
depth patch, a possible approximation consists of the three green triangles, called patch triangles.

contribution from that line sample to each pixel. As mentioned in
Section 3, we process a rectangular block of pixels, called a tile, at
a time. Our geometry is represented in a three-dimensional bound-
ing volume hierarchy (BVH), where each leaf node may contain
one or more moving triangles. We cull the BVH against the frus-
tum spanned by the tile, and we further cull the remaining geometry
against the line sample plane.

At this point, we have a set of moving triangles that overlap with
the line sample, and we would like to find all visible patch triangles
(Section 4) in both the spatial and in the temporal domain, i.e., in the
lt-space. In order to support near-z clipping, all triangles are tested
against a line sample plane in view-space. The resulting patch tri-
angles are then individually clipped against near-z, projected into
viewport-space, and mapped along the sample line into /¢-space.
The [t-space is diced up into m X n uniform grid cells, where m
is the number of pixels that the line sample overlaps with, and n
is a user-defined constant specifying the number of subdivisions in
the ¢-dimension. The grid cells are referred to as [¢-cells, or simply
just cells. Our visibility engine operates completely in the lt-space,
and can be divided into three stages, namely, binning, depth sort-
ing, and pixel integration. Next, these three stages are described in
more detail.

5.1 Binning

The binning stage processes one patch triangle at a time, and finds
all patch triangles that overlap with each lt-cell. This is done by
conservatively rasterizing the patch triangle to the l¢-cells. For all
patch triangles overlapping a cell, a pointer to that patch triangle is
stored in a list of that cell. In addition, we perform a simple variant
of occlusion culling [Greene et al. 1993] in this stage. If a patch
triangle is found to completely cover a cell, the maximum depth,
Z¢ell | of the patch triangle over the cell is computed. That cell
is then listed as “fully covered” with ZSLL. All subsequent patch
triangles that overlap with a fully covered cell can be occlusion
culled (and not added to the cell list) if they are farther away than
that cell’s ZSL . In order to occlusion cull even when triangles are
not rendered strictly front to back we also store Zel Ifa newly
added triangle covers the entire cell and its Z%_ is less than Z<%1,
the entire cell can be cleared. After all patch triangles have been
processed, all potentially visible patch triangles that overlap with a
cell in the [t-space are known. It is the task of the following two
stages to resolve for final visibility.

5.2 Depth Sorting

The goal of depth sorting is to deliver a list, for each l¢-cell, of non-
intersecting polygons sorted according to ascending depth. In order

to ensure depth order inside each [t-cell, a local BSP-tree [Fuchs
et al. 1980] is created from the patch triangles in each cell’s list.
The patch triangles are added to the BSP-tree in turn, which creates
leaf nodes with their splitting plane taken from the patch triangle
plane. Subsequent patch triangles may be split against these planes
during insertion into the BSP-tree. Once the BSP-tree has been
built, depth sorting is simply a matter of traversing the BSP-tree.
Note that on average, our BSP-trees are small since they only cover
one pixel’s extent on a line sample, and a certain span in time. For
our test scenes, we usually have less than 100 triangles per [¢-cell,
and hence creation and traversal is relatively fast.

5.3 Pixel Integration

The goal of the pixel integration is to calculate the color contribu-
tion of a sample line to each pixel it overlaps. Once the color for all
lt-cells covering a pixel is known, the results can be weighted to-
gether to give the final color of the pixel. In order to integrate only
the visible part of each polygon, a hidden surface algorithm is used
to eliminate occluded geometry in each lt-cell. By traversing the
BSP-tree per lt-cell, we obtain a strictly depth sorted list of poly-
gons. This means that once a region in an [¢-cell has been found to
be covered by a polygon, no other polygon can cover that region.

The hidden surface algorithm is similar to “the pixel integrator”
proposed by Catmull [1978]. This algorithm inserts all depth sorted
polygons into a tree in order of front to back. Each added polygon
is split against the edges of the polygons already in the tree. The
part to the left of the edge is added as a child to that edge in the tree.
The remaining part is split against the next edge. This is illustrated
in Figure 5.

After hidden surface removal, calculating the color of the l¢-cell
is a simple matter of summing the color of each visible (convex)
polygon weighted by its visible area, possibly weighted by a fil-
ter kernel. The color of each polygon is determined by invoking
the pixel shader. We currently shade each convex polygon at its
barycenter, which is a natural place to put it, and this also generated
high-quality images. Hence, n is connected to both the number
of cells in time as well as the shading frequency (since shading is
performed at least once for each patch triangle in each cell) in our
current implementation. Texture differentials are calculated analyt-
ically using the triangle at ¢ = 0.

Discussion As mentioned, our visiblity engine was inspired by
Catmull’s early work [1978] that operates in the spatial domain (xy)
without motion blur. However, for our work, there are a number of
subtle but important differences. Our visibility engine and resolve
procedure are working entirely in /t-space, which enables motion
blur to be handled. In the binning stage, we process one patch trian-



L

Figure 5: A patch triangle shown inside an lt-cell. In the pixel
integrator, the first triangle edge splits the cell into a left (L) region
and a right (R) region. In this case, the next edge splits the previous
right region into two new regions, and so on. This creates a tree,
and each new triangle is clipped against the edges in the tree, and
possibly inserted into the tree.

gle at a time until all patch triangles have been completely binned,
which makes our engine similar to feed-forward rasterization. This
is in contrast to Catmulls’ scanline order processing which requires
sorting on /, and handling of every patch triangle covering a scan-
line before proceeding to the next. In addition, we have added a
simple form of occlusion culling for better efficiency. All images in
Catmull’s paper [1978] appear to consist of 2D layers composited
with anti-aliasing, but we need general sorting, and therefore use a
BSP-tree instead of assuming already sorted geometry.

6 Ambient Occlusion

In this section, we will show that, with some small modifications,
our depth patches (Section 4) and our visibility engine (Section 5)
also can be used to compute motion blurred ambient occlusion
(AO). To the best of our knowlege, this is a topic that has received
very little attention in graphics research. We start with a brief in-
troduction to ambient occlusion, and then describe how our algo-
rithms can be used for static and motion blurred ambient occlusion
in subsequent subsections. Zhukov et al. [1998] define the amount
of ambient occlusion, o, as:

oto.m) =+ [ p(dlp.) (- m)a, m
Q

where p is the point where AO is computed and n is that point’s
normal. The integral is over the hemisphere, €2, with its “north
pole” in the direction of n. The distance function, d, returns the
distance to the closest occluder in direction w, and p is a distance
fall-off function, which has a value between 0 (fullly occluded) and
1 (not occluded). Intuitively, the equation computes how much of a
white hemisphere that a diffuse receiver can “see.” For high-quality
renderings, one may need a thousand rays to compute AO using
point sampling [Laine and Karras 2010], and for motion blurred
point-sampled AO, we expect that even more rays may be needed.

6.1 Static Ambient Occlusion

Instead of integrating over the hemisphere using point samples, we
extend the concept of line samples to the hemisphere. Here, we de-
fine a line sample as the intersection between the hemisphere, and
a plane going through the center of the hemisphere. An example is
the orange plane shown to the left in Figure 6. In the following, we
will first concentrate on a single line sample. However, note that
a number of line samples will be needed to accurately sample AO
over the hemisphere, and we will return to line sample distributions
later in this section. For all triangles above or overlapping the hemi-
sphere base plane (going through the “equator”), we compute the
intersection (if any) between the triangle and the line sample plane,
and project the intersection onto the line sample’s hemicircle. The
next step is to project that down to the base plane as shown to the
right in Figure 6, and there we illustrate our parameterization, [, of
the line sample on the hemisphere. Note that this implements the
Nusselt analog, which means that the cosine factor of Equation 1 is
included by design per line sample.

Figure 6: Our approach for ambient occlusion is to use a number
of line samples over the hemisphere. In this illustration, only a
single line sample is shown, but in practice, several will be used to
cover the hemisphere. Left: a line sample in this case corresponds
to a hemi-circle (red), and all triangles overlapping with the plane
(orange) through that hemicircle are projected onto the hemicircle.
Right: illustration of the projection of an intersection between a
triangle and the line sample plane in two dimensions. As can be
seen, the intersection is first projected onto the hemicircle, and then
down to the black line, which is parameterized by l.

Figure 7: Left: a line distribution with eight rotated planes going
through the north pole of the hemisphere. The lines projected to xy,
and their line density image [Grabli et al. 2004] are also shown.
Since this distribution is rather non-uniform, we remap the coor-
dinates along 1 in order to obtain a uniform distribution. Right:
a more uniform distribution of lines in the xy circle of the hemi-
sphere. As can be seen, the line density image is more uniform for
this distribution.

Similar to line sampling in screen space, we also use linear depth
segments and resolve for visibility with respect to depth exactly as
shown in Figure 2, and described by Gribel et al. [2010]. However,
note that depth is not linear over [ in this case. If the goal is to
only compute whether the hemisphere is occluded or not, then it
does not matter that depth is not linear, since we are only interested
in occlusion and not depth. However, if the falloff function, p, in
Equation 1, needs to be taken into account, depth matters. In this
case, long projections on [ must be diced up into several shorter
linear depth segments, which makes for a better approximation.

The remaining part at this point is line sample distributions over the
hemisphere. As far as we know, this is a rather unexplored topic
in sampling. To the left in Figure 7, a simple sampling pattern is
shown, where all eight line samples are passing through the “north
pole” of the hemisphere. In general, we strive after uniform dis-
tributions in xy-space, and it is quite clear that this distribution is
non-uniform. To counteract that, we instead redistribute the pro-
jection on [ before they are inserted. In this case, this amounts to
a quadratic remapping function, similar to that used for depth of
field remapping [Akenine-Moller et al. 2007]. Without remapping,
we also measure line density as suggested by Grabli et al. [2004],
where we used a measurement radius of 0.5. Such images are also
shown in Figure 7. As can be seen to the right in the same figure, a
more uniform distribution can be obtained if the line sample planes
also are allowed to tilt. This makes the mapping parameterization a
bit more complex, but we expect that it will be worth the effort.
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Figure 8: Static versus motion blurred (dynamic) ambient occlu-
sion (AO) with 16 line samples for AO. For the static case, AO was
computed at t = 0.5. Dynamic AO renders more plausible images
as seen in the close-ups.

6.2 Motion Blurred Ambient Occlusion

Our extension to motion blurred ambient occlusion (AO) is rather
straightforward. Instead of just processing visibility along the [-axis
(Section 6.1), we now compute visibility in /¢-space as described in
Section 4 and 5. For static receivers of AO, this technique works as
expected. A moving sphere over a plane will cast a motion blurred
AO shadow on the static plane receiver, for example.

For dynamic receivers, this situation is more complex, because both
the receiving sample position on a surface, and its normal may
change as a function of time. We avoid this complexity by consid-
ering all motion relative to a local coordinate system at the sample
point. The occluders are transformed into this local coordinate sys-
tem at both ¢ = 0 and ¢ = 1. The relative motion of each vertex
is approximated as linear with respect to time, which we believe is
reasonable because that is exactly how vertex motion is described
in our system. Note also that we clip the patch triangles against
z = 0 so that parts of patch triangles “below” the hemisphere are
not processed.

As described in Appendix B, we use a shading cache in order to
efficiently reuse shaded values over the time dimension. We note
that shading caches [Ragan-Kelley et al. 2011; Burns et al. 2010]
are two-dimensional over some parameterization of the rendered
surfaces, and for motion blur, the time, ¢, is collapsed and always
computed at ¢t = 0, for example. This has direct consequences for
shadows and AO when they are point sampled in time. Shadowing
at a moving surface point will simply be evaluated at ¢ = 0, and
if the surface point later in time changes from being in shadow to
being lit, that will not be accounted for. This can easily give rise
to images with unnatural looking shadows. This is a limitation of
shading caches, and it may be an interesting avenue for future work
to extend shading caches to handle motion blurred shadows and AO
better.

Interestingly, our solution will not compute AO at ¢ = 0 and reuse
this value over all samples. As described above, our algorithm will
compute the AO in [t-space, and it is the average AO over time
that will be computed and put into the shading cache. For static
receivers, this generates a correct image. However, for moving re-
ceivers, this is not strictly correct, but we believe the average over
time is a better solution than computing AO at a single instant of
time and reuse. In Figure 8, we show the difference between static
AO and motion blurred AO.

RGSS

Figure 9: Line sample patterns for 4 X 4 pixels. Left: one hori-
zontal and one vertical (1HIV) line sample (blue) is going through
each pixel. Middle: two horizontal and two vertical (2H2V) line
samples. Right: a rotated grid of line samples (RGLS), inspired by
the point sampling pattern called RGSS.

7 Implementation

We have implemented all our algorithms in a custom renderer in
C++, and have the pixel processing part of the algorithm threaded
in order to exploit more than one CPU core. Our algorithm is com-
pared against stochastic rasterization with efficient backface and
view frustum culling. In addition, we have an early-Z depth test
and a simple form of occlusion culling [Greene et al. 1993] with
one Zmax-value per 8 x 8 pixels. For stochastic rasterization, we
use multi-jittered sampling points. In the following, we will dis-
cuss line sampling patterns for screen space sampling, which is not
a well explored topic in graphics.

Some obvious line sampling patterns to test include using one hor-
izontal and one vertical line sample per pixel. This is what Jones
and Perry used in their inspirational research [2000]. Instead of cre-
ating two unique lines per pixel, we extend the lines so they start
and end at the sides of the current tile in order to better exploit
coherency. In general, this reduces the number of BVH traversals
and patch triangle generations needed per rendered image. For bet-
ter quality, one can increase to two horizontal and two vertical line
samples per pixel. Such schemes are shown to the left in Figure 9.
However, it is well-known that humans are most sensitive to jaggies
on near-horizontal and near-vertical edges, and thereafter on edges
which are close to 45° [Naiman 1998]. This clearly motivates low-
cost point sampling patterns, such as rotated grid super sampling
(RGSS). To that end, we experimented with a line sampling pattern
that exhibit similar charateristics as RGSS, but is also designed to
share long line samples across many pixels. This pattern, which
we call rotated grid line sampling (RGLS), is shown to the right
in Figure 9. While RGLS perform much better compared to using
horizontal and vertical line samples, we leave the optimization of
line sample patterns for future work. This is an important topic that
we intend to revisit in later research.

8 Results

We have rendered our images using a Mac Pro 5.1 with two six-
core Intel Xeon CPUs at 2.93 Ghz and 8 GB of memory. We use
a decoupled shading cache as described in Appendix B for both
our algorithm and for stochastic rasterization of motion blur. For
one core, we shade about 10% of the requested shading values for
64 stochastic samples. This is deliberately rather high because we
want high-quality shading. For 24 threads, this increases to 21%
due to the fact that some shading computations are computed more
than once (see Appendix B). Some details of our stochastic rasteri-
zation implementation are given in Section 7. In all our renderings,
we use a tile size of 32 x 32 pixels. Concerning tile sizes, we have
noted that our algorithm is not very sensitive to bin spread. For
example, rendering the chess scene at 512 x 512 resolution using
16 x 16 tiles requires only 30-35% more time than using 512 x 512
tiles, which is equivalent to sort-last. We have used three main test
scenes to evaluate our algorithm. The chess scene in Figure 1 has
29,068 triangles and procedural texturing, Sponza in Figure 11 has
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Figure 10: Here we compare the line sampling pattern quality for a
static frame of the breaking armadillo. As can be seen, rotated grid
line sampling (RGLS) is substantially closer to the ground truth
(256 stochastic samples) than the other two.
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66,450 triangles with lighting pre-baked into textures, and breaking
armadillo in Figure 12 has 88,120 triangles (see video). The ma-
jority of the triangles in chess and armadillo are subpixel-sized at
1024 x 768 pixels. In addition, we constructed two special scenes
for a detailed performance analysis; the trees scene with 273,468
triangles and high depth complexity (see Figure 13), as well as a
simple plane scene with varying tessellation (see Figure 14).

The line sample patterns for spatial anti-aliasing in Figure 9 are
evaluated in Figure 10 for one static frame in the breaking armadillo
scene. As can be seen, the RGLS scheme is superior to the other
two. The main reason for this is that rotated patterns are better
at combating aliasing on near-horizontal and near-vertical edges,
which visually suffer the most from aliasing [Naiman 1998]. In
general, a pattern’s edge anti-aliasing effectiveness depends on the
angle between the lines of the sampling pattern and the edges of
the geometry to be rendered. Furthermore, in our case, there is a
small rotated square in the middle of each pixel, and a triangle that
falls completely within this area can disappear. However, this is
usually not a problem for connected geometrical objects, but can
generate artifacts for single, disconnected triangles. In terms of
performance, one horizontal and one vertical (1H1V) line sample
per pixel is about twice as fast as two horizontal and two vertical
(2H2V), which is to be expected since there are twice the number of
line samples in 2H2V. In addition, 2H2V is about 10% faster than
RGLS due to the fact there are more and longer (on average) line
samples per tile in RGLS compared to 2H2V.

Since motion blurred visibility is the major focus of our paper, we
first report rendering times without ambient occlusion for our three
test scenes, all at 1024 x 768 pixels with RGLS. As seen in Fig-
ure 1, we can render the chess scene in 3.6 seconds (s) with our al-
gorithm. The number of subdivisions in time (see Section 5) was set
to n = 1, which worked well due to rather low-frequency shading.
An image with 49 samples per pixel using stochastic rasterization
(SR) took 3.8s to render, and for 256 samples, 27s were needed.
If we increase the amount of motion by 50%, our algorithm ren-
ders the chess scene in 4.6s, while SR uses 4.0s. However, the
SR generated image contains substantially more noise (see video)
in the regions with motion, while our image remains free of noise.
Hence, if noise-free images are needed, it is clear that our visibility
algorithm is very competitive.

The Sponza scene, in Figure 11, has camera motion. For our algo-
rithm, we have implemented near-plane clipping, but we have not
done so for stochastic rasterization (SR). Therefore, we cannot ren-

Figure 11: The Sponza scene with camera motion, rendered with
our algorithm, and with close-ups on both geometric edges (top
right) and on a region with lots of motion (bottom right).

Figure 12: Left: Armadillo with ambient occlusion with 256
stochastic samples. The images to the right are close-ups of ar-
madillo’s moving arm without ambient occlusion. Right-top: us-
ing 144 samples per pixel with stochastic rasterization rendered in
10.4s. Right-middle: close-up rendered with our analytical algo-
rithm in 9.8s. Right-bottom: ground truth with 625 samples.

der Sponza with SR, and we note that this actually gives SR a little
speed advantage in our other timings, since clipping is not done
for SR. Here, we used n = 16 to ensure high-quality renderings.
At 1024 x 768, this image took 20.1s to render. In Figure 12, we
show the breaking armadillo scene. As can be seen, the break-even
point compared to stochastic rasterization is around 144 samples
per pixel, which is much higher than for the chess scene. This is
due to the armadillo having more triangles that also are located in a
small volume of the scene.

In order to investigate how our algorithm behaves for high depth
complexity in combination with increasing motion, we measured
rendering time with respect to increasing motion for various values
of n. This is shown in Figure 13. The results suggest that perfor-
mance scales linearly with increasing motion, given that an optimal
value of n is chosen. This implies that an adaptive splitting scheme
in time is worth investigating in future work.

In Figure 14, a more detailed performance analysis of the different
stages of the algorithm is shown. The plane scene is rendered us-
ing a single core with different tessellation rates as well as different
values for n. Depth sorting and hidden surface removal are clearly
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Figure 13: Measurements from the trees scene, rendered with in-
creasing panning motion. The different lines represent n = 1, 2, 4,
8 and 16.
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Figure 14: Detailed measurements of single-core rendering of the
plane scene with increasing panning motion. The different graphs
represent various combinations of tessellation rate (16 x 16 and
64 x 64) and values for n (1 and 16). The “cell-clip” area corre-
sponds to clipping of binned triangles to the cell boundaries, before
depth sorting. The “other” area consists of vertex shading, BVH
construction, BVH traversal, tile setup, line setup and tile to frame
buffer transfer.

the bottlenecks with high tessellation and motion when using a low
value of n. These stages are most affected by a high number of
triangles per lt-cell. As expected, increasing n greatly reduces the
aforementioned stages. Patch generation time appears to be super-
linear with increasing motion. The reason for this is that our BVH
becomes less efficient for large amount of motion.

To analyze the approximation error introduced by our algorithm,
we made a comparison to a stochastic rendering of the chess scene.
The differences in depth, d, were computed and expressed as a frac-
tion of Zar — Znear, and compiled into a histogram as shown in
Figure 15. Note that our approximation also introduces errors in
lt, i.e., the patch outline, and this may alter the geometrical silhou-
ette, which means that sometimes the correct geometrical object
will be missed. In such cases, the depth errors may be substan-
tial. Nevertheless, for zero subdivisions of the patch outline (de-
scribed in Appendix A.1), 99.82% of the errors fall within < 0.1%
of Ztar — Znear. For three subdivisions, this increases to 99.95%.
This implies that the approximations are reasonable. The heat maps
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Figure 15: Measurements and visualizations of introduced depth-
approximation errors compared to a stochastic rendering. The
loglog-histogram displays depth error as a fraction of the near-
to far-plane distance. As is expected, the plots have identical in-
tegrals, even though this fact is somewhat obscured in the figure
due to the logarithmic scale. Heat maps and zoom-ins of the scene
then further detail distribution and magnitude (in log-scale) of the
errors, as well as visual comparisons to the ground truth image.

of the scene in Figure 15 visually shows the distribution and mag-
nitude of the errors. More importantly, a direct comparison be-
tween our rendered images to the ground truth is included. One
area with high-density errors is the pedestal bottom of the tumbling
chess piece to the left. Here, depth varies significantly over time,
which causes greater errors due to linearisation, but as can be seen,
visual errors are still hard to detect.

With some adjustments, our visibility algorithm can also be used
to compute ambient occlusion (AO) both for static and for motion
blurred scenes. This is a nice side effect described in Section 6.
Except for point sampling AO in time, we are not aware of any
algorithms that specialize in motion blurred AO, and yet, the dif-
ference in the rendered images can be substantial, as shown in Fig-
ure 8 and 16. In all our renderings with AO, we used line sampling
distributions where all line samples go through the “north pole” of
the hemisphere, as shown to the left in Figure 7. As expected, dou-
bling the number of line samples doubles the time spent on com-
puting AO. Renderings with different number of line samples are
shown in Figure 17. For the chess scene with eight line samples
for AO and n = 4, rendering with static AO took 251 seconds, and
with motion blurred AO, this increased to 2075 seconds. We have
seen similar increase in rendering times for the other scenes. The
focus of our work has been on motion blurred visibility in screen



Figure 16: A close-up of the topmost pawn in Figure 1, with
static ambient occlusion (left) and motion blurred ambient occlu-
sion (right). Both images were rendered with 16 line samples for
ambient occlusion. Note that in cases like this, the difference is
rather large.

Figure 17: In these images, we illustrate the effect of increasing the
number on lines samples of the hemisphere for ambient occlusion.

space with spatial anti-aliasing, and hence, the evaluation of AO is
not as rigorous. In future work, we will therefore compare both ren-
dering speed and image quality of our AO algorithms (both static
and motion blurred) against stochastic point sampling, and test line
sampling patterns where the planes are allowed to tilt (right in Fig-
ure 7), and optimize the placement of the planes. In addition, we
will also optimize for rendering speed.

9 Conclusions and Future Work

To the best of our knowledge, we have presented the first visibility
algorithm that computes semi-analytical motion blur over spatial
line samples, and we have shown that essentially noise-free images
can be generated with competitive rendering times. By using line
samples in the spatial domain, our visibility problem for motion
blur becomes a two-dimensional problem, which makes it tractable
and efficient. The approximation we have introduced is in the depth
function of a moving triangle over a line sample, and despite this,
we have shown that our approximation generates high-quality im-
ages. This approximation is the reason why we choose to call our
algorithm semi-analytical. Our algorithm can also be used for ren-
dering of motion blurred ambient occlusion with high quality. In
contrast to our work, the previous methods we are aware of for this
are based on point sampling, and may require 512—-1024 point sam-
ples for high quality for static scenes alone [Pantaleoni et al. 2010].

We believe our research opens up a wide range of interesting future
work to be done. If point sampling is used in the spatial domain,
we believe that our algorithm can be immediately used for comput-

ing semi-analytical (SA) depth of field, which is a two-dimensional
problem. With our current algorithm, we can also approximate vis-
ibility over a lens with a set of line samples, which is similar to
previous work [Akenine-Moller et al. 2007], and also use line sam-
ples in the spatial domain. Extending with another dimension may
be possible, and would open up for even more usage areas, such
as SA depth of field with spatial line samples, or pixel area in-
tegration with SA motion blur, or SA depth of field with motion
blur with spatial point sampling. While sampling patterns always
are important in order to generate high-quality images, our focus
has not been on developing high-quality line sampling patterns. In-
stead, our main focus has been on the creation of depth patches and
the visibility engine. However, this is an interesting and important
topic, and we will revisit this in future work. We would also like
to integrate the occlusion culling more with the pixel integrator so
that culling will work more efficiently for micropolygons.
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A Depth Patch Approximation

In this appendix, we will describe how our patch triangles, which
approximate a depth patch, are generated. We start by deriving
a formula for [(¢), which describes when a moving triangle edge
intersects with the line sample plane. This function is needed to
adaptively refine the approximation of the depth patch.

Recall that a vertex is described by p(¢) = (1 —t)q+tr, ¢ € [0, 1].
A moving edge, defined by po and pi, is then a bilinear patch:
b(s,t) = (1 — s)po(t) + sp1(t). Without loss of generality, we
assume that the line sample plane is y = 0, and that the [-parameter
coincides with z. By setting the y-component of b(s, t) to 0.0, we
can obtain an expression for s:

5= P @)
P1y — Poy

where poy = (1 — t)qos + tros. etc. Replacing s by the equation
above in the expression for the x-component of b(s, t), we obtain
I(t), after some simplification, as:

0xP1ly — PoyP1
l(t):p Py pypav:7 3)
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which clearly is a rational polynomial in ¢, where the numerator is
of degree two, and the denominator is of degree one.

An overview of our depth patch triangulation algorithm is shown in
Figure 18. Briefly, we first compute the feature points as described
in Section 4. These are then connected as described below, and if
needed, additional points are added adaptively in a refinement step.
Finally, triangulation produces the final patch triangles.

Given a number of feature points in [, each with a certain depth,
d, the goal is now to form a triangulated approximation using these
three-dimensional points. This is carried out by considering one
moving edge at a time, and based on its interaction with the line
sample plane as it moves over time, making connections between
the feature points. The final set of connections outline one or many
disjoint depth patches. In the final step, these patch outlines, shown
in the middle in Figure 18, are triangulated.

In the following, we describe how the feature points are connected.
If the triangle at t = 0 or ¢ = 1 intersects the line sample plane,
one or two feature points are generated. In the case of two feature
points, it is obvious that they should be connected and form an edge
of the patch outline. However, we also observe that each moving
edge may intersect the line sample plane, and trace out a curve in
It, and its corresponding feature points should also be connected to
form part of the patch outline. If a moving edge generates two fea-
ture points, they must simply be connected. See Figure 19. When
there are four feature points, the situation is a bit more complex,
and the solution is illustrated to the right in the same figure.

Four feature points is an indication that the edge initially intersects
the plane, turns parallel to it and then intersects the plane again in
the opposite direction. At the point, ts, of edge-plane parallelism,
there will be no (edge is above or below plane) or infinitely many
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Figure 19: Connections schemes for moving triangle edges. When there are two feature points (green circles), the feature points are simply
connected. We show three possible situations that can occur (first three images). In the fourth image, the moving edge has generated four
feature points. In this case, the two earliest (in t) feature points are connected, and then the remaining two. This assures that no connection
will “bridge” the singularity point where the edge is parallel to the plane. The final image shows a situation where the facing of the triangle
changes as it moves. Here, the connections will overlap in lt-space, and to resolve this, the patch is split by adding the intersection point.

Figure 20: At the top left, we show a rotating white triangle ren-
dered with 625 stochastic samples, i.e., a reference image. Below
that image, we also show the corresponding depth patches (gener-
ated using dense point sampling) for the yellow and blue lines in
the image. For the top line sample, note how the line will reside
completely outside the triangle, during a short interval, which gen-
erates two disjoint depth patches (shown in the middle row).

(edge is in the plane) intersection points, thus making [(¢) unde-
fined for ¢t = ¢5. Two feature points will reside on each side of %,
that is, at < ¢, (initial intersection) and > ¢, (second intersection),
respectively. By connecting the feature points on each side of ¢,
we avoid letting any connection span undefined values of ¢. In the
extreme, when the edge is precisely in the plane at ¢, two feature
points will occur at ¢, and will thus constitute end point for one of
the connections and start point for the other. Hence, each connec-
tion will span an interval (¢4, t») (not including the end points) that
is defined in I(¢).

After all connections have been made, we have a set of lines, and we
simply create the patch outline (middle in Figure 18) by connect-
ing lines that share feature point vertices. In a final step, the patch
triangles are created by triangulating the resulting polygon(s). Our
approach to generate the patch triangles works really well for tri-
angles that undergo moderate rotation, however, the approximation
may be too crude for extreme motion. To that end, we present an
adaptive refinement procedure.

A.1 Adaptive Refinement of the Approximation

Better approximation accuracy can be achieved by adding more
points to the patch outline before triangulating. This is done by ex-
ploiting that {(t) (Equation 3) is defined, and monotonic in ¢ (¢),
within each connection range (%4, t»). Hence, additional points can
be created by evaluating [(¢) at arbitrary values of ¢ € (tq,%). A
good choice of ¢ is one that captures as much of the curvature of
I(t) within the range as possible. In our approach, we interpolate
the angle of the tangent slopes in the end-points of the range, then
solve % (t) for this value to retrieve ¢, which we use to generate a
new point on the patch outline. If just one extra point is to be ob-

tained, the average of the two angles is used, and the theory goes as

follows. Given an interval (¢, t) for a connection, the angles, aq
& a, of the slopes at ¢, and ¢, are:

a; = arctan (%(tl)), for i = {a, b}. 4)

Using the arithmetic mean of the angles, we then need to solve the
following equation for ¢:

ol Qq + oy
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Since %(t) is quadratic in ¢, this will result in up to two solutions,

but only one can be part of (¢4, t). By evaluating [(¢) for this new
t, a new approximation point is acquired. For additional points, fur-
ther subdivision can be made adaptively. Examples of termination
criterion are maximum number of new points, depth error tolerance
etc. As the number of subdivisions grows toward infinity, the ap-
proximation outline approaches the analytical solution in [t-space.
In Figure 20, we show a triangulated depth patch for different levels
of subdivision. Note, however, that the depths will still be linearised
over the interior of this outline.

B Shading Cache

We use an object-space shading cache [Burns et al. 2010] to avoid
excessive shading, and we extend their cache with an image pyra-
mid for efficient memory usage. Note that we use the same cache
for all our rendering threads, and hence need to allocate 2.0 GB for
the entire cache for our renderings. Each object’s shading values
are stored in a map, which is represented by 16 x 16 independent
submaps, where each submap is responsible for a region of the uv-
space. Each submap consists of a pyramid of cached shading val-
ues, which is allocated lazily. At the top of the pyramid, a single
shading sample represents the entire uv span of the submap. This
is the lowest shading resolution available. Each lower level in the
pyramid has double the resolution of the previous level.

We use the derivatives of the barycentric coordinates, u and v, with
respect to screen space, x and y, when selecting appropriate pyra-
mid levels. This is analogous to standard mipmapping. When a
shading request is processed, the correct pyramid level is selected
based on the these derivatives, and then the uv-coordinates of the
shading request is sampled using nearest neighbor. If the cache
contains a shaded value, it is immediately returned and used. If the
cache location is empty, the pixel shader is invoked and the result
put into the lowest level of the pyramid and propagated upwards.
During upward propagation, the higher levels of the pyramid are
sampled at the same uv-coordinates. If the higher level sample is
empty, the same cached value is put into that pyramid level, and
propagation continues. If the higher level sample is set, the propa-
gation is aborted. When multiple threads operate on the same shad-
ing cache, sampling and propagation are subject to race conditions.
We use atomic writes to the shading cache which makes it consis-
tent, even during propagation. Without a shading cache, our system
will perform far less shading requests than our stochastic rasterizer.
The shading cache was added both for improving performance and
to make the comparison with stochastic rasterization more fair.



