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Abstract

Previous depth buffer compression schemes are tuned for com-
pressing depths values generated when rasterizing static triangles.
They provide generous bandwidth usage savings, and are of great
importance to graphics processors. However, stochastic rasteriza-
tion for motion blur and depth of field is becoming a reality even
for real-time graphics, and previous depth buffer compression al-
gorithms fail to compress such buffers due to the irregularity of the
positions and depths of the rendered samples. Therefore, we present
a new algorithm that targets compression of scenes rendered with
stochastic motion blur rasterization. If possible, our algorithm fits
a single time-dependent predictor function for all the samples in a
tile. However, sometimes the depths are localized in more than one
layer, and we therefore apply a clustering algorithm to split the tile
of samples into two layers. One time-dependent predictor function
is then created per layer. The residuals between the predictor and
the actual depths are then stored as delta corrections. For scenes
with moderate motion, our algorithm can compress down to 65%
compared to 75% for the previously best algorithm for stochastic
buffers.

CR Categories: I.3.1 [Computer Graphics]: Hardware
architecture—Graphics processors I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture

Keywords: stochastic rasterization, depth buffer compression,
motion blur.

1 Introduction

In general, graphics processors are dependent on a number of tech-
niques to reduce memory bandwidth usage. A memory access may
cost several orders of magnitudes more in terms of power con-
sumption than an arithmetic operation [Dally 2009], and the gap
between compute power and the available bandwidth continues to
grow. Hence, it is well worth the silicon to add fixed-function units
for those techniques.

Over the past few years, a lot of effort [Akenine-Möller et al. 2007;
Toth and Linder 2008; Fatahalian et al. 2009; McGuire et al. 2010;
Brunhaver et al. 2010] has been put into getting stochastic rasteri-
zation [Cook et al. 1987] of motion blur and depth of field closer
to interactive or even real-time rendering. The characteristics of
stochastic rasterization is likely to influence some of the techniques
for reducing usage of memory bandwidth, especially the ones based
on compression.

Depth buffer compression is one very important technique [Morein
2000] to reduce memory bandwidth usage. We review the known
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Figure 1: False color visualizations of depth buffer compression
ratios of some scenes, where our algorithm outperforms the compe-
tition for compressing stochastic motion blur depth buffers. Plane
encoding (PE) is one of the best algorithms for compressing static
scenes, and depth offset (DO) compression is the best existing
scheme for handling “noisy” buffers. As can be seen, plane en-
coding breaks down completely due to that plane equations turn
into higher order rational polynomials when motion is introduced.
Depth offset compression is substantially better, but the combina-
tion of our novel time-dependent compression algorithm with DO
is even better. The color scale is, from low compression ratio (good)
to high compression ratio (bad), blue, cyan, green, yellow, and red
(which represents uncompressed).

algorithms [Morein 2000; Hasselgren and Akenine-Möller 2006;
Lloyd et al. 2007; Ström et al. 2008] in the last part of Section 2.
Note that lossy compression of other depth buffer representations
can also be done [Gribel et al. 2010; Salvi et al. 2010], but these do
not solve the problem of compression of stochastically generated
buffers.

Most existing algorithms depend of the fact that depth, z, is lin-
ear over a triangle, and this is exploited to construct inexpensive
compression and decompression algorithms. One of the state-of-
the-art algorithms, called plane encoding (described by Hasselgren
and Akenine-Möller [2006]), is particularly good at exploiting this.
Briefly, the rasterizer feeds exact plane equations to the compres-
sor, and hence do not need any residual terms. However, for motion
blur, where each vertex may move according to a linear function,
the depth function at a sample is a rational cubic function [Gribel
et al. 2010]. This fact makes it substantially harder to predict depth
over an entire tile using a simple predictor function. As a conse-
quence, the standard depth buffer compression techniques, espe-
cially the ones exploiting exact plane equations, will in many cases
fail to compress such “noisy” buffers.

We present a novel technique for compression of stochastic depth
buffers generated with motion blur. Our technique is able to com-
press a substantial amount of blocks of pixels, where previous tech-
niques break down. This can be seen in Figure 1. One of the best
algorithms, plane encoding, for static scenes breaks down com-
pletely. The best existing algorithm for compressing noisy depth
buffers is called depth offset compression, and as can be seen in
the same figure, that algorithm has decent performance for motion
blur renderings. We believe our technique could become important
in order to bring stochastic rasterization into fixed-function units in
graphics processors.
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Figure 2: Illustration of the three steps of a depth buffer compres-
sion algorithm. These are, from left to right, 1) clustering, 2) pre-
dictor function generation, and 3) residual encoding.

2 Compression Framework

Here, we present a very simple general framework (Section 2.1)
that can be used to describe all existing depth buffer compression
schemes that we know of, which is done in Section 2.2.

2.1 Framework

Let us start with some assumptions. A block of w × h pixels,
sometimes called a tile, is processed independently, and we as-
sume that each pixel has n samples. The i:th sample is denoted
by si = (six, s

i
y, s

i
t, s

i
z), where the first two components are the x-

and y-coordinates of the sample inside the tile, and the third com-
ponent, sit ∈ [0, 1], is the time of the sample. It is also possible to
add more components, for example, (siu, siv), for the lens position
for depth of field rendering. Current depth compression schemes
do not handle motion blur and depth of field explicitly, and hence
do not have the time component nor the lens parameters. Note that
all of (six, siy, sit) are fixed for a particular sample. It is only the
depths that results from the rasterization process, and as a conse-
quence, it is only the depth values, siz , that needs to be compressed.
Our notation for depth here is siz = zc/wc, where zc and wc are
the z- and w-components of a sample in clip-space, as usual. In
general, a compression algorithm may attempt to exploit the fixed
components for better compression.

From studying the sparse set of previous work on depth buffer
compression [Morein 2000; Hasselgren and Akenine-Möller 2006;
Lloyd et al. 2007; Ström et al. 2008], we realized that all known
schemes share three common steps, namely:

1. clustering,

2. predictor function generation, and

3. residual encoding.

These three steps are illustrated in Figure 2. It should be noted,
though, that an algorithm may choose not to have one or two of the
steps above. A high level description of each of the steps follows.

Clustering is needed when there are, for example, a set of samples
in a tile that belongs to a background layer, and the rest of the sam-
ples in the tile belongs to a foreground layer. In these cases, it is
very hard to compress all depths in the tile using the same predic-
tor function. The clustering step therefore attempts to separate the
samples of a tile into two or several layers, where the samples in
each layer typically should share some characteristics (e.g., lie in a
common plane). The goal of splitting the samples into two or more
layers is that each layer should ideally become simpler to compress
compared to compressing all samples as a single layer. For a tile
with only foreground samples though or when only one triangle
covers an entire tile, clustering may not be needed. In general, a
bitmask or several bitmasks are needed to indicate which layer a
sample belongs to.

As the next step, each layer generates its own predictor func-
tion. The goal here is to use the depth samples and possibly their
fixed (x, y, t)-coordinates to create a predictor function, z(x, y, t),

whose task is to attempt to predict the depth at each sample us-
ing an inexpensive (in terms of storage, generation, and evalation)
function. For example, assume that a rectangle with small per-pixel
displacements has been rendered to a tile. As a predictor function,
one may use the plane of the rectangle, since it probably is a good
guess on where the displaced depths will be. This guess will not be
100% correct, and so it is up to the next step to correct this.

Residual encoding must make sure that the exact depths, siz , can
be reconstructed during decompression of the tile, since a common
requirement by graphics APIs is that the depth buffer is non-lossy.
The residual, which is the difference between the predictor func-
tion, z(x, y, t), and a sample’s depths, is computed as:

δi = z(x, y, t)− siz. (1)

Given a good predictor function, the residuals, δi, between the
depth of the samples and the predictor function should be small.
As a consequence, the deltas can be encoded using few bits. Good
compression ratios can be achieved if there are a small number of
layers, storage (in bits) for predictor function is small, and if the
deltas can be encoded using few bits as well. Another success fac-
tor of a compression scheme is that the algorithm should succeed in
compressing many tiles during rendering.

2.2 Depth Compression Algorithms

In this subsection, we will briefly describe the existing depth buffer
compression algorithms in terms of our introduced framework. We
will use the same names of the algorithms as introduced in the
survey of depth buffer compression algorithms [Hasselgren and
Akenine-Möller 2006], and we will also describe Lloyd et al’s al-
gorithm [2007].

The depth offset algorithm uses the zmin and zmax of the tile to
cluster the samples into two layers; one being closer to zmin and
the other with samples being closer to zmax. The predictor func-
tions are as simple as they could be — for the closer layer, the
differences between the sample’s depth and zmin is encoded, and
vice versa. In the differential differential pulse code modulation
(DDPCM) algorithm, the idea is to compute first-order and second-
order differentials, which essentially generate a plane equation as
the predictor function. The differences between this plane equation
and the actual depth values are encoded using two bits per sample.
An extension is discussed, where a search for two different layers
is performed, and each layer is encoded using a plane equation.
Hence, this is a clustering step. Anchor encoding is very similar to
DDPCM. As a predictor function, a plane equation is created from
an anchor position in the tile, and two delta depth values stored as
part of the plane equation. The residuals are encoded using five
bits, and so could potentially be more useful for scenes rendered
with lots of small triangles. Clustering is not used in this algorithm.

Plane encoding uses information from the rasterizer to create the
clustering and exact plane equations. The rasterizer can assist the
compression algorithm with bitmasks indicating which samples are
covered by the triangle being rasterized, which means that cluster-
ing is done implicitly. In addition, the rasterizer can also provide
full accuracy plane equations, meaning that there will be no residu-
als to encode, and so this is an example where the last step is miss-
ing. If the rasterizer is disconnected from the compression unit, a
search algorithm for clustering into two layers can be used [Hassel-
gren and Akenine-Möller 2006]. Each layer is then encoded using
a plane equation with only a single bit as a correction factor, which
gives a bit better performance.

Ström et al. [2008] presented the first public algorithm for com-
pressing floating-point depth buffers. The floating-point numbers



were interpreted as integers in order to be able to encode differ-
ences. They used small set of previously decompressed depth val-
ues to feed a predictor function, and Golomb-Rice for entropy en-
coding of the residuals.

Lloyd et al. [2007] develop a compression algorithm specifically for
logarithmic shadow maps. In this case, the planar triangles become
curved, and linearity cannot be exploited. Instead, first-order dif-
ferentials are first computed, as done in DDPCM, and then anchor
encoding is used on the differentials. No clustering is done for this
method.

As can be seen, most of these algorithms use some kind of plane
equation of the geometry as predictor functions. With motion blur,
the depth at each sample for a single triangle is a cubic rational
polynomial [Gribel et al. 2010], and so it should be clear that they
stand little chance at being successful at compressing scenes with
stochastic motion blur (or depth of field). Some of the efficiency
of these algorithms also stem from the assumption that the samples
are positioned in a regular grid in xy, which is not true for stochas-
tic samples. Depth offset does not use any such assumptions, but
on the other hand, that algorithm uses the simplest possible clus-
tering and also the simplest predictor functions. Akenine-Möller et
al. [2007] ran some initial tests on using depth offset compression
for stochastic buffers, and found that it worked reasonably well, but
conjectured that better algorithms should be possible. In the fol-
lowing sections, we will present new ways to approach stochastic
depth compression using our framework.

3 New Algorithms

In this section, we describe our new contributions to the field of
depth compression. First, we describe a simple clustering technique
that can be applied to both stochastic depth buffers and to depth
buffers rendered without blur. In Section 3.2, we introduce time-
dependent predictor functions, and finally, we also describe how
residual encoding is done in Section 3.3.

3.1 Clustering

In this subsection, we present a novel clustering technique, which is
extremely simple and rather inexpensive to implement in hardware.
Usually, two depth layers within a tile are separated by a large gap
in depth. To find this separation, a simple approach would be to
sort the samples according to their depths, and then find the largest
depth difference between two successive samples. However, this is
much too expensive for a hardware implementation, which needs
to avoid sorting in order to reduce complexity. Instead, we pro-
pose a more pragmatic approach, which is not optimal, but tends to
give good results. First, we split the depth interval between zmin

and ẑmax for the tile into n bins, where ẑmax is the maximum z-
value of non-cleared samples. For each bin, we store one bit, which
records whether there is at least one sample in the bin. The bits
are initiated to zero. Each sample is then classified to a bin based
on the sample’s depth value, and the corresponding bit set to one.
Samples that are cleared may be ignored in this step. When all
samples have been processed, each 0 signals a gap in depth of at
least (ẑmax−zmin)/n. By finding the largest range of consecutive
zeroes, a good approximation of the separation of the two depth
layers is obtained. This entire process is illustrated in Figure 3.
Each of the sample clusters produced by this step is then processed
independently as a layer by the predictor function generation step.
In addition, the clustering process implicitly generates one or more
bitmasks that indicate which layer each sample belongs to. The bit-
mask(s) will be part of the compressed representation of a tile. If
needed, the samples can be clustered into more layers simply by
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Figure 3: Illustration of our new clustering technique. From left
to right: the depth values are marked as red crosses on the depth
axis, and these depth values are then bounded by zmin and zmax.
Then follows binning where, in this case, eight small bins between
zmin and zmax are created, and bins with at least one depth sam-
ple are marked with 1, and otherwise marked with 0. Finally, the
largest gaps of zeroes is found, and this separates the depths into
two layers.

finding the second and third (and so on) longest ranges of consecu-
tive zeroes.

3.2 Predictor Functions

At this point, we have a bitmask, generated from the previous step,
indicating which of the tile’s w × h × n samples that should be
compressed for the current layer. Note that we may have only one
layer, in which case all samples are included.

As mentioned earlier, most depth buffer compression schemes rely
on that depth, z = zc/wc, is linear in screen space across a triangle.
This means that a planar predictor function, such as the one shown
below, is frequently used.

z(x, y) = a+ bx+ cy. (2)

However, as soon as the time dimension is included so that motion
blur is rendered, this is no longer ideal. We approach the problem
of compressing stochastic buffers generated with motion blur by
adding the time, t, to the predictor, but also combine x, y and t in
different permutations. In general, we can use a predictor function,
z(x, y, t) as follows:

z(x, y, t) =
∑
mno

amnox
mynto. (3)

For a hardware compressor, it is not feasible to try all possible
combinations when performing compression, and having too many
terms makes it very expensive to compute the predictor function.
Based on the equation above, we propose to use three predictor
functions, which have not been used in depth compression before.
They were chosen due to their simple nature (few coefficients and
low degree of the terms). For future work, it may be interesting to
attempt to use other predictor functions, with higher degree poly-
nomial terms, as well. Our new modes are listed below:

Mode Equation
0: Patch(x, y) z0(x, y) = a+ bx+ cy + dxy
1: Plane(x, y, t) z1(x, y, t) = a+ bx+ cy + dt

2: Patch(x, y, t) z2(x, y, t) = (1− t)(a0 + b0x+ c0y + d0xy)
+t(a1 + b1x+ c1y + d1xy)

Our three modes have predictor functions with 4 or 8 unknown co-
efficients (a, b, etc). These can be obtained in a number of ways.
However, instead of using conventional solutions with a high com-
putational cost, we will instead use an inexpensive, approximate
method to do this.

Since each tile contains many samples, it is possible to set up an
over-constrained linear system when determining the coefficients



of the predictor functions. For the predictor function, z1(x, y, t) =
a + bx + cy + dt (mode 1 above), this would be done as shown
below (where a has been removed, because it is computed in the
final stage of the algorithm):

s0x s0y s0t
s1x s1y s1t

...
sm−1
x sm−1

y sm−1
t


︸ ︷︷ ︸

M

bc
d


︸ ︷︷ ︸

k

=


s0z
s1z
...

sm−1
z


︸ ︷︷ ︸

z

⇔Mk = z, (4)

where m is the number of samples in the current layer.

At a first glance, it may seem like a good idea to use least-squares
fitting to solve this problem. The unknown is k, and such an over-
constrained system is often solved by performing a (costly) mul-
tiplication with the transpose of M, which gives a square (and
hence, possibly invertible) matrix: MTMk = MT z. The solution
is then: k = (MTM)−1MT z, which is often called a pseudo-
inverse [Golub and Loan 1996], and gives us a solution in the least-
squares sense (i.e., minimizing the errors in the 2-norm). Note that
for the example in Equation 4, we need to invert a 3 × 3 matrix to
solve for b, c, and d. This can be done with Cramer’s rule,

While this would make for a decent estimation, our real goal is to
minimize the maximum difference between the samples’ depths and
the predictor function, since this minimizes number of bits needed
for the residual encoding (see Section 3.3). This can be done using
minimax fitting [Houle and Toussaint 1988], which is an even more
expensive algorithm than least squares fitting. Since both these ap-
proaches are too expensive, we propose instead to use a heuristic
data reduction technique. We reduce the samples in a layer into a
more manageable number of representative points, which can then
be used to solve a small 3 × 3 linear system. These points should
be selected in a manner such that the resulting prediction function
lies as close to the minimax solution as possible.1

Data reduction: The following algorithm is used to compute the
representative sample points. When time, t, is not included (e.g.,
for mode 0), the first step is to find the bounding box in x and y
for all the samples in the layer. The bounding box is then split into
2 × 2 uniform grid cells. For each cell, we find the two samples
with the minimum and maximum depth values. The mid-point of
these two samples (in xyz) is then computed. This gives us four
representative points, rij = (rijx , r

ij
y , r

ij
t , r

ij
z ), with i, j ∈ {0, 1},

where i and j are grid cell coordinates in our 2 × 2 grid. There
will be at most four representative points, and these will be used
to compute the predictor function inexpensively. Analogously, for
modes that takes t into account (mode 1 & 2), we can compute the
bounds in t as well, and instead split the bounding box into 2×2×2
grid cells. This results in at most 8 representative points, rijk, with
i, j, k ∈ {0, 1}. An illustration of the data reduction algorithm for
the 2× 2 case can be found in Figure 4.

Next, we describe how we compute each mode’s predictor function
from these reduced representative data points.

Common step: All our three modes share a common step when
computing their predictor functions. They all need to solve one or
two 4 × 4 systems of linear equations to get the coefficients for
the predictor function. To simplify this, we first move the origin to

1Some experimental results were obtained by comparing our solution
for a 4D plane (mode 1) to Matlab’s least squares (backslash operator) and
minimax (fminimax) solutions of the over-constrained system. A set of
random tiles were retrieved from our test scenes, and the mean error span
was calculated using all three methods. We were well within 10% of the
minimax error, and on par with the least squares solution.

one of the representative points, and instead compute a later in the
residual encoding step (see Section 3.3). This leaves three coeffi-
cients left to solve, and three remaining representative points. Any
method suitable for solving 3× 3 linear systems, such as Cramer’s
rule, can be used to compute these.

Mode 0: This mode was added mainly for static geometry, i.e.,
for parts of the rendered frame without motion blur. Therefore,
it does not contain the time parameter. However, it will also be
used in mode 2, as will be seen later. We propose to use a bilinear
patch, which is described by z0(x, y) = a + bx + cy + dxy. The
motivation for this mode, compared to using just plane equations
(see Section 2), is that the bilinear patch is somewhat more flexible,
since it is a second-degree surface, and hence has a higher chance
of adapting to smoother changes of the surface.

Mode 1: This mode describes a plane in four dimensions, i.e.,
z1(x, y, t) = a + bx + cy + dt. This representation is useful
for moving geometry, since it contains the dt term. In this case,
we can use any four representative points, rijk, where at least one
has k = 0 and at least one has k = 1 in order to capture time de-
pendence. Although a plane in four dimensions is not enough to
capture all possible triangle movements, this approximation works
surprisingly well, as we will see in Section 5.

Mode 2: This mode linearly interpolates two bilinear patches
(P0 and P1) positioned at t = 0 and at t = 1, to capture
a surface moving over time. The resulting equation becomes:
z2(x, y, t) = P0 + t(P1 − P0). To compute this representation,
we first perform data reduction to produce 2 × 2 × 2 representa-
tive points, rijk. For k = 0, the four representative points, rij0,
i, j ∈ {0, 1}, are used to compute the P0 patch in the same way
as done for mode 0. A similar procedure is used to compute P1.
Each patch, Pk, now approximately represents the tile data at the

time tk =
max (r

ijk
t )+min (r

ijk
t )

2
. We now have all eight coefficients

needed for this mode. In a final step, the two patches are positioned
at times t0 = 0 and t1 = 1 through extrapolation, which gives us
z2(x, y, t).

Missing data: Due to clustering and cleared samples, some grid
cells in the data reduction step may end up without any samples,
which means that representative points, rij(k), for such grid cells
cannot be computed. To be able to compute the predictor functions,
we choose to make reasonable estimations of the missing represen-
tative points using the existing representative points. For simplic-
ity, we only fill in missing data over the xy neighbors, and not in
t. Hence, for time-dependent modes, we use the same technique
twice. If only one representative point is missing, i.e., one grid cell
is missing samples, we create a plane from other three points, and
evaluate it at the center of the empty grid cell.

If there are only two representative points, e.g., r00 and r01, and
two empty grid cells, we create a new point, r10, as shown below:

e = r01 − r00,

r10 = (r00x − ey, r00y + ex, r
00
t , r

00
z ), (5)

where the first two components of r10 are created by rotating the
difference vector, e, 90 degrees in the xy-plane and adding it to the
x and y of r00. The other components are simply copied from r00.
This extrudes a plane from the vector from r00 to r01. When this
third representative point has been created, we proceed as if only
one representative point is missing. Finally, if only one represen-
tative point exists, this implies that the layer only contains a single
sample. In such a case, only the a-coefficient is needed since it
encodes a constant function, which is all we need to reconstruct a
single depth value. As a consequence, the representative points are
not needed in this case.



x

y

x

y

x

y

Figure 4: All our predictor functions uses a similar data reduction
step. This figure illustrates how a set of samples are reduced to
2 × 2 representative points. (left) We start with a set of irregular
samples. The grayscale of the samples indicate their depths. (mid-
dle) The bounding box of the samples is found. The box is split in
half in x and y. In each resulting sub-region, the samples with the
maximum (blue) and minimum (red) depths are found. (right) The
mean position and depth for each pair of min- and max-samples is
used as a new representative point for the sub-region.

3.3 Residual Encoding

In a final step, we compute correction terms that encode how a spe-
cific sample can be recreated from the predictor functions. We need
to store two values for every sample. The first is a layer index,
which associates that sample with a certain layer, as described in
Section 3.1. Typically, we use only between one and two layers,
so we need at most one bit per sample for this index. If a tile can
be compressed using a single layer, we do not have to store these
indices.

The second per-sample values to store are the correction terms, δi.
These are found by looping over all of samples in the layer and
computing the difference between the predicted value, z(x, y, t),
and the actual depth of the sample, siz . During this phase, we track
the required number of bits to store the correction terms, and also
compute the a-constant for our predictor functions. The a-constant
is set so that we only get unsigned correction terms (i.e., all samples
lie above the predictor function).

Our correction terms are used in a slightly new way. For k cor-
rection bits per correction term, we reserve the value 2k − 1 as a
clear value, and can hence only use correction terms of up to (and
including) 2k − 2. However, we get the benefit of being able to
signal whether a particular sample is cleared in a very inexpensive
way. Otherwise, this is usually done using a particular value in the
layer index, which is more costly.

4 Implementation

We use a depth compression architecture with a tiled depth buffer
cache and a tile table [Hasselgren and Akenine-Möller 2006]. This
has been implemented in a software rasterizer in order to gather
statistics about different algorithms and configurations. In order to
reduce the dimensionality of the evaluation space, we decided to
use 512 bits, that is 64 bytes, as the cache line width in our simu-
lations. This implies that when we compress a tile, the compressed
representation is always padded to the next 512-bit alignment re-
gardless of the size of the desired memory transaction. In all of our
tests, we use 32-bit fixed-point depth values in the depth buffer.

Furthermore, we have experimented with different tile sizes (w ×
h× t), and have arrived at two resonable sizes, namely, 4× 4× 4
and 8 × 8 × 4 samples per tile. We use these tile sizes both for
m = 4 and m = 16 samples per pixel (SPP) rates. For m = 16,
this means that 4 × 4 pixels would need 4 × 4 × 16 samples, i.e.,
four 4 × 4 × 4 tiles. Hence, the samples in a 4 × 4 pixel region

are split along the time dimension. For 4× 4× 4 tiles, the number
of samples sums to ns = 64 samples per tile, which fits in 4 cache
lines in uncompressed form. Similarily, a tile of size of 8×8×4 has
ns = 256, which occupies 16 cache lines in uncompressed form.

For each tile, we store 64 bits of tile table header information, which
includes zmin and zmax and various mode bits. The involved mem-
ory bandwidth usage for this data is typically around a few percent
of the total depth memory bandwidth usage, and so this layout has
been left mostly unoptimized. In our results section, we will com-
pare to the depth offset compression algorithm (see Section 2.2),
and also to the combination of depth offset and our algorithm, since
their strengths are somewhat complementary. The tile table header
bit layouts for depth offset, our algorithm, and their combination
are shown below.

ns N
Mode Mode

zmin/zmaxbits 1 bits 2

Depth offset 64 2 0 0 31 + 31
256 4 0 0 30 + 30

Our algorithm 64 2 2 2 29 + 29
256 4 2 2 28 + 28

Combination 64 2 2 2 29 + 29
256 4 2 2 28 + 28

Here, N is a two or four-bit number that indicates how many cache
lines that the current tile has been compressed to, where N = 0
indicates that the tile is uncompressed. Hence, if the value of N is
8 (and ns = 256), the tile has been compressed down to 50% of
its original size, for example. As can be seen in the table above,
the depth offset algorithm uses its remaining tile table header bits
to encode zmin and zmax at 31 or 30 bits each. For our algorithm,
we store N as done for depth offset, and then we store two bits
for the first layer, where 00 indicates that all the samples in the tile
are cleared, 01 indicates that the layer is compressed using mode
0 (Patch(x, y)), 10 indicates mode 1 (Plane(x, y, t)), and 11 indi-
cates mode 2 (Patch(x, y, t)). These modes are described in Sec-
tion 3.2. The second two mode bits are used to describe layer 2,
where 00 indicates that there is no second layer, and the rest is the
same as for mode bits 1. This leaves 29 or 28 bits for each of zmin

and zmax, which we have found to be sufficient precision for all
our test scenes.

For the combination of the two algorithms, we can use the header
layout from our algorithm with a small modification. If the Mode
bits 1 are 00, either we have a cleared tile or a tile compressed with
depth offset, and this is determined by Mode bits 2 being set to 00
for a cleared tile and 01 for depth offset. In our algorithm, the Mode
bits 2 are unused if Mode bits 1 are 00, and therefore, we simply
exploit unused bit combinations to fit depth offset compression into
our tile header. This leaves us the same number of zmin and zmax

bits as for our algorithm.

In our rasterizer, the zmin value for a tile is updated each time a
sample depth, which is smaller than the current zmin, passes the
depth test. The zmax value, on the other hand, requires that all
samples are compared, and is thus updated only when the tile is
evicted from the tile cache, prior to compression. We employ a tile
cache of 64 kB and a tile table cache of 4 kB.

In the following, we describe the format of a compressed tile. The
predictor function coefficients (a, b, c, etc) are stored in 32 bits
each. For mode 0 and 1, this sums to 128 bits, while for mode 2,
it amounts to 256 bits. When a single layer is used to compress a
tile, we therefore need either p = 128 or p = 256 bits to encode
the predictor. This leaves k = bN·512−p

ns
c bits for the residual, δ,

for each sample.

If the tile contains two layers, two predictor functions must be en-
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Figure 5: Images from the test scenes used to generate our results. The images are taken from the Heaven benchmark and Stone Giant demo
and feature highly tessellated geometry. The Spheres scene is a synthetic benchmark scene intended to stress test highly varying motion. The
top row contains reference screenshots without motion (except for the Spheres scene which includes motion), and the bottom row shows depth
buffers, rendered using our rasterization framework, including motion blur. All images were rendered at 1920× 1080 pixels resolution. The
images Airship and Cannon images are courtesy of Unigine Corp., and the Spiders and Stone Giant images are courtesy of BitSquid.

coded. The cost, denoted by p1 and p2, of each of these is either 128
or 256 bits. In addition, an extra bit per sample for the layer index
must be stored, which costs ns bits. Thus, for the two-layer mode,
we have k = bN·512−ns−

∑
pi

ns
c bits for the per-sample residual, δ.

We want to minimize the number of cache lines,N , needed to com-
press each tile in order to reduce memory bandwidth usage as much
as possible. The value of N is calculated as follows:

N =


ns max ki︸ ︷︷ ︸

M

+ns(nl − 1)︸ ︷︷ ︸
I

+
∑

pi︸ ︷︷ ︸
P

 /512

 , (6)

where nl ∈ {1, 2} is the number of layers. The M term is the max-
imum correction bits needed for any layer, the P term is the sum
of the predictor coefficients, and I is the predictor index (only used
for two layers). The division by 512 is to convert the number of
bits into number of cache lines. In our implementation, we simply
evaluateN for all compression combinations and pick the best one.

5 Results

Using the test scenes in Figure 5, we evaluated depth offset com-
pression, which is described in Section 2.2, our algorithm, and the
combination of our algorithm and depth offset. This combination is
described in Section 4. We used tiles of either 4×4×4 (w×h×t) or
8× 8× 4 samples when measuring compression rates. This means
that the time dimension is split into four groups for 16 samples per
pixel. We do not claim to have found the optimal tile configura-
tions, but they worked well for our scenes and memory system, and
gave consistent results.

Compression ratios for the algorithms are presented in Figure 6,
where compression ratio is defined as the total compressed z-
bandwidth for a frame divided by the total uncompressed z-
bandwidth. The best improvement occurs for the Cannon scene,
with 4 samples per pixel and 8 × 8 × 4 samples per tile. In this
case, depth offset compresses down to about 75%, while our algo-
rithm manages to compress down to 55%, which is a substantial
difference. The combination of depth offset and our algorithm is
consistently better than our algorithm, which implies that they are
somewhat complementary. In general, the combination of the two
algorithms improves upon depth offset compression by between 3–
20%.

When compressing tiles with our algorithm, more than one mode
could often be used to achieve the best compression. For mode 0,

this happens around 75% of the time, for mode 1 around 85%, and
mode 2 lands on about 60%. 20–50% of the time (depending on
scene and if one or two layers are used), a tile can be best com-
pressed with one mode exclusively. Again, mode 1 is by far the
most important, and can be used roughly 60–70% of the time to
achieve the best compression, where as mode 0 is used for 10–30%
of the tiles. Mode 2 is only used up to 5% of the time for 4× 4× 4
tile sizes. For 8× 8× 4 tiles, however, this figure raises slightly to
5–15%.

We present results for both 4×4×4 and 8×8×4 tile configurations.
The reason for this is that, while our algorithms performs better
on configurations with more samples in a tile, the larger tile sizes
gave a larger overall bandwidth for the highly tessellated scenes
(roughly 50% higher in our framework). The tile size of a hardware
architecture will most likely be based on balancing a number of
factors, such as the rasterizer, shader unit, memory controller, and
so on. Therefore, the two configurations are presented in order to
give a sense of how the compression efficiency scales with tile size.

In Figure 7, we study the performance of the algorithms as a func-
tion of increasing motion. As can be seen in the diagrams, our
algorithm is substantially better than depth offset compression for
small amounts of motion, and then for larger amounts of motion,
the gap is somewhat reduced.

6 Discussion

We have presented an algorithm that preserves the benefits of tra-
ditional depth buffer plane encoding algorithms while also being
robust for stochastically sampled depth data, which previous algo-
rithms have not even attempted to target.

To generate our results, we opted to split the time dimension into
different tiles when working with 16 samples per pixel. When mo-
tion grows large relative to the triangle size, the rasterizer access
pattern will become increasingly random which, in turn, makes the
frame buffer cache less efficient. It is therefore important to de-
sign the whole frame buffer and rasterizer with this in mind, and to
find a good balance which gives low bandwidth for static scenes,
while scaling gracefully with increasing motion. We leave a de-
tailed study of this for future work.

In our research, we have taken a first step towards efficient depth
buffer compression of motion blur renderings. However, we believe
that our work can be improved further, and in a near future, we
will investigate various optimizations of our basic algorithms. For
future work, we also want to look into how our algorithms can be
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Figure 6: Effective compression ratios for depth offset compression, our algorithm, and the combination of depth compression and our
algorithm. We present compression results for 4 and 16 samples per pixel, as well as for two different tile configurations, namely, 4× 4× 4
and 8× 8× 4.

extended to handling depth of field, as well as the combination of
motion blur and depth of field at the same time.
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Figure 7: Effective compression ratios for depth offset compression, our algorithm, and the combination of depth offset with our algorithm,
with varying amounts of motion blur. Note that our algorithm performs better than depth offset across all amounts of motion for each
configuration, and that the combination of the two algorithms is even a bit better for the 4 × 4 × 4 tile configuration. In general, all three
algorithms have stable performance with varying amounts of motion, which is in contrast to traditional planar encoders that typically break
down when motion is introduced.


