
EGSR 2010 – Author’s version

An Optimizing Compiler for Automatic Shader Bounding

Petrik Clarberg1 Robert Toth1 Jon Hasselgren1 Tomas Akenine-Möller1,2

1Intel Corporation 2Lund University

Abstract

Programmable shading provides artistic control over materials and geometry, but the black box nature of shaders
makes some rendering optimizations difficult to apply. In many cases, it is desirable to compute bounds of shaders
in order to speed up rendering. A bounding shader can be automatically derived from the original shader by
a compiler using interval analysis, but creating optimized interval arithmetic code is non-trivial. A key insight
in this paper is that shaders contain metadata that can be automatically extracted by the compiler using data
flow analysis. We present a number of domain-specific optimizations that make the generated code faster, while
computing the same bounds as before. This enables a wider use and opens up possibilities for more efficient
rendering. Our results show that on average 42–44% of the shader instructions can be eliminated for a common
use case: single-sided bounding shaders used in lightcuts and importance sampling.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture; G.1.0 [Numerical Analysis]: General—Interval
arithmetic

1. Introduction

The advent of highly realistic computer-generated graph-
ics in feature films and games has largely been made pos-
sible by the separation of rendering algorithms and visual
content. Programmable shading provides means for artists
to create wonderful environments, without having to deal
with much of the technicalities of the renderer. From the
rendering system’s point of view, a shader is a black box,
which can only be point-sampled. This presents a problem,
as higher level information about a shader is often required
to make use of more efficient rendering algorithms. For ex-
ample, in global illumination where the light transport inte-
grals are very complex, it is critical to be able to compute
bounds of a shader in order to use algorithms such as light-
cuts [WFA∗05, WABG06] and importance sampling. In a
rasterization pipeline, shader bounds may be used to avoid
computations that do not contribute to the image [HAM07].

A shader bounding function for an arbitrary shader can
be carefully handcrafted, but this is tedious and error-prone
for all but the simplest shaders. Alternatively, a compiler
can be used to automatically derive a bounding function us-
ing interval analysis [HSS98,HAM07,VAZH∗09]. The com-
piler transforms the shader instructions to operate on inter-

Figure 1: The bounding shader s computes bounds for the
shaded result at a specific shading point, x, or cluster of
points, x̂, given bounds on the light directions, ω̂i. This is
critical functionality in lightcuts and importance sampling.
The right image shows a ray tracing application, where a
bounding shader is used to find the closest intersection.

vals rather than single values. The end result is a bounding
shader, which given bounds on the shader inputs computes
bounds on its outputs, i.e., a conservative range of possible
outputs. Some examples are shown in Figure 1.

There are two factors directly affecting the efficiency of
the rendering system: the execution time of the bounding
shader, and the tightness of the computed bounds. In this pa-
per, we focus on generating faster bounding shaders, with-
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out changing the computed bounds. Naïve transformation
from scalar to interval shader code is relatively straightfor-
ward for a compiler. Each arithmetic instruction is replaced
by an instruction sequence that performs the same operation
on intervals. However, by exploiting domain-specific knowl-
edge and data flow analysis, we show that it is possible to
achieve much better results. Although we focus on interval
arithmetic (IA) [Moo66], where an interval is simply repre-
sented as a minimum and a maximum value, higher-order
methods such as affine arithmetic [CS93], or Taylor model
arithmetic [BH98] can also be used.

One of our key contributions is a method we call static
bounds analysis, in which bounds are propagated through
the shader at compile time in order to determine the type
and possible range of each variable. This information allows
us to generate optimized interval arithmetic code. Similar re-
sults cannot be achieved using standard compiler techniques.
We also propose an optional extension called valid range
analysis, which exploits the fact that some instructions put
strict limits on their inputs. Another important contribution
is the use of dynamic bounds assumptions, which creates a
fast path for the common case, but falls back on a more gen-
eral bounding shader if the assumptions fail at runtime.

2. Related Work

Originally developed in the 1950s to compute bounds on
rounding errors in numerical computations, interval analy-
sis [Moo66] is now used in a wide range of scientific and
engineering disciplines.

Hardware/Software Support for Interval Analysis Spe-
cialized hardware architectures with support for interval
analysis have been proposed, see, e.g., [SS00], but the ex-
tra area/power is hard to motivate for non-scientific work-
loads. Software implementations provide more flexibility
and are currently the only alternative for graphics applica-
tions. There are, however, few compilers with support for in-
terval analysis on existing hardware [SZAB99, ASS04], and
most users are left to using publicly available libraries [Ž05]
or GPU implementations [CFD08]. It should be noted that
none of the existing implementations apply any interval-
specific compiler optimizations.

Interval Analysis in Computer Graphics A full overview
is beyond the scope of this paper, so we limit the discus-
sion to a few selected applications. Snyder [Sny92] use in-
terval analysis to robustly solve a wide range of problems
related to parametric surfaces. Mitchell [Mit90] proposed
to use interval arithmetic for robust ray tracing of implicit
surfaces, which initiated a lot of work in this direction.
See Hijazi et al.’s survey [HHHJ07] for an overview. Col-
lision detection is another successful application of inter-
val analysis, with methods for implicit surfaces [Duf92],
rigid bodies [RKC02], and articulated models [ZRLK07].
Some applications, especially with long interval computa-

tion chains, benefit from using higher-order methods, such
as affine arithmetic [CS93] and Taylor models [BH98].

Programmable Shading Programmable shading has been
a keystone in offline rendering for more than two decades.
The RenderMan shading language [HL90] was one of the
first languages for production-quality rendering, and it in-
troduced many of the concepts used by today’s shading lan-
guages. Programmable shading is also critical for bringing
flexibility to ray tracing systems [PBBR07]. GPUs capa-
ble of executing shaders first appeared in 2001, and recent
graphics APIs define many types of shaders, each perform-
ing a specific task in the graphics pipeline.

Interval Analysis of Programmable Shaders A variety of
applications have used interval analysis to compute bounds
of shaders. Greene and Kass [GK94] bound shaders that can
be expressed in data flow form (i.e., shaders without in-
tricate control flow) to achieve error-bounded antialiasing.
They use a compiler to automatically generate interval arith-
metic code [Kas92]. Standard compiler optimizations (e.g.,
common-subexpression elimination) and mathematical sim-
plifications are applied, but no interval-specific optimiza-
tions. Heidrich et al. [HSS98] compute bounds on procedu-
ral RenderMan shaders using affine arithmetic for sampling
purposes. They note that affine arithmetic should not be used
for expressions involving only non-affine values, and that it
is important to use optimized approximations, e.g., square
instead of general multiplication, where possible. A similar
framework has been used for ray tracing of procedural dis-
placement shaders [HS98].

In real-time graphics, interval analysis has recently been
used to compute conservative bounds for fragment programs
over a tile of pixels in order to discard, or cull, shading
computations [HAM07]. The authors propose a hardware
architecture capable of interval arithmetic, thereby avoid-
ing the problem of generating optimized scalar code from
an interval-based shader. Later work has extended this con-
cept to compute bounds on vertex programs and cull base
primitives prior to tessellation in a DirectX 11-style pipeline
using Taylor model arithmetic [HMAM09].

Velázquez-Armendáriz et al. [VAZH∗09] present a basic
compiler for automatic bounding shading generation, and
showcase its utility on a wide range of photo-realistic ren-
dering examples. We extend their work with a number of
domain-specific optimizations for generating faster code.

3. Interval Analysis Primer

The goal of interval analysis is to compute conservative
bounds for arbitrary computations. This is done by redefin-
ing all operations to operate on intervals rather than individ-
ual values. We limit ourselves to extended real numbers (i.e.,
including ±∞), and define an interval as:

â = [a,a] = {x ∈ R |a≤ x≤ a}. (1)

c© 2010 The Author(s)



Clarberg et al. / An Optimizing Compiler for Automatic Shader Bounding

3.1. Arithmetic Operations

The basic arithmetic operations are easily extended to oper-
ate on intervals. Addition and subtraction become:

â+b̂ =
[
a+b,a+b

]
and â−b̂ =

[
a−b,a−b

]
. (2)

Multiplication is slightly more complicated due to the cases
where one or both of the intervals overlap zero:

â · b̂ =
[
min(ab,ab,ab,ab),max(ab,ab,ab,ab)

]
. (3)

Some operations, such as division, are more complex:

[a,a]/
[
b,b
]
= [a,a] ·

(
1/
[
b,b
])
, where

1/
[
b,b
]
=

{ [
1/b,1/b

]
if 0 /∈

[
b,b
]
,

[−∞,∞] if 0 ∈
[
b,b
]
.

(4)

In the last example, useful information is lost if the denom-
inator interval contains zero. This problem is not limited to
division, but applies to any function that is piecewise contin-
uous, e.g., tan. By working with multi-intervals,

â =
⋃

i
[ai,ai], (5)

we can split
[
b,b
]

into [b,0]∪
[
0,b
]

and get:

1/
[
b,b
]
= [−∞,1/b]∪

[
1/b,∞

]
if 0 ∈

[
b,b
]
. (6)

Such multi-intervals may be further split, or merged if over-
lapping, depending on the operations performed. We pro-
pose using multi-intervals for the compile-time analysis, but
single intervals at runtime for efficiency reasons.

3.2. General Functions

A function, f : Rn→R, may be extended to interval form to
compute bounds for the result based on bounds of the argu-
ments. We define the interval extension, f̂ , of f as:

f̂ (x̂)⊇ { f (x) |x ∈ x̂}. (7)

Using interval arithmetic, we treat x̂ = (x̂1, . . . , x̂n) as indi-
vidual intervals and compute intervals for each intermedi-
ate result independently. Tighter bounds may be achieved
by keeping information on how the intermediate results de-
pend on x̂. These dependencies may be modeled as linear
functions (affine arithmetic), or at a higher cost, as general
polynomials (Taylor model arithmetic).

3.3. Rounding Considerations

In practice, an application using interval arithmetic is forced
to work with floating-point numbers of finite precision. Most
general purpose implementations are designed to guarantee
interval enclosure of real operations, i.e., produce mathe-
matically conservative results. This requires outward round-
ing, where the computations of the upper/lower intervals are
rounded up/down respectively.

In computer graphics, most applications ignore round-off
errors and view the result of a shader evaluation as ground
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Figure 2: The middle end of the compiler performs initial
optimizations on the intermediate representation (IR) before
lifting it to interval form (right) to get a bounding shader
(BS). After bounds analysis and lowering to optimized scalar
form, further non-value changing optimizations may be ap-
plied. The front and back ends are the same as in a tradi-
tional shader compiler (left).

truth. Thus, it is sufficient to compute bounds that are conser-
vative only up to machine precision. That is, a shader should
never return a result outside the bounds computed by the
corresponding bounding shader, but we need no guarantee
that the bounds are mathematically conservative. This is en-
sured if there is a path through the bounding shader that ex-
ecutes the same sequence of floating-point operations, using
the same rounding mode as in the original shader. Normally,
this is always the case, as each interval operation performs
the equivalent floating-point operation on all relevant com-
binations of extreme values, and then picks the outer bounds
using min/max operations.

3.4. Application to Shader Languages

In addition to arithmetic operations, shader languages (e.g.,
RenderMan, GLSL, and HLSL) support functionality such
as conditionals, loops, and texture lookups, which must
be handled. Many of these features have been extensively
studied. Interval-based texture lookups can be done us-
ing mipmap hierarchies of minimum and maximum val-
ues [MM02]. The bounds on the texture coordinates are used
to compute an appropriate mipmap level, from which a num-
ber of min/max samples are drawn. Cube map lookups can
be handled similarly. Previous work has also explored how
to handle noise functions and derivatives [HSS98].

Conditionals present a problem, as whenever overlapping
intervals are compared, the condition is not unambiguously
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true or false. One solution is to use step functions and rewrite
conditional expressions as arithmetic [HSS98]. A more gen-
eral method, which we use, is to evaluate both execution
paths and merge the results. This is most easily done by
transforming the intermediate representation to static sin-
gle assignment (SSA) form [CFR∗91], and treating the Φ

functions that are inserted at joints in a non-standard way
(they are normally replaced by copies) as selector func-
tions [VAZH∗09] .

4. An Optimizing Interval Compiler

In this section, we will introduce a compiler infrastructure
and a number of optimizations targeted at generating faster
bounding shaders. There are two main steps involved. First,
we lift the original shader to interval form, i.e., replace scalar
instructions by their interval arithmetic equivalents. This lift-
ing step is straightforward, and can be done trivially by a
compiler with an intermediate representation (IR) support-
ing interval instructions.

The second step is to lower the shader on interval form
to efficient scalar code. The standard approach is to replace
each interval instruction by a general sequence of scalar
instructions performing the desired interval computation.
However, better results can be obtained if we have prior
knowledge about what range of values each instruction oper-
ates on. Much of this paper deals with automatic extraction
of such information through bounds analysis.

Figure 2 shows the proposed design of an optimizing com-
piler for automatic generation of bounding shaders (BS). We
will focus on the algorithms enclosed in dashed red, and
first look at some examples to highlight the types of opti-
mized interval to scalar conversions that are possible. Then,
we will discuss the lifting step and introduce several novel
algorithms for compile-time bounds analysis.

4.1. Lowering to Optimized Scalar Form

Most interval operations can be implemented in a variety of
ways depending on the generality of the computation. For
example, multiplying two positive intervals is much easier
than the case where the intervals may overlap zero. Our goal
is to select the most compact implementation possible, ex-
ploiting bounds information determined at compile time.

We define a table of implementation alternatives for each
instruction, along with the necessary conditions. There is al-
ways a fully general implementatation, which works under
any condition. This job is tedious, but fortunately has to be
done only once. Note that the listed conditions are applied
at compile time, so the implementation must be valid for all
possible runtime intervals matching the condition. Next, we
will look at a few illustrative examples.

Multiplication The table below shows different possibili-
ties for evaluating the multiplication operator with scalar-
scalar, scalar-interval, and interval-interval operands. In

this case, knowing the signs of one or both of the operands
enables significantly more efficient code (the cases where â
and b̂ are reordered have been left out for brevity):

expr condition implementation #inst
x · y any x · y 1

x · â
any [min(xa,xa),max(xa,xa)] 4

x≥ 0 [xa,xa] 2
x≤ 0 [xa,xa] 2

â · b̂

any
[
min(ab,ab,ab,ab),
max(ab,ab,ab,ab)

] 10

â≥ 0 [min(ab,ab),max(ab,ab)] 6
â≤ 0 [min(ab,ab),max(ab,ab)] 6

â, b̂≥ 0 [ab,ab] 2
â≤ 0≤ b̂ [ab,ab] 2
â, b̂≤ 0 [ab,ab] 2

Square If the operands of a multiplication come from the
same source, we can use a more efficient square operator:

expr condition implementation #inst
x2 any x · x 1

â2
any [max(a,−a,0)2,max(−a,a)2] 7

â≥ 0 [aa,aa] 2
â≤ 0 [aa,aa] 2

Absolute Value Some operations can be completely re-
moved under special circumstances. An absolute value, for
example, requires no evaluation for positive operands:

expr condition implementation #inst

|x| any |x| 1
x≥ 0 x 0

|â|
any [max(a,−a,0),max(−a,a)] 5

â≥ 0 [a,a] 0
â≤ 0 [−a,−a] 2

Square Root Other instructions are valid only on a limited
range, e.g., a square root requires a positive argument. If
we at compile time can guarantee the result will be Not-a-
Number (NaN), we generate a compiler warning (shown in
red) as this condition likely indicates a programming error:

expr condition implementation #inst
√

x
any

√
x 1

x < 0 NaN 0
√

â
any [

√
a,
√

a] 2
â < 0 [NaN, NaN] 0

Additional Notes It is often the sign of operands that dif-
ferentiate between implementation alternatives, but there are
exceptions. The interval pow(â, b̂) function, for example, is
monotonically increasing if â ≥ 1, and decreasing if â ≤ 1.
The general case requires 4 pow and 6 min/max instructions,
but it can be reduced to only 2 pow in some cases.

In these examples, we have counted each basic instruc-
tion (add, mul, neg etc) as a single instruction for simplicity.
Assuming the bounding shader is executed on a throughput-
oriented architecture, this should be a rough approximation
of its execution cost. Naturally, the cost depends on the hard-
ware and the exact implementations chosen.
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4.2. Lifting to Interval Form

In the lifting step, we analyze the dependency graph to de-
termine which instructions are operating on interval data.
Those instructions are replaced by their equivalents operat-
ing on intervals rather than scalar values, e.g., an add instruc-
tion is replaced by an interval-add and so on. We assume the
user or application specifies which inputs are given as inter-
vals. This can be accomplished by annotating selected inputs
with an interval keyword [SZAB99], or by designing the
compiler API to allow sufficient control. Next, we will look
at a simple example. Consider the function:

float f(interval float a, interval float b) {
float c = abs(a);
return sqrt(c * b);

}

After lifting this to interval form and converting to three-
address code on SSA form [CFR∗91], we get:

expression #inst
â0← â
b̂0← b̂
ĉ0← |â0| 5
t̂1← ĉ0 · b̂0 10
t̂2←

√
t̂1 2

return t̂2
sum: 17

The cost of each interval operation is measured in terms
of scalar instructions, assuming the most general implemen-
tation of each instruction, as defined in Section 4.1. This is
what a compiler not using our optimizations would generate.

4.3. Static Bounds Analysis

As we have seen in Section 4.1, there is a lot to gain from
using optimized implementations of the interval operations.
We propose to use data flow analysis to determine conserva-
tive bounds on each shader variable at compile time. First,
initial bounds are assigned to each shader input. The bounds
are then propagated through the shader using a generalized
form of interval arithmetic. The method is related to con-
stant propagation [WZ91], but instead of compile-time con-
stants, we track bounds for the runtime range of each vari-
able. These are then used to pick the most efficient imple-
mentation of each instruction when lowering the code to
scalar form. Next, we will go over the details.

Initial Bounds The data type of a variable is the first source
of loose conservative bounds, simply due to the range of rep-
resentable numbers the variable can hold. Most shading lan-
guages support at least a subset of the following basic types:

data type possible range
half, float, double {x ∈ R |−∞≤ x≤∞,NaN}
integer (n bits) {x ∈ Z |−2n−1 ≤ x≤ 2n−1−1}
unsigned integer (n bits) {x ∈ Z | 0≤ x≤ 2n−1}
boolean {true,false}
signed normalized {x ∈ R | −1≤ x≤ 1}
unsigned normalized {x ∈ R | 0≤ x≤ 1}

For aggregate types, such as vectors and matrices, we assign
bounds to each element individually based on its basic type.

Shader languages usually also support a number of pre-
defined state variables with basic information about the point
being shaded. In HLSL, these are accessed using shader in-
put semantics, e.g., SV_Position (D3D10), and in GLSL
there are built-in variables, such as gl_FragCoord. Some
state variables have strict limits set by the rendering sys-
tem. For example, SV_Position in the pixel shader spec-
ifies the sample position in screen space coordinates (x,y),
and the depth z in normalized device coordinates. Hence we
know that z ∈ [0,1] and x,y ∈ [0,N], where N is the size of
the largest supported render target.

To be fully general, we represent a variable’s compile-
time bounds as a union of zero or more discrete values and
zero or more disjoint intervals. Given a variable, x, we define
its bounds, Bx, as:

Bx =
⋃

i
Bi

x, where Bi
x =

{
xi, or
[xi,xi] .

(8)

Additionally, we have found it useful to store flags indicating
whether a variable can be NaN, and whether both positive
and/or negative zeros are possible. The latter is particularly
useful to optimize division so that 1/[0,x] = [1/x,∞] rather
than [−∞,∞] if the denominator is known to exclude −0.

Bounds Propagation In the compile-time propagation of
bounds information, we use a generalized form of interval
arithmetic, which handles bounds on the form in Equation 8.
For binary operations, z← x op y, we evaluate all combina-
tions of discrete values and/or intervals in x and y:

Bz =
⋃
i, j

(Bi
x op B j

y). (9)

Any overlapping bounds are merged to create a new disjoint
set of bounds representing the possible values of z. Unary
operations, y← op x, are handled by applying the operator to
each Bi

x. Type casts retain bounds as far as possible and may
be a source of additional bounds information. For instance, a
bool cast to float in GLSL/HLSL will be a variable in {0,1}
rather than [−∞,∞].

In practice, a variable rarely has more than a single inter-
val bound or a few discrete values, but there are cases that
give rise to more complex bounds information. For example,
branches can introduce different assignments to a variable,
and divisions may introduce multi-intervals (Equation 6).
Functions that introduce discontinuities, e.g., the step func-
tion, is another example. For instance, ĉ← â · step(x, b̂) will
be in the range {0}∪ [a,a] if x∈ b̂. Note that if 0 ∈ â, we
would merge the result and only propagate [a,a].

Many shader instructions grow the bounds, and as we start
with often very loose compile-time bounds, it appears there
would be little to gain from static bounds analysis. Fortu-
nately, there is a long list of shader instructions with strict
limits on their output:
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instruction max output range
sign(x), step(c,x) {0,1}
fract(x), smoothstep(c1,c2,x) [0,1]
clamp(x,c1,c2) [c1,c2]
abs(x), exp(x), pow(x,y), sqrt(x),

[0,∞]
rsqrt(x), length(~x), acosh(x)
cosh(x) [1,∞]
sin(x), cos(x), tanh(x), noise(~x) [−1,1]
arcsin(x), arctan(x) [− π

2 ,
π

2 ]

arccos(x) [0,π]
atan2(y,x) [−π,π]

mod(x,y) [min(y,0),max(y,0)]

This shows that even with unbounded shader inputs, we are
likely to introduce useful bounds information during bounds
propagation. Other examples of when an unbounded input
can result in reduced bounds is division, e.g., 1/[1,∞] ∈
[0,1], and squares, [−∞,∞]2= [0,∞].

Example The algorithm is best illustrated by an example.
Applying the method to the program in Section 4.2 gives:

expression bounds #inst
â0← â

←
−−
−−
−−
−−

â0 ∈ [−∞,∞]

b̂0← b̂ b̂0 ∈ [−∞,∞]

ĉ0← |â0| ĉ0 ∈ [0,∞] 5
t̂1← ĉ0 · b̂0 t̂1 ∈ [−∞,∞] 6
t̂2←

√
t̂1 t̂2 ∈ [0,∞] 2

return t̂2
sum: 13

In this case, the inputs â and b̂ can lie anywhere in [−∞,∞],
as we have no additional metadata. At the | · | instruction, ĉ0
is limited to positive numbers, which means the multiplica-
tion ĉ0 · b̂0 can be done using an optimized positive·unknown
interval multiplication (6 vs. 10 instructions).

4.4. Valid Range Analysis

Some operations put restrictions on the range of valid argu-
ments. For example, the argument to a square root must be
positive, otherwise NaN is returned. Other examples are:

instruction valid input range
log(â), sqrt(â), rsqrt(â), pow(â,x) â ∈ [0,∞]

arcsin(â), arccos(â), atanh(â) â ∈ [−1,1]
acosh(â) â ∈ [1,∞]

We can generate more efficient code if we at compile time
make the assumption that all such instructions will receive
valid input at runtime. This puts bounds on the valid range
of variables, which can be propagated backwards through
the code to put stricter bounds on the possible runtime range
of variables. Applied to the same example as before:

expression bounds valid range #inst
â0← â â0 ∈ [−∞,∞]

−−
−−
−−
−−
→ â ∈ [−∞,∞]

b̂0← b̂ b̂0 ∈ [−∞,∞] b̂ ∈ [0,∞]
ĉ0← |â0| ĉ0 ∈ [0,∞] â0 ∈ [−∞,∞] 5
t̂1← ĉ0 · b̂0 t̂1 ∈ [−∞,∞] b̂0 ∈ [0,∞] 2
t̂2←

√
t̂1 t̂2 ∈ [0,∞] t̂1 ∈ [0,∞] 2

return t̂2
sum: 9

Here the values in the bounds column have been deter-
mined using static bounds analysis in a first pass. We note
that the square root puts a limit on its argument, t̂1 ≥ 0, for
the result to be valid. Tracking this backwards, we find that
b̂0 must be positive for the result of t̂1← ĉ0 · b̂0 to be positive
(as ĉ0 is known to be positive). Hence, the interval multipli-
cation can be replaced by an efficient 2 instruction version
for positive ·positive interval (Section 4.1).

It is important to point out that since we assume each in-
struction will produce valid results, the generated bounding
shader will be undefined if executed for bounds violating this
assumption. There is no way to detect this solely based on its
output, so valid range analysis must only be used when the
application knows it is safe for a given input. This can be
ensured by first executing a bounding shader with this op-
timization disabled (i.e., using NaN checks). Also note that
several iterations of static bounds analysis and valid range
analysis may be necessary for the best results. After an ini-
tial pass, the refined bounds may be propagated further using
static bounds analysis. This may in turn introduce possibili-
ties for further improvements in a backwards pass. We iterate
until convergence, which in our experience occurs within a
few iterations, although pathological cases may exist.

4.5. Dynamic Bounds Assumptions

In general, if an input parameter’s bounds are limited, the
generated code will be more efficient. Several versions of a
bounding shader can be generated with varying extents of in-
put bounds assumptions. At runtime, we dynamically select
the most restrictive (fastest) version that is valid for the cur-
rent input. For instance, a restrictive version of the bounding
shader may assume a texture access returns a value in [0,1],
and more general versions [0,∞] (e.g., for HDR textures)
and [−∞,∞]. The appropriate version is then determined
at runtime when a specific texture is bound to the shader.
An alternative approach is to reactively compile specialized
bounding shaders when an assumption is met. This is a more
viable approach if the input parameter space is large.

4.6. Complex Control Flow

With interval arithmetic, whenever the control flow graph
diverges, we must potentially execute both paths and at joints
merge the results. This is easy for if-then-else branches (see
Section 3.4), but more complex situations may lead to a tree
of possible execution paths, where the result is the union of
all possible outcomes. Previous work has thus been limited
to statically unrollable loops [VAZH∗09].

We handle dynamic loops with interval conditions by,
at runtime, accumulating the outcome of each iteration
where the loop potentially terminates. Consider, for exam-
ple, a loop on the form do x̂ = . . . while(x̂ < c). When
the condition is unambiguously true, i.e., x < c, we loop
as expected. Otherwise, we accumulate the result, x̂∪ =
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[min(x,x∪),max(x,x∪)], where x̂∪ is initially empty, and
continue looping until the branch condition is unambigu-
ously false, i.e., x ≥ c. At that point, x̂∪ holds conserva-
tive bounds for the union of all outcomes. At compile-time,
the same technique is hard to apply due to often very wide
compile-time bounds, and we resort to assuming that vari-
ables coming from back edges in the graph are unbounded.
In some cases, it may help to iterate through loops a few
times to refine the compile-time bounds.

Recursive functions, ŷ = f (x̂), can be handled similarly
in the bounds analysis by first assuming x̂ and ŷ are un-
bounded, and by replacing all recursive calls to f by the
return value ŷ. This will give possibly refined compile-time
bounds on ŷ, and the analysis can be iterated. Finally, the re-
fined bounds are used to generate an optimized version of f,
which includes real recursive calls. In practice, as noted pre-
viously [HAM07], it is hard to guarantee runtime termina-
tion of interval code with complex control flow. One way is
to manually add explicit termination criteria, e.g., maximum
loop iterations or recursion depth, but how to do this auto-
matically is an unsolved problem.

4.7. NaN and Infinity Issues

To guarantee correct results, a rigorous approach to detect
and handle floating-point exceptions in the bounding shader
must be used. The IEEE 754 standard specifies that all op-
erations that produce a floating-point output must propagate
NaNs, except for minimum and maximum operations (e.g.,
minps in SSE returns the source operand if one operand is
NaN). This presents a problem, as we can construct bound-
ing functions that give erroneous bounds [Pop96]. Another
way NaNs can be suppressed is through conditionals involv-
ing operands with NaN values.

We have identified three main approaches in the context
of bounding shaders (sorted from strict to relaxed):

1. Propagate NaNs. If we make sure that NaNs are always
propagated, we will get an indication that an invalid op-
eration has occured. This requires explicit NaN detec-
tion for each min/max operation (at an overhead of 3
SSE instructions). We also have to ensure NaN values in
branches are propagated.

2. Suppress NaNs. Assume the original shader never returns
NaNs for any input generated by the rendering system –
this is not unreasonable, as there is little point trying to
bound a shader resulting in NaNs. Under this assump-
tion, we may clamp the inputs to any instruction in the
bounding shader that could generate NaNs, as we know
the inputs will never fall outside the valid range in the
original shader. It also requires us to redefine multiplica-
tion, so that 0 ·±∞= 0.

3. Do not care about NaNs. This may be the most reason-
able approach in certain situations, as some applications
can tolerate errors or do not depend on the bounds being
strictly conservative for correctness.

Shader
s(x,ωi) s(x, ω̂i) s(x̂, ω̂i)
#instr before after before after

Diffuse 20 2.8× 1.6× 5.8× 3.2×
Phong 149 2.1× 1.2× 4.5× 2.7×
IsoWard 151 3.3× 1.6× 4.7× 2.2×
Ward 174 3.4× 1.8× 5.3× 2.7×
Ashikhmin 486 2.8× 1.9× 3.8× 2.3×
Fractal 447 4.1× 2.6× 4.5× 3.0×
Average 3.1× 1.8× 4.8× 2.7×

Shader
s(x,ωi) s(x, ω̂i) s(x̂, ω̂i)

#cycles before after before after
Diffuse 20 32 26 58 36
Phong 182 311 205 559 330
IsoWard 192 445 273 510 317
Ward 218 495 325 623 420
Ashikhmin 514 1289 813 1535 898
Fractal 1297 4546 3155 4323 3036
Average 2.3× 1.6× 3.0× 1.9×

Table 1: Instruction count (top) and execution time (bottom)
compared to the original shaders using SSE for the two types
of single-sided bounding shaders needed for lightcuts, be-
fore and after our optimizations are applied. The number of
instructions is reduced by on average 41.8% and 43.9%, re-
spectively. This saves 32.8–36.7% in clock cycles. All num-
bers exclude the overhead of NaN handling.

In all these cases, if a bounding shader returns a NaN, it
should be interpreted as “bounds could not be computed”.
This may trigger further subdivision of the input bounds or
a fallback on a more general technique.

4.8. Influence on Standard Compiler Optimizations

Some standard compiler optimizations are relatively more
important for bounding shaders than for conventional
shaders. For example, common-subexpression elimination is
highly useful, as similar computations often are performed
for the lower and upper bounds (see, e.g., Equation 3). In
many cases only one of the shader outputs needs to bounded,
or only the lower or upper bound of an interval computed.
An example is depth culling [HAM07], where only zmin is
used. Hence, executable backward static slicing [XQZ∗05]
(cf., dead code elimination) is very important.

As outlined in Section 3.3, we have to be careful not to
introduce different rounding errors compared to the orig-
inal shader in order to guarantee conservative results (up
to machine precision). Therefore, we do not allow value-
changing compiler transformations (i.e., optimizations that
may change the floating-point precision) to be applied after
the shader has been lifted to interval form. However, before
the lifting step, such optimizations are allowed with respect
to the bounding code, as shown in Figure 2. It is theoretically
possible to perform value-changing optimizations also after
separating the intermediate representations, but these would
have to be performed in tandem on both IRs. We have left
this possibility for future work.
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Figure 3: The effect of our various compiler optimizations on two representative single-sided BRDF bounding shaders using
SSE. The baseline is single-sided bounding shaders compiled using standard compiler optimizations (interval). Bounds analysis
(bounds) significantly reduces the code size by tracking compile-time bounds and choosing optimized implementations of the
interval operations. The overhead of robust NaN propagation is marked with a dashed box. This decreases when compile-time
analysis of NaNs is enabled (NaN). Our optimizations targeted at optimizing divisions (div), shrink the compile-time bounds by
tracking the signs of zeros (see Section 4.3), which further reduces the total instruction count.

5. Implementation

We have implemented a compiler prototype in C++, which
uses metaprogramming to build a program graph; our imple-
mentation is based around a class Var, which implements all
necessary shader functionality in overloaded operators and
friend functions. Rather than computing a result, each func-
tion inserts a corresponding node in the program graph. Each
assignment allocates a new temporary, which directly gives
us an intermediate representation in SSA form. Macros are
used to insert appropriate constructs for loops and condition-
als. The graph nodes implement Equation 9, which is used
to propagate bounds information through the graph. The type
of each variable, i.e., scalar or interval, is also determined in
this step. Last, each node outputs an optimized sequence of
scalar instructions. To compile a shader, all variables are re-
placed by Var (or a wrapper to handle vectors); all inputs
are assigned a type and initial bounds (default±∞), and the
shader is executed to generate the bounding shader.

Currently, two back ends have been implemented: one for
SSE, which uses auto-vectorization to generate 4-wide data
parallel bounding shaders, and one for HLSL. In our proto-
type, the back ends output C++/HLSL source code, which is
finally passed through standard optimizing compilers. This
setup has enabled us to quickly prototype and debug vari-
ous optimizations, as it builds on existing compiler infras-
tructures to provide input parsing and optimized code gen-
eration. A production-quality bounding shader compiler is
under development, but that is a much larger project.

6. Results

Here, we present results for a variety of bounding shaders.
The effect of our optimizations are measured in terms of in-
struction count and execution speed for the generated ker-
nels. All SSE/SSE2 code was compiled with Microsoft Vi-

sual Studio 2008 using /O2 /fp:precise (to ensure
floating-point consistency), and executed on an Intel Core 2
Extreme QX9650. We will first look at BRDF bounding
shaders for lightcuts and importance sampling purposes. Fi-
nally, we will show some GPU results.

6.1. Lightcuts

It has recently been demonstrated [VAZH∗09] that inter-
val arithmetic is a viable solution to generate the bounding
functions required by lightcuts [WFA∗05, WABG06]. Let
s(x,ωi) = fr(x,ωo,ωi)cosωi be a cosine-weighted BRDF,
where x denotes a single shading point including all associ-
ated attributes. The upper bound at a single gather point for
a cluster of lights, is given by s(x, ω̂i), i.e., only the light di-
rection, ωi, is an interval. Correspondingly, the upper bound
for multiple gather points, e.g., to support depth-of-field and
motion blur, is s(x̂, ω̂i). Here all inputs are intervals.

Table 1 shows instruction counts and execution times us-
ing Intel SSE for the two types of bounding shaders, com-
pared to the original point-sampled shaders, s(x,ωi), for a
range of physically-based BRDFs. Fractal iteratively eval-
uates a fractal and interpolates between multiple Cook-
Torrance lobes, and contains dynamic loops with both in-
terval and scalar loop conditions. The other shaders do not
contain complex control flow. With previous techniques, the
average instruction counts are 3.1× (single) and 4.8× (mul-
tiple gather points) those of the original shaders. With our
optimizations, 41.8–43.9% fewer instructions are generated,
which translates to a 32.8–36.7% saving in execution time.
Note that the optimized bounding shaders compute the ex-
act same bounds as before. It is also interesting to note that
bounding shaders are in general faster than would be ex-
pected based on instruction count. This is likely due to more
opportunities for register renaming and latency hiding.
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Shader
s(x,ωi) ŝ(x, ω̂i) ŝ(x̂, ω̂i)
#instr before after before after

Diffuse 20 3.4× 2.8× 6.7× 4.9×
Phong 149 2.2× 2.1× 4.8× 4.0×
IsoWard 151 3.4× 2.4× 4.9× 3.2×
Ward 174 3.5× 2.5× 5.4× 3.7×
Ashikhmin 486 2.8× 2.3× 3.8× 3.0×
Fractal 447 4.2× 2.8× 4.6× 3.1×
Average 3.2× 2.5× 5.0× 3.7×

Table 2: Instruction count compared to the original shaders
using SSE for double-sided bounding shaders, before and
after optimization. A prime application is importance sam-
pling. The number of instructions is reduced by on aver-
age 23.8% and 27.1%, respectively. All numbers exclude the
overhead of NaN propagation.

The effect of different optimizations are shown in Figure 3
for two representative shaders: an isotropic version (αx=αy)
of the Ward BRDF [War92], and the complex anisotropic
Ashikhmin model [AS00]. To get these results, we speci-
fied loose compile-time bounds on each shader’s inputs; all
values were assumed to be finite, and all material parame-
ters such as diffuse and specular color, and shininess, were
assumed to be non-negative. These values are fetched from
the respective material channels (e.g., textures) in the shader
setup, but the cost of this has not been included. Note that the
use of textures instead of runtime shader constants, has no
impact on our optimizations, as we only work with compile-
time bounds.

6.2. Importance Sampling

Importance sampling of arbitrary programmable shaders has
traditionally been a difficult problem, and specialized meth-
ods have been developed for various reflectance models.
By hierarchically evaluating s(x, ω̂i) over the hemisphere,
a piecewise constant upper bound is created, which can
be used as an importance function [VAZH∗09]. Note that
s(x, ω̂i) is the same shader as in lightcuts (see Table 1 and
Figure 3 for results).

A natural extension would be to use both bounds of s, i.e.,
lower and upper, in order to create a more accurate impor-
tance function. A step in this direction was taken by Rous-
selle et al. [RCL∗08], although they used precomputed max
and average trees rather than a min/max hierarchy. The func-
tion ŝ(x, ω̂i) can be used to build an importance function for
a single point, and ŝ(x̂, ω̂i) for a cluster of shading points.
When both bounds are computed, it is harder for the com-
piler to remove entire computation chains, and we are mainly
limited to detect cases where faster implementations of spe-
cific operations can be used, e.g., positive instead of general
multiplication. Despite this, our optimizations reduce the in-
struction count by around 25% (see Table 2).

It is interesting to compare the instruction counts for sin-
gle vs double-sided intervals in Tables 1 and 2. With stan-
dard compiler optimizations, going from double-sided to

Steiner Mitchell Kummer

Figure 4: Examples of implicit surfaces evaluated using in-
terval arithmetic to find the first intersection along each ray.

code specialized for single-sided intervals, only saves on av-
erage 5%. With our optimizations, the savings are ∼27%.
For Fractal, the difference is smaller due to control flow
making it harder to eliminate long computations chains, but
there is still plenty of optimization potential locally.

6.3. Implicit Surfaces

To measure the performance of optimized bounding code on
the GPU, we have implemented a simple ray tracer for im-
plicit surfaces, f (x,y,z) = 0, that runs in the pixel shader.
The algorithm hierarchically evaluates the surface equation
using interval arithmetic to compute its minimum, in order
to locate the first intersection along each ray using an exist-
ing algorithm [Mit90]. Figure 4 shows renderings of three
well-known implicit surfaces. The table below summarizes
the number of generated shader instructions for the bounding
kernels, and their execution times on an NVIDIA GTX285
GPU. The instructions are counted per-component in the
case of vector operations. As can be seen, the reduction in
instruction count is 20–35%, and in clock cycles 15–31%.

#instructions Steiner Mitchell Kummer
original 13 16 20
interval (before) 74 51 64
interval (after) 48 (-35.1%) 41 (-19.6%) 44 (-31.3%)

#cycles Steiner Mitchell Kummer
original 11.5 14.9 17.5
interval (before) 62.7 44.8 55.9
interval (after) 43.6 (-30.5%) 38.3 (-14.6%) 41.4 (-25.8%)

7. Conclusions and Future Work

We believe techniques for automatically extracting shader
bounds will be increasingly important to close the gap be-
tween artistic control and fast rendering. In this paper, we
have showed that bounding shaders based on interval arith-
metic can be significantly optimized by performing bounds
analysis and case selection at compile time. To the best of
our knowledge, this is the first time data flow analysis has
been used to optimize interval code generation. Although
we have focused on computer graphics applications, many
of the techniques would be directly applicable in many other
fields. It is important to remember that our focus is entirely
on compiler optimizations, and that the generated code com-
putes the exact same bounds as before, only faster.
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All of our results assume bounds are tracked individually,
with no knowledge about the relationship between, e.g., the
components of vectors. With higher-level information, e.g.,
specifying that vectors are normalized, it is possible to fur-
ther optimize the code. The effect of this can be simulated
by inserting clamps after dot products of normalized vectors,
which saves an additional 13.3%–28.4% for the Ashikhmin
shaders. It would be interesting to explore these kinds of op-
timizations and generalizations to higher-order arithmetics.
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