
Hierarchical Stochastic Motion Blur Rasterization

Jacob Munkberg1 Petrik Clarberg1 Jon Hasselgren1 Robert Toth1 Masamichi Sugihara1

Tomas Akenine-Möller1,2

1Intel Corporation 2Lund University

Abstract

We present a hierarchical traversal algorithm for stochastic rasteri-
zation of motion blur, which efficiently reduces the number of in-
side tests needed to resolve spatio-temporal visibility. Our method
is based on novel tile against moving primitive tests that also pro-
vide temporal bounds for the overlap. The algorithm works en-
tirely in homogeneous coordinates, supports MSAA, facilitates ef-
ficient hierarchical spatio-temporal occlusion culling, and handles
typical game workloads with widely varying triangle sizes. Fur-
thermore, we use high-quality sampling patterns based on digital
nets, and present a novel reordering that allows efficient procedural
generation with good anti-aliasing properties. Finally, we evaluate
a set of hierarchical motion blur rasterization algorithms in terms
of both depth buffer bandwidth, shading efficiency, and arithmetic
complexity.

CR Categories: I.3.1 [Computer Graphics]: Hardware
architecture—Graphics processors I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Antialiasing I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Hidden line/surface re-
moval

Keywords: stochastic rasterization, motion blur, hierarchical
traversal, occlusion culling

1 Introduction

At the heart of every rendering engine there is some form of visibil-
ity computations. A more advanced algorithm allows effects such
as motion blur and depth of field to be rendered by a more elaborate
camera model. Depth of field helps to direct the viewer’s attention,
and motion blur reduces temporal aliasing, so that lower frame rates
can be used. Both these effects are also highly desired in the field
of real-time graphics.

While an incredible amount of research and engineering effort has
been spent on perfecting and fine-tuning the algorithms and the
corresponding hardware units for rasterizing static triangles [Fuchs
et al. 1989; Pineda 1988; Olano and Greer 1997; McCormack and
McNamara 2000; McCool et al. 2001], the same is far from true for
rasterization of motion-blurred geometry. However, there has been
increased research activity in this field [Cook et al. 1987; Akenine-
Möller et al. 2007; Fatahalian et al. 2009; McGuire et al. 2010;
Brunhaver et al. 2010], but much remains to be done before the rel-
ative efficiency of rasterizing triangles with blur effects is close to
that of static triangle rasterization. To be able to add correct motion
blur to current and future games, one of our goals is to support ef-
ficient rendering of motion blur with mixed sizes of the triangles,

i.e., both large triangles and smaller triangles, generated by, e.g.,
tessellation.

To that end, we present what we believe is the first hierarchical
rasterization algorithm for motion-blurred triangles. We strive for
an algorithm that extends current real-time GPU pipelines, while
retaining many of its important features, such as per-tile occlusion
culling, mixed triangle sizes, shading after visibility, and multisam-
pling anti-aliasing (MSAA).

Our contributions are:
� A hierarchical algorithm for motion blurred triangle rasteriza-

tion, including a low-cost tile vs moving triangle overlap test
that returns a conservative time interval of overlap.

� Modification of an existing hardware-friendly sampling pat-
tern for use in motion blur rasterization with high-quality anti-
aliasing. We present an efficient algorithm for computing the
samples within a time interval on the fly.

� Detailed performance evaluation of several different motion
blur rasterization algorithms in terms of arithmetic intensity,
memory bandwidth usage, and shading efficiency.

We hope that our new algorithms will advance the field of motion
blur rasterization so that in the near future, fixed-function rasteriza-
tion units will have support for such effects.

2 Related Work

Efficient rendering of motion blur has been a long-standing problem
in computer graphics. Existing solutions often rely on approximate
post-processing based methods or stochastic ray tracing [Cook et al.
1984]. We will not go into detail on these methods, and instead
focus on rasterization-based methods for correct motion blur that
can be integrated into future hardware GPU pipelines.

A brute-force technique is to draw the scene at N different times
and average the result using accumulation buffering [Korein and
Badler 1983; Haeberli and Akeley 1990]. The resulting strobing
artifacts can be replaced by noise by using stochastic rasteriza-
tion [Cook et al. 1987]. Here, a bounding box around the blurred
triangle is traversed, and all samples are tested against the primitive
displaced according to the samples’ times. This becomes ineffi-
cient when the bounding box is large compared to the primitive.
The screen space area of the traversed region can be reduced us-
ing either an oriented bounding box (OBB) in 2D homogeneous
space [Akenine-Möller et al. 2007], or the convex hull in screen
space [McGuire et al. 2010]. Existing (two-dimensional) hierar-
chical rasterization methods can be leveraged to efficiently traverse
these bounds, but all temporal samples still have to be tested. This
becomes expensive with large motion. In contrast, our algorithm
derives temporal bounds per tile to cull samples.

Fatahalian et al. [2009] improve the situation for stochastic microp-
olygon rasterization by partitioning the time domain into multiple
intervals (initially proposed by Pixar), or by using interleaved sam-
pling [Keller and Heidrich 2001] with a fixed number of sample
times. Both methods rasterize the primitive independently for each
time/interval, which generates samples in an incoherent order, i.e.,
sparse in screen space. For a REYES pipeline with shading at the

x

y

x

t
x

y

x

t
x

y

x

t

Our algorithm Convex hull Interleaved Sampling

Figure 1: The three-dimensional sampling space, (x, y, t), tra-
versed with different methods for stochastic motion blur rasteri-
zation. Sample-in-triangle inside tests are performed for all sam-
ples within the red regions. Our algorithm, based on novel hierar-
chical tile tests with temporal overlap computations, significantly
reduces the amount of inside tests compared to using the convex
hull in screen space [McGuire et al. 2010]. With interleaved sam-
pling [Keller and Heidrich 2001] the samples are restricted to a
fixed number of pre-defined times.

vertex level, this is not a problem, but applied to a graphics pipeline
with shading at the fragment level, it makes reusing shading over
multiple samples (MSAA) difficult. Per-tile occlusion culling also
becomes substantially more expensive. Furthermore, each triangle
has to be setup multiple times. In contrast, our algorithm uses a
coherent screen space traversal order, which facilitates MSAA and
efficient occlusion culling. Figure 1 shows the spatio-temporal cov-
erage of each algorithm.

Although a hard problem, analytical determination of visibility has
been explored. Most recently, Gribel et al. [2010] presented a
method for analytical motion blur rasterization where the samples’
temporal overlaps with a moving primitive are analytically deter-
mined and stored in linked lists per pixel. Our work is similar in
that we analytically determine conservative time bounds, but we do
this for entire tiles of pixels and the generated samples are stored in
a traditional multi-sampled render target. The use of a tiled traver-
sal with temporal bounds allows us to quickly reject samples.

Hierarchical occlusion culling is critical for achieving good perfor-
mance in modern GPUs by early determining if a tile is entirely
occluded (zmax-culling) [Morein 2000] or entirely visible (zmin-
culling) [Akenine-Möller and Ström 2003]. However, motion blur
makes culling using a traditional hierarchical z-buffer [Greene et al.
1993] less efficient. By storing multiple temporal depth values (tz-
slice) [Akenine-Möller et al. 2007], or a full temporal pyramid of
depth values (tz-pyramid) [Boulos et al. 2010] per node, efficiency
can be improved. Our rasterization order, i.e., one tile at the time,
together with conservative temporal bounds, makes the use of these
occlusion culling techniques efficient and straightforward.

3 Overview

Our hierarchical motion blur traversal algorithm works entirely
in two-dimensional homogeneous space (2DH) to robustly handle
moving triangles crossing the z = 0 plane. The first step is conser-
vative backface culling [Munkberg and Akenine-Möller 2011] and
temporal view frustum culling. Each triangle vertex moves along
a line in 2DH, and by finding the intersection of these three lines
with each frustum plane, we obtain the time interval, [ts, te], when
the moving triangle is inside the view frustum.

The traversal algorithm for a triangle can be summarized as follows,

where a tile is a rectangular block of pixels:

1 BBOX = Compute moving triangle bounding box
2 for each tile in BBOX [hierarchical traversal]
3 TIME = Compute time interval of overlap
4 Occlusion culling of tile in TIME
5 for each sample in tile in TIME
6 Test sample against primitive

To compute a screen space bounding box around the moving trian-
gle, we bound the screen space projections of the six vertices (the
triangle vertices at ts and te) if the moving triangle is entirely in
front of the z = 0 plane, and revert to the conservative bounding
approach presented by McGuire et al. [2010] otherwise.

In Section 4, we introduce the tile vs moving triangle tests (line 3),
which form the necessary basis for our hierarchical traversal algo-
rithm. The output for a certain tile is either trivial reject, or a con-
servative time interval where overlap possibly occurs. The compu-
tation of per-tile time bounds greatly reduces the number of tempo-
ral samples that are tested for fast moving primitives, as large sub-
sets of the spatio-temporal samples within a tile can be discarded. It
also makes hierarchical occlusion culling simple and efficient. For
each tile, we only test the primitive against occlusion information
in the relevant time interval (line 4).

As with all stochastic methods, the statistical distribution of the
sample points has a large impact on the result. Stochastic raster-
ization has the additional constraints that the samples must be con-
sistent from primitive to primitive (otherwise cracks may appear),
and extremely fast to generate as the sampling takes place in the
inner loop of the rasterizer. We have chosen to base our samples on
binary (t,m, s)-nets [Niederreiter 1992] for their extensive strati-
fication properties. Section 5 introduces a remapping of a known
pattern to provide a temporally ordered sequence that is extremely
inexpensive to compute in hardware. Last, we discuss temporal
filtering for high-quality shading of the generated samples in Sec-
tion 6, followed by implementation details and a thorough evalua-
tion in Sections 7 and 8, respectively.

4 Tile Tests with Temporal Bounds

It is well-known that efficient rasterization of static geometry can
be obtained by hierarchical testing of a tile of pixels against a tri-
angle [McCormack and McNamara 2000]. This is done by over-
lap testing the bounding box of the triangle against the tile, and
also testing each triangle edge against the tile [Akenine-Möller and
Aila 2005]. We will extend this to moving geometry, where the
bounding box becomes a moving box, and the triangle edges sweep
through space.

More specifically, we derive tight bounds for the overlap between
a screen space tile and a triangle with linear per-vertex motion in
three dimensions. Each vertex, pi, moves from the position qi at
t=0, to ri at t=1, that is: pi(t)= (1−t)qi + tri. All computa-
tions are performed in 2D homogeneous coordinates, with a vertex
defined as p = (px, py, pw). The main idea is to find a conserva-
tive time interval, t̂tot = [ttot, ttot], in which the moving triangle
overlaps the tile. Per-sample tests are then done only for samples
whose times belong to the time interval. In the following, we first
describe how a tile is tested against a moving box, and then how a
tile is tested against a moving triangle edge.

4.1 Frustum Plane–Moving AABB Overlap

We create a moving AABB in 2DH by bounding the triangle at t=0
and t=1 and interpolating between the two AABBs. This is an ap-
proximation to the true swept bounding box, but it is guaranteed

screen space

originx

w

tile

tile frustum plane

x

y

screen space

tile

tile frustum plane

origint=0 t=0

t=1

t=1

Figure 2: A moving triangle is enclosed by an AABB in 2DH with
linear per-vertex motion. The left figure shows the xw plane, with
indicators when the moving AABB enters (green dot) and exits (red
dot) the tile frustum. The right illustration shows the screen space
view of this example.

to be conservative at all times. Based on a tile on screen, we then
setup four frustum planes that are aligned to the sides of the tile.
Each frustum plane, πi, passes through the origin and is defined by
its plane equation ni · p = 0, where ni is the plane’s normal. A
point p is outside the plane if ni · p > 0. If a point is inside all
planes, then it is inside the frustum. For static geometry, it is suffi-
cient to test the corner of an enclosing AABB that is farthest in the
negative direction (n-vertex) relative to πi [Greene 1994], in order
to determine if the box is entirely in the positive half-space. The
sign bits of the plane’s normal, ni, directly decides which corner
is the n-vertex. We note that the same holds for linearly moving
bounding boxes, as the orientations of the frustum planes remain
constant. Figure 2 shows an example of a moving triangle, whose
moving AABB intersects with two tile frustum planes.

The point of intersection in time between the moving n-vertex and
a plane πi is given by:

ni · ((1− t)qn + trn) = 0 ⇐⇒ t =
ni · qn

ni · (qn − rn)
, (1)

where (1 − t)qn + trn is the moving n-vertex for πi. Let d0 =
ni · qn and d1 = ni · rn. The temporal overlap, t̂i, between the
AABB and the plane πi is given by:

t̂i =

∅ if d0, d1 > 0 both outside
[max(0, t), 1] else if d0 > 0 qn outside
[0,min(1, t)] else if d1 > 0 rn outside
[0, 1] otherwise both inside,

(2)

where t is computed using Equation 1. The temporal overlap
between all the tile planes and the moving AABB is given by
t̂box =

⋂
i t̂i, where we can test for fine-grained trivial rejection

after each iteration of the loop over the four frustum planes, πi.

4.2 Moving Triangle Edge Tests

For triangles with linear vertex motion in three dimensions, each
triangle edge sweeps out a bilinear patch. The corresponding time-
dependent edge functions are quadratic in t. To determine if a
screen space tile overlaps the swept triangle, we evaluate the trian-
gle’s three edge equations for the four corners of the tile and check
if any corner is inside all three edges. In that case, we again deter-
mine a time interval in which the triangle conservatively overlaps
the tile to reduce the number of per-sample inside tests.

The edge equation for a triangle with linear per-vertex motion can
be written as follows [Akenine-Möller et al. 2007]:

e(x, y, t) = n(t) · s = (f t2 + gt+ h) · s, (3)

t

e(x,y,t)
t1 t1

t

e(x,y,t)
t1 t1

t

e(x,y,t)
t1 t1t2 t2

Figure 3: Edge equations as functions of t for a specific (x, y)
location. We are interested in finding the time intervals where e < 0
(highlighted in turquoise).

ex,y(t) = at2+bt+c

t
t

(0,c)

(1,a+b+c)

(1,b+c)

t

Figure 4: The lower bound of a quadratic polynomial from Equa-
tion 4 is bounded by a linear approximation around t = 0.

where s = (x, y, 1) is a sample position in screen space. For a
given s, we have a maximum of two roots to e(x, y, t) = 0, and
up to two time intervals per edge, t̂i = [t, t], where the sample is
inside (e < 0). Some examples are given in Figure 3.

Handling near-linear edge motion in an efficient and robust way
is extremely important, because often a large portion of the trian-
gles in a scene will have close to linear motion. In these cases,
directly finding the roots of e = 0 involves a division with a very
small quadratic coefficient, which may lead to numerical instability.
Therefore, we have devised a robust test that performs well when
the edge equations are near-linear, and that is increasingly conser-
vative when the quadratic term grows. We bound the quadratic edge
function’s projection within a screen space tile using lines with con-
stant slopes. This linearization of the overlap test greatly reduces
the computations needed. The edge function (Equation 3) is lin-
earized according to:

e(x, y, t) = n(t) · s ≥ o · s+ γt, ∀s ∈ S, (4)

where S is a region in screen space, e.g., the bounding box of the
swept triangle. With n(t)= f t2+gt+h, we rewrite the edge func-
tion for a certain screen space position, s, as [Gribel et al. 2010]:

n(t) · s = f · s t2 + g · s t+ h · s = at2 + bt+ c, (5)

where a = f · s, b = g · s and c = h · s. It can be shown that this
curve is included in the triangle given by the points (0, c), (1, b+c)
and (1, a+ b+ c) as seen in Figure 4. We search for a lower linear
bound of the curve’s slope, which is given by:

min(b, a+ b) = min(g · s, (f + g) · s). (6)

A conservative minimal slope, γ, for all s ∈ S, is given by:

γ = min
s∈S

(g · s, (f + g) · s). (7)

If we set o = n(0) = h, we have obtained a linearized version of
the edge equation according to Equation 4. This linear representa-
tion is conservative even if the edge function has a large quadratic
term. Note that γ can be computed in the triangle setup using the
moving triangle’s screen space AABB as S. For more accurate
bounding, γ can be recomputed on a coarse tile level, using the tile
extents as S.

Given the linearization, the tile vs moving edge test is considerably
simplified. By looking at the signs of the xy-components of o, we

Figure 5: Example of a (0, 4, 2)-net in base 2. The five figures
illustrate all elementary intervals with area bt−m = 2−4 over the
unit square, where each one has exactly bt = 20 = 1 samples. We
present a method for procedural construction of three-dimensional
(t,m, s)-nets with properties targeted at motion blur rasterization.

only need to test one tile corner, s. A conservative time for the
intersection of the triangle edge and the tile is given by:

o · s+ γt = 0 ⇐⇒ t = −o · s
γ
. (8)

Note that − o
γ

can be precomputed, so the time of overlap for a tile
only costs 2 MADD per edge. Depending on the sign of γ, the tile’s
temporal overlap, t̂k, with edge ek is defined as:

t̂k =

{
[max(0, t), 1] if γ < 0,
[0,min(1, t)] otherwise,

(9)

where t is computed according to Equation 8. Once all three trian-
gle edges have been tested, the temporal overlap between the tile
and the swept triangle is given by t̂edges =

⋂
k t̂k, where we can

test for fine-grained trivial rejection after each iteration of the loop
over edges (ek). The final interval is the intersection of the intervals
from both the moving box test (Section 4.1) and the moving edge
test, i.e., t̂tot = t̂box

⋂
t̂edges.

Given t̂tot, we first perform spatio-temporal occlusion culling, and
for the surviving tiles and time intervals, we proceed with individual
sample-in-triangle inside tests. The following section describes the
computation of our sampling positions, (x, y, t).

5 Sampling

In a motion blur rasterizer, each pixel is associated with a number of
fixed (x, y, t) samples. The samples must be the same from triangle
to triangle to get correct visibility, but vary randomly from pixel to
pixel to reduce temporal and spatial aliasing. Stochastic sampling
introduces noise, and it is well-known that sample points with good
statistical properties, e.g., large minimum distance, provide a good
balance between noise and aliasing. For us, it is also desirable that
the samples project to a good distribution in (x, y) for high-quality
anti-aliasing of static primitives.

Our application imposes a number of further constraints. First, sam-
pling needs to be fast and use minimal storage, as it is performed at
the core of the rasterizer. Second, each pixel should have the same
number of samples to simplify hardware design. Additionally, since
our tile tests compute the temporal overlap, t̂tot, it is important to
be able to quickly find the relevant samples for a tile, i.e., the sam-
ples should be ordered in t. These requirements severely restrict
our options. For example, Poisson disk points are not guaranteed to
project to a good distribution in two dimensions, and it may be hard
to guarantee a fixed number of samples.

For these reasons, we have chosen to work with sampling dis-
tributions that are realizations of digital (t,m, s)-nets [Niederre-
iter 1992]. Although often used for quasi-Monte Carlo integration
in offline rendering [Kollig and Keller 2002], we believe samples
based on digital nets are ideal also for motion blur rasterization
due to their extensive stratification properties and ease of construc-
tion. Next, we will give a brief introduction (see Niederreiter’s
work [1992] for more details), and introduce a novel variation of a

C1 C2 C3 C′1 C′2 C′3

Figure 6: The right three images show examples of our generator
matrices for m=40. The first two components are given by shifted
and reflected Sierpiňski triangles. These two matrices generate the
same points as C1 and C2, but permuted into an order that better
suits our purposes (ordered in t).

known method for generating three-dimensional samples with good
properties. Our samples are ordered in t and have a good spatial
distribution when projected to screen space.

Definition A set of bm s-dimensional points xj=(x
(1)
j , . . . , x

(s)
j)

is a (t,m, s)-net in base b if every elementary interval of volume
bt−m contains exactly bt points, where b≥2 and 0≤ t≤m are in-
tegers. The elementary intervals are discrete subintervals of space:

E =

s∏
i=1

[
ai
bli
,
ai + 1

bli

)
⊆ [0, 1)s, (10)

where 0 ≤ li and 0 ≤ ai<b
li are integers. The volume constraint

gives
∑s
i=1 li = m − t. An example in two dimensions is shown

in Figure 5. In our case, s=3 and we work exclusively with binary
numbers (b=2) for efficiency reasons. Lower t value (referred to as
“quality”) gives better stratification, i.e., fewer points per stratum.
Hence, we are interested in (0,m, 3)-nets in base 2, which have 2m

points and exactly one point per elementary interval. This property
ensures that samples near in time are spatially far apart, and vice
versa, which is important to minimize noise.

A digital (t,m, s)-net can be defined using a set of generator ma-
trices C1, . . . , Cs over a finite field Fq , where q is prime [Nieder-
reiter 1992]. Fq consists of elements numbered {0, . . . , q−1}, and
all arithmetic operations are performed modulo q. Since we work
in base 2, q = 2 and the Ci matrices are binary m × m matrices.
The ith component of the jth point is given by:

x
(i)
j =

(
2−1, . . . , 2−m

)Ci
 d0(j)

...
dm−1(j)

 ∈ [0, 1), (11)

where dk(j) are the bits of j, j ∈ {0, . . . , 2m − 1}, with
d0 being the least significant bit. The matrix-vector product
Ci (d0(j) · · · dm−1(j))

T is performed in F2.

Our Method Three-dimensional digital nets with good 2D pro-
jections are not very well explored. Grünschloß and Keller [2009]
propose one method based on reordering of the Sobol’ sequence,
where the first two dimensions are the Larcher-Pillichshammer (LP)
points [Kollig and Keller 2002], which have a good spatial distribu-
tion. The first component is sequentially ordered, i.e., x(1)j = j

2m
.

Unfortunately, we have observed that the projection onto the other
two dimensions is not as well-distributed, exhibiting a structure of
diagonal lines. See Figure 7 (left). This leads to inferior spatial
anti-aliasing, as our algorithm uses the ordered dimension as time.

To address this, we propose a permuted construction that is ordered
in t, while still projecting to the LP-points in the remaining two
dimensions, as shown in Figure 7 (right). Our samples are given by

Figure 7: The original samples [Grünschloß and Keller 2009] are
ordered in the first component. The projection onto the other two
dimensions are shown on the left for m=6. After our permutation,
the non-time dimensions project to the Larcher-Pillichshammer
points (right), which give better spatial anti-aliasing.

the generator matrices (see Appendix A for details):

C′1 =

((
m+ 1− l
m+ 1− k

)
mod 2

)m
k,l=1

, (12)

C′2 =

((
m− l
k − 1

)
mod 2

)m
k,l=1

and C′3 =

(
0 1

. .
.

1 0

)
.

These binary matrices are visualized in Figure 6. The figure com-
pares our matrices to the original matrices of Grünschloß and
Keller, denoted C1, C2, C3. Note that our modified matrices com-
pute the same set of points as before, but the points are generated in
a different order. The order is important, as our input is a sequential
index in time, and the remaining two dimensions are used as the
spatial sample position. We want the projection to screen space to
be as good as possible for high-quality spatial anti-aliasing. This is
especially important for static and slowly moving primitives, where
the user gets plenty of time to study the quality. Note that reorder-
ing the points by permuting the matrices is not the same as just
assigning the dimensions differently.

Although the matrices look deterring, they make an efficient pro-
cedural computation of samples possible. Addition equals XOR in
F2, so entire columns of the matrix-vector product in Equation 11
can be added using single XOR operations. Additionally, we omit
the leftmost vector multiplication and view the result as the digits
of a fixed-point representation. The following C-function computes
the xy-coordinates of the point with sequential index j, i.e., sam-
ple time t = j/2m ∈ [0, 1), for any m< 32. All coordinates are
integers in {0, . . . , 2m−1}.

1 void GetXY(uint j, const uint m, uint& x, uint& y) {
2 x = y = 0;
3 uint c1 = 0x3, c2 = 0x1 << (m-1);
4 for (j <<= 32-m; j != 0; j <<= 1) {
5 if (j & 1u<<31) { // Add matrix columns (XOR)
6 x ˆ= c1 >> 1;
7 y ˆ= c2;
8 }
9 c1 ˆ= c1 << 1; // Update matrix columns

10 c2 ˆ= c2 >> 1;
11 }
12 }

The algorithm examines j one bit at the time, starting at its high
bit m−1, and adds up columns of C′1 and C′2. The matrices are
computed on the fly, using only bit shifts and XOR operations. In
hardware, the above algorithm can be implemented using a very
small number of gates. During rasterization, we generate samples
for t ∈ t̂tot at the finest hierarchical level in the traversal. For exam-
ple, with 4×4 pixel tiles at 16 samples/pixel, we have 256 samples,
so m = 8 and the samples’ xy-coordinates are interpreted as 2.6
bits fixed-point numbers (i.e., the top two bit gives the pixel posi-
tion, and the lower six bits the sub-pixel placement). Throughout
the paper, we also quantize time to 64 discrete values (see Sec-
tion 7), although this is not a necessity.

4
sa

m
pl

es
/p

ix
el

16
sa

m
pl

es
/p

ix
el

Stratified Random Digital net

Figure 8: Comparison between stratified random sampling (left)
and sampling based on digital nets (right), at two different sam-
pling rates. The regularity in the digital net based pattern gives a
noticeably smoother appearance, while avoiding obvious aliasing.

To avoid a repeating sample pattern, we apply random digit scram-
bling [Kollig and Keller 2002] to the generated xy-coordinates, as
it gives good results at an extremely low cost. Conceptually, the
sampling domain is hierarchically split in half along each spatial
dimension, and the two halves randomly permuted. The same per-
mutations are applied to all samples within a tile. In base 2, this
operation can be performed by a bitwise XOR between the xy-
coordinates and two independent random bit vectors. We compute
the random vectors based on a hash of the tile position, which en-
sures consistency from frame to frame. The regular structure of the
scrambled digital net gives low noise without any obvious aliasing
artifacts. Note that random digit scrambling also largely preserves
the properties of the projected samples (Figure 7), which is an im-
portant aspect. To increase the randomness, a sub-pixel jittering
can be applied, but we have not found that to be necessary. Figure 8
shows the rendering quality compared to traditional stratified ran-
dom sampling, where xy and t have been independently stratified
per pixel.

Discussion An alternative to using procedurally generated sam-
ples is to store a lookup table of samples, ordered in t. This al-
lows for more flexibility, but incurs an additional hardware cost.
Inspired by Grünschloß and Keller [2009], we have experimented
with randomized permutation-based search for (0,m, 3)-nets with
larger minimum point distance than the above construction, but the
results of this has been left for future work.

6 Shading

A core feature of our algorithm is that we visit a particular pixel
at most once for a certain triangle. This is similar to McGuire et
al.’s work [2010], but different from interleaved and interval raster-
ization [Keller and Heidrich 2001; Fatahalian et al. 2009], where
a pixel may be visited many times for the same triangle. Using
our traversal order, it is therefore possible to use multisampling
anti-aliasing (MSAA) strategies with temporal filtering [Loviscach
2005; McGuire et al. 2010], which is not feasible for interleaved
and interval rasterization since they slice the time dimension. As
will be seen in Section 8, multisampling can give a considerable re-
duction in shader cost, which is a big advantage when implement-
ing the traversal algorithm in an existing GPU pipeline. It should be
noted that decoupled shading solutions [Ragan-Kelley et al. 2011;

M
cG

ui
re

et
al

.
L

ov
is

ca
ch

Static Small motion Large motion

Figure 9: Comparison between the filter kernel approximations
proposed by McGuire et al. (top) and Loviscach (bottom). The
results are rendered on an NVIDIA GeForce 290 GTX with 16×
anisotropic filtering. Note the severe aliasing in the top row. This is
due to over-emphasizing the motion contribution, and the approxi-
mation of the screen space filter kernel as a fixed (1, 1)-vector.

Burns et al. 2010] show more promise to further reduce the shading
cost. However, the multisampling approach can be implemented on
current hardware with no, or very small, modifications as shown by
McGuire et al [2010], which makes it a good first step towards a
graphics hardware solution fully supporting motion blur. Although
our shading system is very similar to previous work, we describe it
briefly since being able to use multisampling is currently an impor-
tant feature of our algorithm.

We base our temporal shader filtering on the work of Lovis-
cach [2005] and McGuire et al. [2010]. The basic idea is to use
anisotropic texture filtering to integrate textures over the motion
footprint by modifying the derivatives. By integrating over time in
the shader, it is possible to sample the shader only once per pixel,
and write the result to all covered samples.

We assume that the only varying shader inputs are the barycentric
coordinates u(x, y, t), v(x, y, t), and disregard from explicit shader
input variables representing the sample time. For texture filtering,
we need to estimate the texture footprint. The integration domain
is given by a fourth order rational function in t, but we choose to
make the same approximations as Loviscach [2005], and use his
approach for perturbing the screen space texture gradient axes to
account for the temporal derivative. McGuire et al. [2010] present
an approximation where the screen space gradients use a fixed axis
in texture space. However, this method suffers from severe aliasing
for some view directions, as can be seen in Figure 9.

We compute ∂u
∂x

, ∂u
∂y

and ∂u
∂t

by finite differences (same for the par-
tial derivatives of v). For each quad of 2 × 2 pixels with at least
one sample covered, we evaluate the shader at five points: each of
the four pixel centers at t = 0.5 for the quad, in order to com-
pute x and y derivatives using finite differences, and one additional
point for one of the samples at t = 1 to compute a per-quad ap-
proximation of the temporal derivative. For a more fine-grained
temporal derivative, one can shade the entire quad at two distinct
times and compute per-pixel temporal derivatives, or shade on a per
sample/pixel basis, which would shade four points to compute per-
pixel ∂u

∂x
, ∂u
∂y

, and ∂u
∂t

derivatives (and the partial derivatives of v).
We use the quad approximation in all our tests. The shading ap-
proach integrates very well into existing pinhole camera rendering
systems with MSAA support with relatively modest modifications
to the hardware.

It should be noted that our approach for computing derivatives may

lead to shading samples that lie outside the triangle. This can cause
shading artifacts, but we have not found them to be significant in
our test scenes. McGuire et al. [2010] used a different approach and
picked the last covered time sample as the shading sample, but re-
projected to t = 0. This has other implications such as overblurring
due to too large filter kernels. Working out a strategy for correct
shader filtering and derivative computations with stochastic sam-
pling is an interesting problem that deserves a thorough evaluation.
However, we leave that for future work.

With interleaved rasterization [Keller and Heidrich 2001; Fata-
halian et al. 2009] in a pipeline with shading after visibility, there
are no adjacent screen space samples with the same sample time.
Without introducing large hardware changes (e.g., a shader cache)
the spatial derivatives can be computed in two ways. One option
is to compute derivatives per sample by executing the shader at
three spatial positions. The other option is to compute derivatives
using finite differences from four nearby samples with the same
time, while taking the perturbed sample positions into account. This
method produces coarser derivatives, as the samples with the same
time are typically separated by two or more pixels. In either case,
as we shade at all sample times, the temporal derivatives are less
important and can be ignored without much loss in image quality.
We chose to use the first alternative for the statistics presented in
this paper, as the quality more closely matches that of our deriva-
tives. Furthermore, coarse derivatives will degrade the quality even
for static scenes compared to current graphics API specifications,
which we want to avoid.

7 Implementation

Hierarchical Rasterizers To evaluate our algorithm, we have im-
plemented four rasterizers called CONVEX, OUR, INTERVAL and HIERAR-
CHICAL INTERLEAVE in a software rasterization pipeline that can exe-
cute DX11 traces, but lacks a general shading system. In order
to evaluate shading and sampling quality, we have also designed a
GPU rasterizer which performs stochastic rasterization in a pixel
shader, similar to McGuire et al.’s work [2010].

CONVEX (based on McGuire et al. [2010]) traverses all tiles within
an AABB overlapping the screen space convex hull (CH) of the
moving triangle. The original paper uses a two-step algorithm that
triangulates the convex hull and rasterizes stochastically in the pixel
shader (to run on current GPUs). In our software implementation,
each tile is tested against the CH edges, and if it overlaps, all spatio-
temporal samples within the tile are tested against the triangle. Both
approaches perform hierarchical rasterization, but the latter may be
more efficient in hardware, as a tile is visited only once. OUR algo-
rithm is similar, but uses the tile tests with temporal bounds intro-
duced in Section 4 instead of the CH edges. The temporal bounds
significantly reduce the number of samples that must be tested. IN-
TERVAL is based on Pixar’s motion blur algorithm (described by Fata-
halian et al. [2009]). The main difference compared to CONVEX and
OUR is the iteration order, where INTERVAL has an outer loop over
sample times instead of over tiles. This is the only algorithm that
cannot be easily extended to hierarchical rasterization. We still use
a tiled traversal approach for the sake of hierarchical depth culling,
but we have no test for trivially rejecting a non-overlapping tile. HI-
ERARCHICAL INTERLEAVE is a hierarchical 2DH version of Fatahalian
et al.’s [2009] interleaved rasterizer, where the triangle is rasterized
with an interleaved sampling pattern. Like INTERVAL, this algorithm
has the outer loop over sample times rather than tiles. Note that
for mixed triangle sizes, adding a hierarchical test to Fatahalian
et al.’s [2009] interleaved rasterizer improves performance a lot,
which is to be expected since the target of the original paper was
micropolygon rendering.

CONVEX OUR

Iteration order Tiles Tiles
Screen space bbox BBox of CH Bound tri over [0, 1]
Tile test CH edges Swept tri
Occl. & sample test t ∈ [0, 1] t ∈ t̂tot
Shading MSAA MSAA
Sampling pattern Arbitrary Ordered in t

INTERVAL HIER.INTERLEAVE

Iteration order Sample times Sample times
Screen space bbox Bound tri over [ti, ti+k] Bound tri at ti
Tile test None Tri edges at ti
Occl. & sample test t = [ti, ti+k] t = ti ∀i
Shading Supersampling Supersampling
Sampling pattern Ordered in t Interleaved

Table 1: Algorithm comparison. CH denotes the screen space con-
vex hull of the moving triangle. For INTERVAL, we divide the N
unique sample times in N/k intervals.

Figure 10: Two moving triangles are rasterized at four fixed times
for illustrative purposes. With little motion, the individual bound-
ing boxes (red) overlap, which makes a screen space traversal in
the swept bbox (green) preferable. At higher motion, the bound-
ing boxes separate and HIERARCHICAL INTERLEAVE traversal is more
efficient.

All algorithms perform backface culling [Munkberg and Akenine-
Möller 2011] and view-frustum culling (including temporal
bounds). In all tests, we use the same high-quality interleaved sam-
pling patterns, described in Section 5, with 64 fixed times. The
reason for this is that the edge functions can be pre-computed for
64 times in the triangle setup and reused over the triangle, which
gives substantially reduced costs for our test scenes. The inside
test, which uses 2DH edge equations, is therefore identical for all
four algorithms. The traversal strategies are summarized in Table 1.

Using a sample pattern with a fixed set of sample times, there is
an amount of motion where a fast moving triangle has no spatial
overlap between adjacent times, ti and ti+1. Figure 10 illustrates
this. In this case, there is little temporal coherence to exploit, i.e.,
each tile has only one or a few covered samples. Therefore, we
propose a fallback to HIERARCHICAL INTERLEAVE traversal whenever
the individual bounding boxes no longer overlap. We use a sim-
ple heuristic to decide when this occurs. The dimensions of the
bounding boxes at t= 0 and t= 1 are w0 × h0 and w1 × h1, re-
spectively, and the swept bounding box ws × hs. If we rasterize at
N unique times, HIERARCHICAL INTERLEAVE traversal is chosen when-
ever min(w0, w1) < ws/N or min(h0, h1) < hs/N . We use this
fallback in all our measurements of OUR, CONVEX, and INTERVAL. It is
primarily activated for very small, fast moving triangles.

At 16× multisampling, we use three hierarchical levels with 16 ×
16, 8×8, and 4×4 pixel tiles for all algorithms except HIERARCHICAL

INTERLEAVE (which uses 32×32, 16×16 and 8×8 pixel tiles). Depth
culling is performed on the coarsest and finest levels, and trivial
reject or time overlap test are performed on the two finer levels.
These configurations were determined by extensive evaluation of
both arithmetic cost and bandwidth usage. We use coarser tile levels
for HIERARCHICAL INTERLEAVE since the tile tests are executed for each
sample time ti. For HIERARCHICAL INTERLEAVE, a single tile test at 4×4
pixel tiles culls at most 4 samples with t = ti. In contrast, up to
256 samples with t ∈ [0, 1] can be culled for 4×4 pixel tiles with
our tile tests.

Scene Triangles Resolution Motion
StoneGiant1 0.26M 1280× 720 Camera translation
StoneGiant2 4.1M 1920× 1200 Camera rotation
Heaven 2.4M 1920× 1080 Camera translation
SubD11 0.16M 1920× 1080 Keyframed animation

St
on

eG
ia

nt
1

St
on

eG
ia

nt
2

H
ea

ve
n

Motion: 0 1× 4×

Su
bD

11

Frame 5 Frame 100 Frame 195

Figure 11: Our test scenes with two frames from the StoneGiant
demo (courtesy of BitSquid), one from the Heaven 2 demo (courtesy
of Unigine Corp.), and the SubD11 animation from Microsoft DX
SDK (June 2010). Motion blur has been added to all scenes.

Time-Dependent Occlusion Culling A traditional z-max buffer
stores one conservative z-max value for each screen space tile. We
use a time-dependent z-max buffer [Akenine-Möller et al. 2007;
Boulos et al. 2010], which contains multiple temporal depth values
per tile for increased culling efficiency in the presence of motion
blur. For better efficiency, our algorithm uses the tile’s temporal
overlap, t̂tot (Section 4), to avoid performing occlusion queries for
time intervals when the triangle does not overlap. Our simulator
uses a fully associative cache backing the depth and z-max buffers
with 64 bytes cache lines. In the following, we denote the number
of different sample times represented in one cache line as s. A cor-
responding z-max value then represent s times over a screen space
tile whose spatial extents is proportional to 1/s to make it fit in the
cache line. A coarse z-max buffer is either constructed for each
of the 64 times, and hence s = 1, or for a group of consecutive
times (representing a smaller screen space area), where s > 1. In
all cases, we have one z-max value for each cache line of sample
depths.

The temporal coherence may be further exploited by constructing
a temporal hierarchy [Boulos et al. 2010]. We explored this with
a two-level spatio-temporal cache-backed hierarchy, but were not
able to reduce bandwidth usage. This is partly due to the cache line
grouping of values – large chunks of geometry must be success-
fully culled in order to avoid reading z-max data – and partly due to
the added cost of keeping another level of z-max data in the cache.
Also note that our tests are not using any depth compression. How-
ever, a two-level temporal hierarchy decreased the arithmetic cost
by around 5–10%, and we use it for all algorithms.

8 Results

Our test scenes are presented in Figure 11 and include various
types of motion, triangles sizes, and geometry distributions. All
results were generated using our own simulation framework de-

0

0.5

1.0

1.5

2.0

0 1× 2× 3× 4×

B
an

dw
id

th
 (G

B
)

0

0.25

0.50

0.75

0 1× 2× 3× 4×

Motion Amount

0

1

2

3

4

1 4 16 64 256 1024

0

0.5

1.0

1.5

1 4 16 64 256 1024

Cache size (kB) Cache size (kB)Motion Amount

Heaven 16kB cache StoneGiant1 16kB cache Heaven, 1× motion StoneGiant1, 1× motion

Our s=1 Hierarchical Interleave s=1
Our s=4 Hierarchical Interleave s=4

Our s=1 Hierarchical Interleave s=1
Our s=4 Hierarchical Interleave s=4

Figure 12: Bandwidth usage for z and z-max at 16 samples per pixel. Left: varying amount of motion with a 16kB depth cache. A higher
temporal z-max resolution (lower s) scales better with increasing motion, but has a higher constant cost. s=4 is a suitable choice for OUR,
as the crossover occurs at extreme motion (outside the graph). Right: varying cache size with fixed amount of motion. The minimum cache
requirement for our algorithm is to accommodate all N time layers and the z-max storage. Our algorithm with s=4 scales well to decently
small cache sizes. CONVEX is not shown as it behaves similar to our algorithm, with the only difference that more z-max queries are performed.

scribed in Section 7 with 16 samples per pixel. We present results
for the depth buffer bandwidth, the number of shader executions,
and the number of arithmetic operations required for rasterization.
In most charts, we have also included a standard hierarchical ras-
terizer without motion blur. This is referred to as STATIC.

Depth Buffer Bandwidth Reducing memory bandwidth usage is
incredibly important, and therefore, we start with a study on depth
buffer bandwidth usage. Figure 12 (left) shows the depth buffer
memory bandwidth usage from cache misses (including both sam-
ple depths and z-max values) when the number of sample times
per cache line, s, is varied. Grouping more times into a cache line
increases the penalty of larger motion, but lowers the bandwidth us-
age for parts of the scene moving slowly. For our algorithm, s = 4
is preferable for a wide range of motion. We use this number for all
measurements for OUR, CONVEX, and INTERVAL since they have sim-
ilar access patterns. Note, however, that our algorithm performs
slightly fewer hierarchical occlusion queries than CONVEX since we
use the results from the tile test to avoid testing some time inter-
vals. More aggressive temporal grouping (s = 16) only pays off
for very small motion, while no temporal grouping (s = 1) is more
efficient for extreme motion. HIERARCHICAL INTERLEAVE scales differ-
ently, and the benefit for grouping sample times into the same cache
line is low even for static scenes. This is an effect of the traversal
order, where the triangle is fully traversed for one sample time be-
fore continuing with the next. For larger triangles, this may lead to
eviction of the first cache line before starting traversal for the next
sample time. Therefore, we use the s = 1 framebuffer layout for
the HIERARCHICAL INTERLEAVE algorithm.

To determine a suitable cache size, we ran the bandwidth measure-
ments with various cache sizes as presented in Figure 12 (right).
Our algorithm needs a minimum cache size of 2kB (and in the case
of s = 1, it needs 8kB) to avoid a 100% miss rate. However, above
this minimum, it scales better than HIERARCHICAL INTERLEAVE traver-
sal for decreasing cache sizes. In fact, HIERARCHICAL INTERLEAVE does
not level out until the cache becomes very large (128kB–1MB). For
the remaining comparisons, we use a 16kB cache for all algorithms.
This corresponds to approximately 256 fully covered pixels worth
of data, not counting z-max storage.

As shown in Figure 12 and 16 (top row), the depth buffer band-
width (including both sample depths and z-max values) to exter-
nal memory is relatively constant for the HIERARCHICAL INTERLEAVE

traversal order with increasing motion, while it is increasing some-
what for OUR, CONVEX, and INTERVAL. Our algorithm becomes less
efficient than HIERARCHICAL INTERLEAVE at some point. However, ex-
treme motion is needed to reach the break-even point, and our al-
gorithm consistently outperforms the competing algorithms except
for the difficult StoneGiant2 scene with extreme motion (>4×). In

Figure 13, we see that our algorithm uses less bandwidth than HIER-
ARCHICAL INTERLEAVE for the SubD11 animation. In fact, in most
frames, OUR uses only about 50% of that of HIERARCHICAL INTER-
LEAVE, even though the scene is animated at a low frame rate (24 fps)
and contains frames with relatively large motion. Our algorithm
also uses slightly less bandwidth than CONVEX since our tile tests
with temporal bounds enable more efficient occlusion culling. This
is particularly noticeable in the frames with largest motion. The
depth buffer bandwidth of INTERVAL is similar to our algorithm but
with one important difference. Since INTERVAL does not have a trivial
reject test we need to perform depth culling for all tiles overlapping
the triangle bounding box. This is not significant for small triangles
or for scenes with only motion in the x- or y-directions. However,
for SubD11 which contains large sliver triangles, this leads to many
unnecessary depth culling queries and increases bandwidth signifi-
cantly.

Shading Efficiency Figure 14 shows the number of shader exe-
cutions per frame for the SubD11 animation. For OUR and CONVEX,
we use multisampling, while HIERARCHICAL INTERLEAVE traversal has
to resort to supersampling due to the traversal order (i.e., for each
time, there is only one sample per tile in the interleaved sampling
pattern). For INTERVAL, we use 16 time intervals. This implies that
within each time interval, there is one sample per pixel in the inter-
leaved sampling pattern. As can be seen, the benefit of multisam-
pling is very high for SubD11. Also, INTERVAL is more efficient than
HIERARCHICAL INTERLEAVE since shading is computed once per inter-
val (16×) rather than per sample time (64×), and quad-fragment
shading and finite differences can be used.

At extreme motion relative to the primitive size, we effectively re-
vert to supersampling. This happens at >4× motion for the Stone-
Giant2 scene, which is highly tessellated (see the middle row in
Figure 16). It is questionable whether this extreme motion will be
usable for real-time rendering (> 60 fps). In all cases, the shad-
ing overhead compared to STATIC is often quite high. Given these
observations, we conclude that better long term solutions for shad-
ing may be cache or object-space based approaches, as discussed
in Section 6. However, we believe that a multisampling approach
for motion blur is likely to be adopted by hardware vendors as an
intermediate step towards a pipeline with decoupled shading.

Rasterization Cost We have instrumented our code with cost es-
timations for the critical stages of the rasterization algorithm: tri-
angle setup, tile test, sample test, and interpolation setup. We only
account for the cost of the more complex operations such as ADD,
MUL, RCP, etc., and disregard from the cost of bit-twiddling and
control logic. Therefore, our results should not be seen as abso-
lute costs for an implementation, but rather demonstrate the general

0

0.3

0.6

0.9

1.2

1.5 Our
Hier. Interleave
Convex
Interval
Static

D
ep

th
 B

W
 (G

B
)

Frame
Figure 13: Depth buffer bandwidth for the SubD11 animation.

0

30

60

90

120

150
Sh

ad
er

 E
x.

 (M
)

Frame

Our
Hier. Interleave
Convex
Interval
Static

Figure 14: Number of shader executions for SubD11.

trend of the algorithms and how they relate. We intentionally do not
use sample test efficiency [Fatahalian et al. 2009] as an efficiency
measure, since it only includes a part of the rasterization cost. For
example, sample test efficiency would benefit of using as small tiles
as possible, but in practice, the best tradeoff is found with medium
sized tiles where the sum of the tile test cost and sample test cost is
minimized.

In Figure 15, we show a breakdown of the costs for the different
stages of the rasterizer for the SubD11 animation. HIERARCHICAL

INTERLEAVE has a significant triangle setup cost, due to that each tri-
angle is bounded at N =64 discrete times. Also, the interpolation
setup is more expensive, as the shading is supersampled. Addi-
tionally, the sample test work is increased due to a larger screen
space tile size. We have experimented with finer tile sizes, but that
resulted in a substantial increase in the tile test cost, making the
overall cost increase. INTERVAL performs quite poorly for this test
scene. The reason for this is that the model contains large sliver
triangles and since the INTERVAL rasterizer lacks a hierarchical tile-
overlap test, it performs many unnecessary sample tests. For CON-
VEX, the cost of sample testing dominates, and varies widely. Our
algorithm has more expensive per-tile tests, but they manage to cull
a larger part of subsequent work. The total arithmetic cost using
our two tile tests (moving box and moving edge) is presented in Ta-
ble 2. We also measured the efficiency of our linearized edge test
compared to directly solving the quadratic edge equation per tile.
On the entire SubD11 animation (the scene with most complex mo-
tion), the linearized test results in 8% more inside test, but reduces
the total arithmetic cost by 13% thanks to less expensive per-tile
computations. On the Heaven scene, the linearized test results in
4% more inside test, but a total cost reduction of 24%.

Static BBox Box Edge Box+Edge
SubD11 8.5(58) 6.2(32) 1.8(4.9) 1.7(4.5) ×109
Heaven 160(200) 17(21) 17(22) 14(18) ×109

Table 2: Efficiency of our tile tests in terms of average total arith-
metic cost per frame (maximum in parenthesis). The combination
of the two tests gives a cost efficient and robust tile test.

In Figure 16 (bottom row), we show how the four different mo-
tion blur algorithms scale with increased motion. StoneGiant1 and
Heaven both have motion blur from a camera translation and show
similar trends despite a large difference in tessellation. For modest

motion (<1×), our algorithm has about half the traversal cost of
HIERARCHICAL INTERLEAVE, and has roughly the same cost at extreme
motion. INTERVAL scales similar to our algorithm but has lower over-
all performance. CONVEX is efficient for small motion, but the arith-
metic cost grows very quickly for larger motion. StoneGiant2 is a
highly tessellated frame with a camera rotation, so that each triangle
gets similarly long motion trails. There are about a million triangles
in the two front-most spiders alone. This is a worst-case scenario
for a screen space hierarchical traversal, as a large fraction of the
scene geometry is near pixel-sized. Here, HIERARCHICAL INTERLEAVE

handles extreme motion robustly at a significant cost (around 40
Gops per frame). Our approach is competitive up to about 2× mo-
tion. At extreme motion levels, nearly all triangles are completely
separated (see Figure 10), so there is no gain in using a screen space
traversal algorithm.

9 Conclusions

This paper has described the first efficient algorithm for hierarchi-
cal rasterization of motion blur. The algorithm builds on novel tile
tests that compute the temporal overlap between a screen space
tile and a moving primitive. We have shown that these temporal
bounds are important to reduce the volume of tested samples and
enable efficient hierarchical occlusion culling. We have further de-
vised a high quality sampling method that uses the temporal bounds
to quickly generate samples with good statistical properties. Our
method is based on reordering of a known three-dimensional digital
(t,m, s)-net to better fit the requirements for motion blur rasteriza-
tion. Finally, we have provided extensive measurements of depth
buffer bandwidth usage, arithmetic intensity, and shader efficiency
for MSAA on modern complex workloads, which we have not seen
in other studies.

In this paper, we have taken one step towards efficient motion
blurred rendering on graphics processors. Our focus has been on
a rather non-intrusive change to current GPUs. One area that needs
more work is efficient shading, which makes the next natural step
to add a decoupled shading cache [Ragan-Kelley et al. 2011; Burns
et al. 2010]. This is left for future work at this point. In addition, it
would be interesting to transform the algorithms into using efficient
fixed-point math robustly. We hope that our work will help drive a
continued interest in stochastic rasterization as a realistic method to
achieve high-quality motion blur in future graphics pipelines.

Acknowledgements Thanks to Tobias Persson from BitSquid
for letting us use the StoneGiant demo, and to Denis Shergin
from Unigine for letting us use images from Heaven 2.0. Tomas
Akenine-Möller is a Royal Swedish Academy of Sciences Research
Fellow supported by a grant from the Knut and Alice Wallenberg
Foundation. In addition, we acknowledge support from the Swedish
Foundation for strategic research.

References
AKENINE-MÖLLER, T., AND AILA, T. 2005. Conservative and

Tiled Rasterization Using a Modified Triangle Set-Up. Journal
of Graphics Tools, 10, 3, 1–8.

AKENINE-MÖLLER, T., AND STRÖM, J. 2003. Graphics for
the Masses: A Hardware Rasterization Architecture for Mobile
Phones. ACM Transactions on Graphics, 22, 3, 801–808.

AKENINE-MÖLLER, T., MUNKBERG, J., AND HASSELGREN, J.
2007. Stochastic Rasterization using Time-Continuous Trian-
gles. In Graphics Hardware, 7–16.

BOULOS, S., LUONG, E., FATAHALIAN, K., MORETON, H.,
AND HANRAHAN, P. 2010. Space-Time Hierarchical Occlu-

A
ri

th
m

et
ic

op
s

(G
)

0

1

2

3

4

5

6

7

8

Triangle Setup
Tile Test
Sample Test
Interpolation Setup

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

STATIC OUR CONVEX HIERARCHICAL INTERLEAVE INTERVAL

Figure 15: Arithmetic cost breakdown for different traversal algorithms on the SUBD11 animation at 16× samples per pixel. Note that the
CONVEX traversal has substantially higher number of sample tests, due to the lack of temporal bounds per tile. Due to the lack of hierarchical
testing, INTERVAL and INTERLEAVE also suffer from excessive sample testing. Hence, we only use the improved HIERARCHICAL INTERLEAVE in our
measurements.

StoneGiant1 StoneGiant2 Heaven

D
ep

th
 B

W
 (G

B
)

A
rit

hm
 o

ps
 (G

)
Sh

ad
er

 E
x.

 (M
)

0

0.2

0.4

0.6

0 1× 2× 3× 4×

0

40

80

120

0 1× 2× 3× 4×

0

2

4

6

8

0 1× 2× 3× 4×

0

1

2

3

4

0 1× 2× 3× 4× 5× 6×

0

100

200

300

0 1× 2× 3× 4× 5× 6×

0

50

100

150

0 1× 2× 3× 4× 5× 6×

0.0

0.5

1.0

1.5

2.0

0 1× 2× 3× 4× 5×

0

50

100

150

200

250

0 1× 2× 3× 4× 5×

0

10

20

30

40

50

0 1× 2× 3× 4× 5×

In
te

rv
al

O
ur

H
ie

r.
 I

nt
er

le
av

e
C

on
ve

x
St

at
ic

Figure 16: The total depth buffer bandwidth, #shader executions, and arithmetic cost for the StoneGiant and Heaven scenes, as functions of
the motion amount, where 1× denotes a modest motion amount and 4× represents extreme motion. See screenshots in Figure 11. Note that
CONVEX has the same number of shader executions as OUR

sion Culling for Micropolygon Rendering with Motion Blur. In
High-Performance Graphics, 11–18.

BRAWER, R., AND PIROVINO, M. 1992. The Linear Algebra of
the Pascal Matrix. Linear Algebra and its Applications, 174,
13–23.

BRUNHAVER, J., FATAHALIAN, K., AND HANRAHAN, P. 2010.
Hardware Implementation of Micropolygon Rasterization with
Motion and Defocus Blur. In High-Performance Graphics, 1–9.

BURNS, C. A., FATAHALIAN, K., AND MARK, W. R. 2010. A
Lazy Object-Space Shading Architecture with Decoupled Sam-
pling. In High-Performance Graphics, 19–28.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed Ray Tracing. In Computer Graphics (Proceedings of
SIGGRAPH 84), ACM, vol. 18, 137–145.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
Reyes Image Rendering Architecture. In Computer Graphics
(Proceedings of SIGGRAPH 87), ACM, vol. 21, 95–102.

FATAHALIAN, K., LUONG, E., BOULOS, S., AKELEY, K.,
MARK, W. R., AND HANRAHAN, P. 2009. Data-Parallel Ras-
terization of Micropolygons with Defocus and Motion Blur. In
High-Performance Graphics, 59–68.

FUCHS, H., POULTON, J., EYLES, J., GREER, T., GOLD-
FEATHER, J., ELLSWORTH, D., MOLNAR, S., TURK, G.,
TEBBS, B., AND ISRAEL, L. 1989. Pixel-Planes 5: A Het-
erogeneous Multiprocessor Graphics System using pProcessor-

Enhanced Memories. In Computer Graphics (Proceedings of
SIGGRAPH 89), ACM, vol. 23, 79–88.

GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical
Z-Buffer Visibility. In Proceedings of SIGGRAPH 1993, ACM,
231–238.

GREENE, N. 1994. Detecting Intersection of a Rectangular Solid
and a Convex Polyhedron. In Graphics Gems IV, Academic
Press Professional, Inc., 74–82.

GRIBEL, C. J., DOGGETT, M., AND AKENINE-MÖLLER, T.
2010. Analytical Motion Blur Rasterization with Compression.
In High-Performance Graphics, 163–172.

GRÜNSCHLOSS L., AND KELLER, A. 2009. (t,m, s)-Nets and
Maximized Minimum Distance, Part II. In Monte Carlo and
Quasi-Monte Carlo Methods 2008. Springer Berlin Heidelberg,
395–409.

HAEBERLI, P., AND AKELEY, K. 1990. The Accumulation Buffer:
Hardware Support for High-Quality Rendering. In Computer
Graphics (Proceedings of SIGGRAPH 90), ACM, vol. 24, 309–
318.

KELLER, A., AND HEIDRICH, W. 2001. Interleaved Sampling. In
Proceedings of the 12th Eurographics Workshop on Rendering
Techniques, Springer-Verlag, 269–276.

KLAVŽAR, S. 2006. Counting Hypercubes in Hypercubes. Dis-
crete Mathematics, 306, 22, 2964–2967.

KOLLIG, T., AND KELLER, A. 2002. Efficient Multidimensional

Sampling. Computer Graphics Forum, 21, 3.
KOREIN, J., AND BADLER, N. 1983. Temporal Anti-Aliasing in

Computer Generated Animation. In Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 83), ACM, vol. 17, 377–388.

LOVISCACH, J. 2005. Motion Blur for Textures by Means of
Anisotropic Filtering. In Rendering Techniques 2005, 105–110.

MCCOOL, M. D., WALES, C., AND MOULE, K. 2001. Incre-
mental and Hierarchical Hilbert Order Edge Equation Polygon
Rasterization. In Graphics Hardware, 65–72.

MCCORMACK, J., AND MCNAMARA, R. 2000. Tiled Polygon
Traversal using Half-Plane Edge Functions. In Graphics hard-
ware, 15–21.

MCGUIRE, M., ENDERTON, E., SHIRLEY, P., AND LUEBKE, D.
2010. Real-Time Stochastic Rasterization on Conventional GPU
Architectures. In High Performance Graphics, 173–182.

MOREIN, S. 2000. ATI Radeon HyperZ Technology. In Graphics
Hardware, Hot3D Proceedings.

MUNKBERG, J., AND AKENINE-MÖLLER, T. 2011. Backface
Culling for Motion Blur and Depth of Field. journal of graphics,
gpu, and game tools (to appear).

NIEDERREITER, H. 1992. Random Number Generation and
Quasi-Monte Carlo Methods. SIAM.

OLANO, M., AND GREER, T. 1997. Triangle Scan Conversion
using 2D Homogeneous Coordinates. In Graphics Hardware,
89–95.

PINEDA, J. 1988. A Parallel Algorithm for Polygon Rasterization.
In Computer Graphics (Proceedings of SIGGRAPH 88), ACM,
vol. 22, 17–20.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled Sampling for Graphics
Pipelines. ACM Transactions on Graphics (to appear), 30, 3.

A Derivation of Our Generator Matrices

We base our sampling method on the (0,m, 3)-net proposed by
Grünschloß and Keller [2009]. Their first two generator matrices,
giving the Larcher-Pillichshammer (LP) points, are defined as:

C1=

 0 1

. .
.

1 0

 and C2=

({
1 if k ≤ l,
0 else

)m
k,l=1

, (13)

and the third component is generated by the matrix:

C3=

((
l

k

)
mod 2

)m
k,l=1

. (14)

To make the generated point set better suited for motion blur ras-
terization with our algorithm, we propose a new construction based
on the matrices C′i = CiD, where D = C−1

3 C1. D is chosen so
that C′3 = C3C

−1
3 C1 = C1, which generates points ordered in

the third component, while keeping the first two components as the
LP-points. Note that C3 is an upper triangular matrix as

(
l
k

)
= 0

if k > l, and its determinant is thus the product of the diagonal
entries, det(C3) =

∏m
i=1

(
i
i

)
= 1, which shows it is of full rank

and therefore invertible.

We start by computing the inverse C−1
3 . Note that C3 is closely

related to the Pascal matrix Pn(i, j) =
(
i−1
j−1

)
, 1≤ i, j ≤n. Its in-

verse, P−1
n is known [Brawer and Pirovino 1992] and has elements

P−1
n (i, j) = (−1)i−j

(
i−1
j−1

)
. In F2, −1 = 1, and hence the term

(−1)i−j disappears and P−1
n =Pn (mod 2). The elements of C3

are the same as the lower-right submatrix of size m×m of PTm+1

mod 2. This result lead us to believe that C3 is its own inverse
in F2, i.e., C−1

3 = C3. As a proof, we show that the elements of
C3C

−1
3 =C2

3 =I are:

C2
3 (k, l) =

m∑
i=1

(
i

k

)(
l

i

)
mod 2 = . . . =

{
1 if k = l,
0 if k 6= l,

(15)
for 1 ≤ k, l ≤ m. First, note that nonzero terms in the sum can
only occur when both binomial coefficients are nonzero, i.e., when
k ≤ i ≤ l, due to

(
l
k

)
= 0 if k > l. Hence, in the lower left, k > l,

all elements are zero. For k ≤ l, the sum can be expanded using a
double counting combinatorial proof [Klavžar 2006]:

m∑
i=1

(
i

k

)(
l

i

)
=

l∑
i=k

(
i

k

)(
l

i

)
= 2l−k

(
l

k

)
. (16)

In the upper right, k < l, C2
3 (k, l) = 2l−k

(
l
k

)
mod 2 = 0, as all

elements are multiples of 2. Along the diagonal, k = l, the sum
reduces to 20

(
k
k

)
=1, which concludes the proof. Finally, our new

matrix, C′1, for computing the first component of the points is given
by:

C′1 = C1D = C1C3C1 =

((
m+ 1− l
m+ 1− k

)
mod 2

)m
k,l=1

,

(17)
as pre and post-multiplication by the exchange matrix, C1, results
in flipping C3 vertically and horizontally. To compute, C′2, we start
with C2C3, which is given by:

C2C3(k, l) = . . . =

{ ∑l
i=k

(
l
i

)
mod 2 if k ≤ l,

0 if k > l,
(18)

as the rows of C2 are zero for columns i < k, and
(
l
i

)
= 0 if

i > l. Through experiments, we have found that
∑l
i=k

(
l
i

)
=(

l−1
k−1

)
(mod 2), k ≤ l. The formal proof of this can be found by

deduction. Finally, C′2 is given by flipping this matrix horizontally,
i.e., replacing the column index l by m+1−l, as follows:

C′2 = C2D = C2C3C1 =

((
m− l
k − 1

)
mod 2

)m
k,l=1

. (19)

This completes the derivation of our new set of generator matrices.

