
Analytical Motion Blur Rasterization with Compression
Carl Johan Gribel1, Michael Doggett1 and Tomas Akenine-Möller1,2

1Lund University 2Intel Corporation

Abstract
We present a rasterizer, based on time-dependent edge equations, that computes analytical visibility in order to
render accurate motion blur. The theory for doing the computations in a rasterization framework is derived in
detail, and then implemented. To keep the frame buffer requirements low, we also present a new oracle-based
compression algorithm for the time intervals. Our results are promising in that high quality motion blurred scenes
can be rendered using a rasterizer with rather low memory requirements. Our resulting images contain motion
blur for both opaque and transparent objects.

1. Introduction

Motion blur is generated when the shutter of the camera is
open for a finite time, and some relative motion appears in-
side the field of view of the camera. It is an effect that is im-
portant for offline rendering for feature films, since the frame
rate is rather low (∼ 24 frames per second). With motion blur
in the rendered images, apparent jerkiness in the animation
can be reduced or removed entirely. However, motion blur is
also becoming an important visual effect for real-time ren-
dering, e.g., for games. In order to get good performance,
various rather crude approximations, that may or may not
apply in all cases, are used.

In general, motion blur rendering can be divided into two
parts, namely, visibility determination and shader computa-
tions [SPW02]. Most solutions that converge to a correctly
rendered image are based on point sampling. The more sam-
ples that are used the better image is obtained, and at the
same time, the rendering cost goes up. In many cases, one
can obtain reasonable results with rather few shader samples
compared to the number of visibility samples. For example,
RenderMan uses only a single shader sample for motion-
blurred micro polygons [CCC87, AG00].

With sampling comes noise. In the 1980’s, a large amount
of research was devoted to solving the motion blur visibility
problem analytically [KB83,Cat84,Gra85] in order to avoid
the noise. In our research, we fall back into this track, and
again explore the possiblities of solving the visibility prob-
lem analytically. In particular, we explore rasterization of
motion-blurred triangles with analytical visibility. In the next
section, we review the most relevant previous work. This is
followed by an edge equation primer in Section 3. A large
part of this paper is then devoted to developing theory about

visibility for moving triangles (Section 4). We present prac-
tical rendering techniques, including compression, in Sec-
tion 5, which is followed by results and conclusions.

2. Previous Work

In this section, we review the most relevant previous work
on motion blur rendering and visibility. In general, post-
processing techniques have no chance of converging to the
correct result. We aim to compute correctly converging mo-
tion blur for object and camera motion, which is a complex
problem as pointed out by Vlachos [Vla08], and therefore,
we avoid referencing post-processing techniques further. For
general information about motion blur and for a great survey
on the topic, we refer to Sung et al.’s work [SPW02].

In the 1980’s, there were several papers on analytical vis-
ibility. Korein and Badler [KB83] describe two algorithms
for motion blur rendering. The first is basically an accumu-
lation buffering technique, where several images, rendered
at different points in time, are weighted together. This type
of algorithm has later been incorporated into graphics hard-
ware [DWS∗88,HA90] and graphics APIs. When only a few
samples are used, this gives clear strobing artifacts, and for
many samples, it becomes prohibitively expensive. In con-
trast, the second algorithm proposed by Korein and Badler is
based on analytical visibility for motion blur. For each pixel
(or more precisely, sample), a time interval when a disk is
covering the sample is analytically computed. This is done
for all objects and samples, and then they perform hidden
surface removal, and resolve for the final sample color. In
addition, they mention in an appendix that this is possible to
do for polygons, and show how the equation of a polygon
edge is set equal to the equation of a ray. However, no fur-
ther details are given; the solutions are not derived, and there

2 Gribel, Doggett & Akenine-Möller / Analytical Motion Blur Rasterization with Compression

is no depth function derivation either. Our work extends Ko-
rein and Badler’s pioneering research in order to fill in these
gaps.

Catmull [Cat84] takes another approach, where he argues
that instead of using a stretched filter in the motion direc-
tion, he instead shrinks the object in the motion direction,
and uses the same filter regardless of motion. The temporal
filtering is thus turned into spatial filtering. This algorithm
cannot handle moving objects that intersect other stationary
objects. Grant [Gra85] develops an analytical visibility al-
gorithm by treating moving three-dimensional polyhedra as
static four-dimensional polyhedra. Unfortunately, the sides
of the static polyhedra need to be planar, which greatly lim-
its the usefulness of the algorithm. An example of when this
is not true can be seen in Section 4.

Cook et al. [CCC87] presented the highly influential REYES
rendering architecture. The geometric primitives are split,
and then diced until they reach subpixel size. Shading is
computed, and the visibility is sampled in both the tempo-
ral and spatial domains. This can generate some artifacts
due to too little shading sampling in the temporal domain,
but the temporal sampling rate can be increased by the user
when needed. A stochastic rasterizer, targeting, but not lim-
ited to, low sampling rates is presented by Akenine-Möller et
al. [AMMH07]. This work introduced time-dependent edge-
functions, shadow maps, and environment maps as well.
Ragan-Kelley et al. [RKLC∗10] present a hardware archi-
tecture for motion blur and depth of field that separates
shading from sampling, similar to that presented by Cook
et. al. [CCC87]. While they also use time-continuous edge
functions for motion blur, they sample them, unlike in this
paper where we compute the analytical solution.

Sung et al. [SPW02] separate visibility and shading calcu-
lations, and perform analytical visibility using Korein and
Badler’s approach [KB83]. However, no details are given on
how to actually perform the analytical visibility calculations.
In contrast, we present all the mathematical details, and we
do this in a rasterization framework in order to factor out
per-triangle calculations in a triangle setup. Other contribu-
tions of this paper are the practical requirements for ana-
lytical motion blur such as compression of the many depth
intervals that must be stored at each pixel.

Fatahalian et. al. [FLB∗09] present an analysis of data par-
allel rasterization for micro polygons for motion blur and
depth of field. They sample in the time domain and do not
attempt to analytically calculate visibility.

3. Edge Equation Primer

In this section, we briefly present the necessary background
on edge equations [Pin88, OG97] and time-dependent edge
equations [AMMH07] for moving triangles.

Assume that the entire transform matrix, including projec-

p0

t=0

t=1

p1

p2
q0

q1

q2

r 0

r1

r2

Figure 1: Left: a non-moving triangle. Right: a triangle
moving from time t = 0 to t = 1.

tion, for a vertex is called M. A vertex in homogeneous clip
space is then obtained as p = Mp̄, where p̄ is the vertex in
three-dimensional object space, and p is the resulting four-
dimensional vertex in homogeneous clip space, i.e., before
division by the w-component. To simplify the derivation,
we use the following notation: p̂ = (px, py, pw), which is a
scaled and translated version of the point in camera space.
This can be confirmed by looking at the definition of the
projection matrix in OpenGL and DirectX.

The standard (no motion) edge function, in homogeneous
form, through two vertices, say p̂0 and p̂1, is [OG97,
MWM02]:

e(x,y,w) = (p̂1× p̂0) · (x,y,w) = ax+by+ cw. (1)

A sampling point, (x,y,w), is inside the triangle if
ei(x,y,w) ≤ 0 for i ∈ [0,1,2], i.e., for the three edges of the
triangle. Next, this is extended with a time dimension.

Assume that the vertices move linearly from the beginning
of a frame, at t = 0, to the end for a frame, at t = 1. At t = 0,
we denote the vertices as qi, and we call them ri at t = 1.
Since there is no bar nor a hat on the vertices, all qi and ri are
in homogeneous clip space. A linearly interpolated vertex is
then given as:

pi(t) = (1− t)qi + tri, (2)

for a certain instant t ∈ [0,1]. See Figure 1 for an example.

The coefficients of a time-dependent edge equation are given
by [AMMH07]:

(a,b,c) = (p̂1× p̂0) =((1− t)q̂1 + t r̂1)× ((1− t)q̂0 + t r̂0)

= t2f+ tg+h, (3)

where:

h = q̂1× q̂0,

k = q̂1× r̂0 + r̂1× q̂0,

f = h−k+ r̂1× r̂0,

g = −2h+k. (4)

Each edge equation is now a function of time consisting of
three functions: (a(t),b(t),c(t)), where, for example, a(t) =
fxt2+gxt+hx. Finally, the entire time-dependent edge equa-
tion is:

e(x,y, t) = a(t)x+b(t)y+ c(t), (5)

where we have set w = 1 since rasterization is done in screen
space (x,y).

Gribel, Doggett & Akenine-Möller / Analytical Motion Blur Rasterization with Compression 3

t1.0

i(t)
e(t)

Figure 2: By fixing the sample point, (x0,y0), the time-
dependent edge function, e(x,y, t), becomes a quadratic
polynomial in t alone, i.e., e(t). The blue curve is an example
of that. In addition, a binary inside function, i(t), is shown
(green), which is true whenever e(t)≤ 0.

4. Theory

In this section, we derive and present some new theory about
time-dependent edge equations that we have not seen pre-
sented elsewhere.

4.1. Analytic Inside Test

For now, we assume that each pixel has a single sample
point at (x0,y0). Extensions to multi-sampling and super-
sampling just increase the sampling rate. If we consider a
particular pixel, then (x0,y0) are constant. In this case, the
time-dependent edge function becomes a function of time, t,
alone:

e(x0,y0, t) = e(t) = a(t)x0 +b(t)y0 + c(t). (6)

This expression can be expanded using Equation 3:

e(t) = t2(fxx0 + fyy0 + fz)+ t(gxx0 +gyy0 +gz)

+(hxx0 +hyy0 +hz)

= αt2 +β t + γ, (7)

where (α,β ,γ) are constants for a certain sample point,
(x0,y0). Hence, each edge equation is a quadratic function
in t. An example is shown in Figure 2. Next, we introduce a
binary inside-function, i(t), as:

i(t) =
{

1, when e(t)≤ 0
0, elsewhere,

(8)

i.e., i(t) = 1 for all t ∈ [0,1] when (x0,y0) is inside the corre-
sponding time-dependent edge equation. Note that the inside
functions, ik(t), can be computed analytically by solving the
second-degree polynomial in Equation 7.

For a moving triangle, we have three time-dependent edge
functions, ek(t), where k ∈ {0,1,2}. The point, (x0,y0), will
be inside the moving triangle when all inside functions are
positive at the same time. This visibility function can be ex-
pressed as:

v(t) = i0(t)i1(t)i2(t), (9)

i.e., the multiplication of all three inside functions. An ex-
ample of this is shown in Figure 3.

4.2. Analytic Time-Dependent Depth Function

In this section, we will derive the equation for the depth dur-
ing the time span where the sample point, (x0,y0), is inside

i (t)0

v(t)
e (t)0

i (t)1

i (t)2

e (t)1

e (t)2

Figure 3: The three inside functions, ik(t), k ∈ {0,1,2}, are
shown to the left, and the resulting visibility function, v(t),
shown to the right, is positive for all values of t where all
ik(t) are positive. Hence, the positive interval to the right is
the time span where the sample point, (x0,y0), is inside the
moving triangle.

the moving triangle. Perspective-correct interpolation coor-
dinates, (u,v), can be used to interpolate any attribute per
vertex. This is done as:

s(u,v) = (1−u− v)p0 +up1 + vp2, (10)

where pk are the attribute vectors at the three vertices,
and s(u,v) is the interpolated attribute vector. McCool et
al. [MWM02] showed that (u,v) can be computed using
edge equations, ek:

(u,v) =
1

e0 + e1 + e2
(e1,e2). (11)

Note that u, v, and all ek are functions of (x0,y0), but this
was left out to shorten notation. Equation 11 also holds when
time-dependent edge equations are used.

The depth buffer stores interpolated depth values. Assuming
that pk = (pk

x, pk
y, pk

z , pk
w), k ∈ {0,1,2}, are the triangle ver-

tices in clip space (before division by w), one first uses Equa-
tion 10, and then compute the depth as d = sz/sw [SA06]
for a particular fragment with perspective-correct barycen-
tric coordinates, (u,v).

When we turn from static triangles to moving triangles, pk

are functions of time (Equation 2), and so are the edge equa-
tions. Let us first take a look at one of the texture coordinates,
u (see Equation 11):

u=
e1

e0 + e1 + e2

=
α1t2 +β1t + γ1

(α0 +α1 +α2)t2 +(β0 +β1 +β2)t + γ0 + γ1 + γ2
, (12)

where the three time-dependent edge equations are: ek(t) =
αkt2 +βkt + γk (Equation 7). As can be seen, the texture co-
ordinate, u, becomes a rational polynomial of degree two in
t. The major difference, when compared to static triangles,
is when the entire depth function is put together:

d(t) =
sz

sw
=

(1−u− v)p0
z +up1

z + vp2
z

(1−u− v)p0
w +up1

w + vp2
w
, (13)

where all pi
z and pi

w are functions of time according to Equa-
tion 2, and u & v are functions of time (Equation 12) as well.
When these expressions replace the corresponding terms in

4 Gribel, Doggett & Akenine-Möller / Analytical Motion Blur Rasterization with Compression

Equation 13, we arrive at a cubic rational polynomial for the
depth function for a certain sample point, (x0,y0):

d(t) =
m3t3 +m2t2 +m1t +m0

n3t3 +n2t2 +n1t +n0
, (14)

where the constants in this equation, typically, are rather
long and complex expressions.

Two of the advantages of using d = sz/sw includes the fact
that the depth is in the range [0,1] due to the way the projec-
tion matrix is set up and that depth buffer compression can
therefore be implemented efficiently since the depth will be
linear over a triangle. In our rendering framework, we will
not be able to use depth compression anyway, so instead we
can use d = sz, which will generate the same images, but
the depth will now range between the near and the far plane:
[znear,zfar]. This simplifies the depth function for moving tri-
angles. It will still be a rational function in t with degree
three in the numerator, but the degree in the denominator
will be reduced to two, that is:

d(t) =
m3t3 +m2t2 +m1t +m0

n2t2 +n1t +n0
, (15)

In Section 5, we will approximate the exact depth described
by Equation 15 with a linear depth function.

4.3. Visualization of Moving Triangles

Each moving edge traces out a “side surface,” and these form
bilinear patches. In this section, we attempt to help to build
some intuition about moving triangles, their visibility func-
tions (Equation 9), and depth functions (Equation 15). An
example of a moving triangle visualized in three different
ways is shown in Figure 4. Note that in the middle figure,
the gray curve is actually the visibility function multiplied
by the depth function that is shown.

It is also interesting to note that there can be several disjoint
parts of the visibility function (Equation 9). Examples with
two and three disjoint parts, and their respective depth func-
tions, are shown in Figure 5.

In theory, the intersection of three inside functions of the
visibility function can result in at most four disjoint time
spans where the resulting function, v(t), is positive. This is
because each inside function can consist of two disjoint pos-
itive parts. In practice, we have only encountered three inter-
vals when you consider front-facing triangles for any value
of t. Most commonly, only a single interval is generated for
most triangles and samples, however.

5. Rendering

In the following, we will use the term interval to denote a
range in the time dimension, together with the color and
depth for that time range. An interval is denoted by ∆.
In practice, the third-degree rational depth function (Equa-
tion 15), is approximated by a linear function. The motiva-
tion for this is that the depth function rarely varies much

Figure 5: Two more examples, similar to Figure 4. Left: the
sample point (illustrated by the cyan line) is inside the mov-
ing triangle in two disjoint time intervals as can be seen by
the depth function below. Right: the sample point is inside in
three disjoint time intervals.

d

t
0.0 1.0

Δ
1

z
1 k

1

c
1

t
1
s t

1
e

Figure 6: Here we illustrate the parameters for an interval,
∆1, which is defined by its starting and ending point in time,
ts
1 and te

1 , its depth, z1, at ts
1, the slope, k1, of the depth func-

tion, and the color, c1, of the interval.

beyond such an approximation, and it makes computations
much faster. In addition, we have good experiences with this
approximation, as will be shown in Section 6.

Given the depth function approximation, each interval stores
the following parameters:

ts
i : time at the beginning of the interval

te
i : time at the end of the interval

zi : depth at the beginning of the interval

ki : slope of the depth function

ci : color of the interval (16)

Our interval is analogous to a fragment in rendering without
motion blur, and an example of an interval is shown in Fig-
ure 6. In general, all intervals belonging to a pixel are simply
stored in an interval list in that pixel, similar to how order-
independent transparency is done with DX11 using current
GPUs [Mic09]. A couple of optimizations that can be used
for opaque rendering will be described below. As a trian-
gle that covers a pixel is rendered, one or more intervals are
added to that pixel’s interval list. When rendering starts, each
pixel is initialized with an interval with background color
and depth equal to the far plane.

Interval insertion is illustrated in Figure 7. Our approach is

Gribel, Doggett & Akenine-Möller / Analytical Motion Blur Rasterization with Compression 5

t=0.0

t=1.0

1.0
t

0.33

depth function

t=0.0

t=1.0

Figure 4: Three different ways of visualizing a moving triangle vs a single sample point. Left: the triangle at t = 0 and t = 1 have
been projected to screen space. Note that the lines with white-to-black gradients depict the trajectories of the vertices. At t = 1,
the triangle is shown with dashed lines. Middle: the edge equations for the three edges are shown with colors corresponding to
the colors to the left. All curves here are for the sample point indicated by a cross to the left. Note that the sample point is inside
the moving triangle from t = 0.33 to t = 1, and that the depth on the triangle during this time is depicted as the gray depth
function. Right: The triangle vertices, (x,y,w), have been rendered in three dimensions with the “side surfaces” of each moving
edge rendered as a bilinear patch. The edges are color coded in the same way as in the left and middle image. The sample point
is depicted as a gray line here. Note that the gray line does not intersect the moving triangle to start with, and that it then enters
into the green surface. This is illustrated in the middle figure when the green edge equation curve becomes negative at t = 0.33.

based on trying to keep the number of intervals stored per
pixel small, and to facilitate compression (discussed in Sec-
tion 5.2) when possible. When two intervals intersect, one
can use clipping to create non-overlapping (in time) inter-
vals. However, that can generate up to four intervals, which
is undesirable. An intersection can also generate only two in-
tervals, but in such cases, we also refrain from clipping since
our compression mechanism works better with unclipped
intervals. Note that using non-clipped intervals requires a
slightly more complex resolve procedure, which is described
in Section 5.1. For opaque rendering, simple depth test op-
timizations can be included in this process as well, and this
is shown in the bottom two illustations of Figure 7, where
we have assumed that a LESS_EQUAL depth test is used. It
is, however, straightforward to adapt to any depth function.
In the second illustration from the bottom, the green interval
is clipped in time since it is occluded and because the clip-
ping only generate one interval, i.e., it does not require more
storage than simply storing the unclipped interval.

Note that to facilitate depth testing, we keep the intervals
sorted on t i

s per pixel. This can be done during interval inser-
tion using insertion sort, for example. In the next subsection,
we will describe how the final color of each pixel is resolved
given such a list of intervals. This is followed by Section 5.2,
where we describe a novel compression algorithm for the in-
terval list stored per pixel.

5.1. Temporal Pixel Resolve

After rendering all moving and non-moving triangles, we
have a list of possibly overlapping (in time) intervals, ∆i, per
pixel. Recall that we keep the intervals sorted, i.e., t i

s ≤ t i+1
s ,

∀i, since this is part of the interval insertion step described
above.

0.0

d

t
1.0 0.0

d

t
1.0 0.0

d

t
1.0

0.0

d

t
1.0 0.0

d

t
1.0 0.0

d

t
1.0

0.0

d

t
1.0 0.0

d

t
1.0 0.0

d

t
1.0

0.0

d

t
1.0 0.0

d

t
1.0 0.0

d

t
1.0

clipped
away

Figure 7: Examples when new intervals (green) are inserted
into the existing interval list (red). At the top, clipping the
green interval would result in the existing red interval and
two green intervals, one on each side of the red interval.
Our approach is to simply store the entire green interval,
since that requires only two intervals in total (compared to
three). Second from top: for intersections, the new interval is
also added to the pixel’s interval list. The bottom two images
show optimizations which are valid only for opaque render-
ing with a LESS_EQUAL deph test.

The resolve pass processes a pixel independently of other
pixels, and sweeps the sorted intervals in a pixel from time
t = 0 to t = 1. During the sweep, we maintain a list, called
Active List, of all intervals overlapping the current time of
the sweep. For example, when the sweep starts, at t = 0,
the Active List is initialized to hold all intervals that over-
lap t = 0. Note that the Active List is also kept sorted on
depth. As an interval start-point, ts

i , or end-point, te
i , or an

6 Gribel, Doggett & Akenine-Möller / Analytical Motion Blur Rasterization with Compression

d

tΔk

cfinal

Figure 8: Motion blur of semi-transparent geometry. Each
interval represents exposure from a primitive, whereas the
topmost interval represent a white background. The trio to
the left have α set to 0.6 and the trio to the right have α

set to 1.0. The multi-colored bar shows the alpha-blended
colors for each respective subspan in time, while the bar at
the bottom shows the final color.

intersection point between two intervals is encountered, the
following action is taken:
• Interval-Start: insertion-sort (on depth) new interval into

Active List.

• Interval-End: remove interval from Active List.

• Interval-Intersection: swap places of the intersecting in-
tervals in the Active List to maintain depth order.

Between each pair of encounters (the three cases above), the
final color for that particular subspan in time is computed.
Each such color and subspan in time are temporarily put into
a resolved interval, ∆k. Since intersection points are handled
as part of the sweep, there will not be any intervals overlap-
ping in depth in the Active List. As a consequence of that, the
color of ∆k for opaque rendering is simply the color of the
nearest (in depth) interval in the Active List, again assuming
that a LESS_EQUAL depth test is used. Each resolved inter-
val’s color, ck, is then integrated against the shutter response
function, w(t), and added to the final color of the pixel. This
can be expressed as:

c f inal =
n−1

∑
k=0

(∫ te
k

ts
k

w(t)ckdt
)
, (17)

for n disjoint intervals. If a box filter is used, the colors of all
intervals are simply combined into one final color weighted
by their duration in time.

For the transparent resolve procedure, the only difference is
that the color, ck, of the resolved interval, ∆k, is computed
by blending the intervals in the Active List in back-to-front
order based on the alpha component of each color [PD84].
An example is shown in Figure 8.

5.2. Temporal Pixel Compression

When there are many small triangles with a relatively high
degree of motion blur, each pixel may need to store a large
number of intervals, ∆i, in order to exactly represent the
color of the pixel. We have observed up to a few hundred
intervals per pixel in extreme cases. This is clearly not desir-
able for a rasterization-based algorithm. The problem can be
alleviated by using a tiling architecture [FPE∗89], where the

d

t
0.50.0 1.0

interval
merge

Δ
1

Δ
2

Δ
3

Δ
4

d

t
0.50.0 1.0

Δ
1

Δ
2

Δ
3

d

t
0.50.0 1.0

d

t
0.50.0 1.0

Δ
0

Δ
0

without compression with compression

Figure 9: Top: illustration of the merging of two intervals.
Since the bluish intervals have similar depth functions, they
are deemed suitable for merging by our oracle. Bottom left:
illustration of content in a pixel after rendering many small
moving triangles. Bottom right: a possible result when using
our compression algorithm. Note that our compression al-
gorithm is applied continuously as each moving triangle is
being rendered, and in that sense, our technique is similar
to, for example, standard depth buffer compression.

triangles are sorted into tiles (rectangular regions of pixels)
by front-end pass, and per-pixel rendering done in a back-
end pass. Tiles can be back-end processed in parallel by sep-
arate cores, since the rasterization and per-pixel work is in-
dependent at this point. Note that even the XBOX 360 reverts
to tiling when multi-sampling anti-aliasing and high resolu-
tions are used. Even if tiling is used, storage may still be a
problem since the per-pixel storage is still unbounded. How-
ever, we note that there is lots of coherence to exploit in this
problem, and this section is therefore dedicated to introduc-
ing a per-pixel lossy compression algorithm.

The core idea is illustrated in the top part of Figure 9.
Assume that a pixel can only “afford” to store four inter-
vals, and that after rendering another motion blurred trian-
gle, the pixel actually holds five intervals (top left in Fig-
ure 9). To be able to fit this into our frame buffer, we will
need to compress this information into four intervals again.
This is shown in the top right part of the figure, where the
two bluish intervals with similar depth functions have been
merged to a single interval. A similar type of compression
has been used for deep shadow maps [LV00], but in their
context, compression was only needed to be done once after
the entire visibility function was known. Our goal is differ-
ent since we may need to compress each pixel several times
as more and more triangles are rendered to a pixel.

We use an oracle-based approach to attack this problem. Our
oracle function is denoted:

oi j = O(∆i,∆ j), (18)

where the oracle function, O(), operates on two intervals,
∆i and ∆ j, where i < j. The task of the oracle is basi-
cally to compute an estimation on how appropriate it is to

Gribel, Doggett & Akenine-Möller / Analytical Motion Blur Rasterization with Compression 7

merge the two input intervals. Given an oracle function,
O, we compute oracle function values, oi j , for all i, and
j ∈ {i+1, i+2, i+3}. For transparent scenes with high level
of depth overlap, we have increased the search range up to
+10, instead of +3. In the next step, the interval pair with
the lowest oi j is merged. Depending on the implementation,
this process may continue until the number of intervals per
pixel falls in a desired range, or until there are no more ap-
propriate merges possible. Next, we describe an oracle, for
two intervals, that generates a lower value the more appro-
priate they are to merge.

5.2.1. Oracle Function

Our oracle function, O, is described by the following for-
mula, where i < j:

O(∆i,∆ j)=h1 max(ts
j− te

i ,0)+h2|z̄i− z j|+h3|ki− k j|+
h4(te

i − ts
i + te

j − ts
j)+

h5(|ci,r−c j,r|+ |ci,g−c j,g|+ |ci,b−c j,b|). (19)

The first term favors merging of intervals that are located
close in time (even overlapping). For the second term, z̄i is
the depth at the end of ∆i, i.e., z̄i = zi + ki(te

i − ts
i), and z j is

the depth at the beginning of the other interval, ∆ j. See Equa-
tion 16 for definitions of the interval’s parameters. The third
term penalizes merging of intervals with different slopes.
Hence, both the second and third terms attempt to detect if
the depth functions are similar, and therefore, whether they
are amenable for merging. The fourth term favors merging
of short (in time) intervals, while the fifth favors merging of
interval with similar colors. All hi are used-specified con-
stants, and we will discuss our values of these constants in
Section 6.

Discussion Choosing an oracle function is always a rather
ad-hoc process. Here, we will present the methodology that
we used in doing this, and some of the attempts that failed.
First of all, we implemented a temporal pixel visualizer,
where we could visually inspect all temporal fragments that
were added to a pixel’s interval list, and what the compressed
representation looked before and after. In the end, what the
temporal pixel visualizer revealed to us was that the depth
functions should be similar, and that the intervals should be
located closely in time. In addition, for small triangles, we
saw that shorter intervals are easier to merge, and that we got
better image quality if we favor merging of intervals with
similar color. Furthermore, we tried an approach for opaque
rendering, where all intervals with intersecting depth func-
tions were clipped. This resulted in much worse quality for
lower number of intervals per pixel, but worked equally well
as the method we presented above, when there was a high
degree of occlusion in the scenes. We also considered intro-
ducing an error term per interval in order to avoid tandem
compression, i.e., where one interval gets compressed sev-
eral times with the result being that the merged interval has
little resemblance to the original intervals. If an interval has

been formed by merging two previous intervals, and a fur-
ther interval attempts to merge with it, the error term would
penalize the merging with that new interval. However, in our
test scenes we have not seen any need for this (by examining
compression artifacts in our temporal pixel visualizer) so far.
For other test scenes, this may pay off, though, so we hope
to investigate this in future work.

5.2.2. Interval Merging

Our merging process for two intervals is straightforward.
We will describe the merging of two intervals, ∆i and
∆ j, into a new interval, ∆′i. The merge is described as:
∆′i =merge(∆i,∆ j), i < j, where the new parameters are:

t ′si = ts
i

t ′ei = max(te
i , t

e
j)

z′i = (1−α)zi +α(z j− k j(ts
j− ts

i))

k′i = (1−α)ki +αk j

c′i = (1−α)ci +αc j, (20)

where α =(te
j−ts

j)/(t
e
i −ts

i +te
j−ts

j) is used to linearly blend
parameters depending on the lengths (in time) of the inter-
vals that are merged. As can be seen, the slope, k′i, of the
depth function, and the color, c′i, are simply linear interpo-
lations of the input intervals’ parameters. The depth, z′i, is
slightly more complex because we need to blend the depth
at the same instant in time. Since we want the new depth at
time ts

i , we compute the depth of ∆ j’s depth function at ts
i

and use that for blending. For future work, it would be in-
teresting to investigate other approaches to depth merging,
e.g., where the area under the depth function is kept constant
after compression. An example of merging two intervals is
shown in Figure 9.

6. Results

All algorithms described in the paper have been imple-
mented and tested in a rendering test framework in C++,
where the core is a software rasterizer. We have implemented
stochastic rasterization to generate comparison images, and
ground truth images (with 256 samples). To generate com-
pelling animations, we have integrated the Bullet physics en-
gine into our framework.

For our oracle (Equation 19), we use the following constants
in all renderings: h1 = 1000, h2 = 100, h3 = 1, h4 = 100,
and h5 = 1. This setup has worked well for all our test
scenes, i.e., with different triangle sizes, occlusion, dispar-
ity in color, and different speeds of motion. More time could
definitely be spent on tuning these parameters.

To motivate our approximation of the depth function, we
gathered the maximum depth errors introduced for each in-
terval. These depth errors were measured relative to the
difference between the far and near planes, which were

8 Gribel, Doggett & Akenine-Möller / Analytical Motion Blur Rasterization with Compression

100%10%1%0.1%0.01%0.001%

108

106

107

105

104

103

102

101

100

Relative depth error histogram

Figure 10: Illustration of the error introduced by approxi-
mating the cubic rational depth function with a linear func-
tion. Note that we use logarithmic scale on both axes here.

trimmed down. A histogram of the result is shown in Fig-
ure 10 for all intervals in 25 frames of the bunny scene (Fig-
ure 15). As can be seen, the vast majority of the area under
the histogram function resides in the left area, which means
that most intervals introduce only tiny errors. In fact, all in-
tervals have less than 0.6% relative depth error, and 96.3%
of the intervals have less than 0.01%. This implies that the
approximation is reasonable.

It is interesting to compare the size of the frame buffers for
our algorithms vs. stochastic rasterization. We assume that
a sample stores RGBA in 32 bits, and depth in 32 bits. This
sums to 8 bytes per sample for stochastic sampling. In our
algorithm, an interval, ∆i, also stores RGBA and depth using
8 bytes in addition to the start and end times, ts

i & te
s , each

using one byte, and the slope, ki, as a 16-bit float. This sums
to 12 bytes per interval. For the same frame buffer memory
usage, stochastic rasterization can use, e.g., 12 samples per
pixel, while we use eight intervals. Hence, the overhead for
our algorithm is 50% in terms of memory storage. It should
be noted here though that stochastic sampling does address
spatial anti-aliasing as well, whereas our algorithm does not.

Figure 13 and 14 show rendering of opaque surfaces. Both
figures show that the analytical evaluation generates accu-
rate and smoothly blurred images practically free of the sam-
pling noise typical of existing techniques with low numbers
of samples. In Figure 14, the spheres are highly tessellated
to approximate pixel size and shading is performed per trian-
gle. To accommodate the large number of triangles, our com-
pression technique uses 8 intervals per pixel in Figure 14.

Figure 15 shows the results of our compression algorithm
with different numbers of intervals for a scene with fast mo-
tion. As can be seen, already at 8 intervals per pixel, our re-
sults are very hard to distinguish from the ground truth. We
also gathered statistics on the number of inserted intervals
for the bunny scene in Figure 15. For the entire animation,
the average number of intervals per pixel was 7.2, while the
maximum 177. This suggests that there may be other pos-
sible implementations, where all non-occluded intervals are
stored without compression, and later resolved in a slightly
more complex procedure. We leave this for future work.

Figure 11: A very difficult case for our compression algo-
rithm. Top left: static rendering, where the white “fence”
is moving to the left at a speed of 500 pixels per frame. Top
right: our compression algorithm with 16 intervals per pixel,
which fails at reproducing an accurate image. About 40 in-
tervals are needed for our algorithm to create a high quality
image. Bottom images: 24 samples (left) and 256 samples
(right) with stochastic rasterization.

Our non-optimized rasterizer, running on a single-threaded
3.2GHz Quad Core Intel Xeon, renders these frames at about
16 seconds per frame on average. It should be possible to
speed up this CPU code by at least a factor of 10, and a GPU
implementation can take us yet further.

As with most compression algorithms, one can create cases
where they behave poorly. For our algorithm, this can occur
for extreme motion, and we have rendered one such exam-
ple in Figure 11. The reason why our compression algorithm
fails at handling this case accurately is that while rendering
the fences, the pixel will try to store a visibility function that
resembles a square wave function. Compressing such a func-
tion will either destroy the foreground (white) or the back-
ground (either black or marble stone), and so there is little
chance of ending up at a perfect mix of 50% foreground and
50% background. Still, we believe that our compression al-
gorithm behaves in a reasonable way given that it basically
has pixel data storage only for an undersampled representa-
tion of the pixel content in this example. In addition, one can
clearly see that our algorithm is only computing visibility in
the time domain, and not spatially. This is another weakness
of our current approach, and something that we will address
in future work. Another interesting idea would be to replace
the linear motion (Equation 2) with a higher order motion
description.

Figure 12 shows our results for semi-transparent render-
ing. In general, many more intervals are needed when semi-
transparency is used. For all images in this animation, each
pixel was compressed to 64 intervals, and the maximum
number of intervals being inserted in a single pixel for the
entire animation was 122.

Gribel, Doggett & Akenine-Möller / Analytical Motion Blur Rasterization with Compression 9

(a) (b) (c) (d) (e)
Figure 13: Two intersecting triangles with zoom-ins outlined in blue and green. (a) Ground truth full image using 256 samples
per pixel (SPP) with stochastic rasterization, (b) 256 SPP, (c) 4 SPP, (d) 16 SPP, and (e) our analytical motion blur rasterization.

Figure 14: Billard ball motion with zoom-ins outlined in red and green. Left: ground truth images with 256 samples per
pixel (SPP). Middle: 12 SPP stochastic rasterization. Right: our analytical motion blur rasterization using 8 intervals for
compression. Notice the absence of noise to the right.

Figure 12: A scene with moving semi-transparent cubes
falling between spheres with a procedural marble shader
demonstrates that our technique also works well with semi-
transparency.

7. Conclusions and Future Work

We have presented the mathematical details on analyti-
cal visibility computations for motion blurred triangles.
Even though similar work appears to have been done be-
fore [KB83, SPW02], the details have been missing, or per-
haps cruder approximations been used, and they have not
been introduced in a rasterization framework. We hope that
our work will spur renewed interest in analytical visibil-

ity computations, especially since the gap between com-
pute power and memory bandwidth continues to increase.
To make this approach more practical, we introduced some
approximations, e.g., temporal pixel compression and a lin-
ear depth function approximation.

Admittedly, we have not yet implemented a fully practical
rendering algorithm. As a result, there are many interesting
avenues for future work around this topic. As a next step, we
will implement our algorithms in DirectX ComputeShader
or in OpenCL, so that the power of GPUs can be used to
accelerate our algorithm. It is likely that this will lead the
way to new insights that may improve the algorithm further
in order to make it truly practical. The approximations that
we introduced are one area that deserves more research. We
wish to investigate whether there are other parts of the al-
gorithms that are better suited for compression, and to look
into whether the current approximations can be improved.
Furthermore, we will study how shadow mapping can be
adapted to our algorithms so that motion blurred shadows
can be cast on moving objects. A major topic that also de-
serves more attention is shading. Currently, all triangles can

10 Gribel, Doggett & Akenine-Möller / Analytical Motion Blur Rasterization with Compression

(a) (b) Reference (c) Rate 4 (d) Rate 6 (e) Rate 8 (f) Rate 10
Figure 15: Compression at different rates. The image in (a) displays bunnies being dropped onto a table from high altitude. As
can be seen by the washed out stream of motion blur at center, they travel at significant speed before impact. The highlighted
area depicts a particularly busy zone containing motion as well as geometric overlap. At a compression rate of 4 intervals per
pixel (c), the image quality is not sufficient. However, at rates of 6–10 intervals (d-f), or more, the algorithm is able to preserve
more and more of the true nature of the exposure intervals, resulting in higher quality images. The reference image in (b) was
made with stochastic rasterization using 256 samples per pixel.

only have a single color. We believe that a solution based
on Ragan-Kelley et al.’s [RKLC∗10] shader cache can also
work for us. Finally, it would be interesting to adapt our work
in the context of ray tracing, and see what benefits can be
obtained there. We see our work as a small step forward for
analytical visibility research, but very useful to anyone that
wants to implement analytical motion blur. Due to the com-
pute/memory gap, we believe that this could also be benefi-
cial to the graphics industry in the long term.
Acknowledgements We acknowledge support from the Swedish Research Council and

the Swedish Foundation for Strategic Research. In addition, Tomas Akenine-Möller is a

Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut

and Alice Wallenberg Foundation.

References

[AG00] APODACA A. A., GRITZ L.: Advanced RenderMan:
Creating CGI for Motion Pictures. Morgan Kaufmann, 2000.
1

[AMMH07] AKENINE-MÖLLER T., MUNKBERG J., HASSEL-
GREN J.: Stochastic Rasterization using Time-Continuous Tri-
angles. In Graphics Hardware (2007), pp. 7–16. 2

[Cat84] CATMULL E.: An Analytic Visible Surface Algorithm for
Independent Pixel Processing. In Computer Graphics (Proceed-
ings of ACM SIGGRAPH 84) (1984), pp. 109–115. 1, 2

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The
Reyes Image Rendering Architecture. In Computer Graphics
(Proceedings of ACM SIGGRAPH 87) (1987), pp. 96–102. 1,
2

[DWS∗88] DEERING M., WINNER S., SCHEDIWY B., DUFFY
C., HUNT N.: The Triangle Processor and Normal Vec-
tor Shader: A VLSI System for High Performance Graphics.
In Computer Graphics (Proceedings of ACM SIGGRAPH 88)
(1988), pp. 21–31. 1

[FLB∗09] FATAHALIAN K., LUONG E., BOULOS S., AKELEY
K., MARK W. R., HANRAHAN P.: Data-Parallel Rasterization
of Micropolygons with Defocus and motion Blur. In High Per-
formance Graphics (2009), pp. 59–68. 2

[FPE∗89] FUCHS H., POULTON J., EYLES J., GREER T., GOLD-
FEATHER J., ELLSWORTH D., MOLNAR S., TURK G., TEBBS
B., ISRAEL L.: Pixel-Planes 5: A Heterogeneous Multiprocessor
Graphics System using Processor-Enhanced Memories. In Com-
puter Graphics (Proceedings of ACM SIGGRAPH 85) (1989),
vol. 23, pp. 79–88. 6

[Gra85] GRANT C. W.: Integrated Analytic Spatial and Temporal
Anti-Aliasing for Polyhedra in 4-Space. In Computer Graphics
(Proceedings of ACM SIGGRAPH 85) (1985), pp. 79–84. 1, 2

[HA90] HAEBERLI P., AKELEY K.: The Accumulation Buffer:
Hardware Support for High-Quality Rendering. In Computer
Graphics (Proceedings of ACM SIGGRAPH 90) (1990), pp. 309–
318. 1

[KB83] KOREIN J., BADLER N.: Temporal Anti-Aliasing in
Computer Generated Animation. In Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 83) (1983), pp. 377–388. 1, 2, 9

[LV00] LOKOVIC T., VEACH E.: Deep Shadow Maps. In Pro-
ceedings of ACM SIGGRAPH 2000 (2000), pp. 385–392. 6

[Mic09] MICROSOFT: Order Independent Transparency. DirectX
11 SDK Sample, 2009. 4

[MWM02] MCCOOL M. D., WALES C., MOULE K.: Incremen-
tal and Hierarchical Hilbert Order Edge Equation Polygon Ras-
terization. In Graphics Hardware (2002), pp. 65–72. 2, 3

[OG97] OLANO M., GREER T.: Triangle Scan Conversion using
2D Homogeneous Coordinates. In Workshop on Graphics Hard-
ware (1997), pp. 89–95. 2

[PD84] PORTER T., DUFF T.: Compositing Digital Images.
In Computer Graphics (Proceedings of ACM SIGGRAPH 84)
(1984), pp. 253–259. 6

[Pin88] PINEDA J.: A Parallel Algorithm for Polygon Rasteriza-
tion. In Computer Graphics (Proceedings of ACM SIGGRAPH
88) (August 1988), ACM, pp. 17–20. 2

[RKLC∗10] RAGAN-KELLEY J., LEHTINEN J., CHEN J.,
DOGGETT M., DURAND F.: Decoupled Sampling for Real-
Time Graphics Pipelines. Tech. Rep. MIT-CSAIL-TR-2010-015,
2010. 2, 10

[SA06] SEGAL M., AKELEY K.: The OpenGL Graphics System:
A Specification. Tech. Rep. 2.1, 2006. 3

[SPW02] SUNG K., PEARCE A., WANG C.: Spatial-Temporal
Antialiasing. IEEE Transactions on Visualization and Computer
Graphics, 8, 2 (2002), 144–153. 1, 2, 9

[Vla08] VLACHOS A.: Post Processing in The Orange Box. In
Game Developers Conference (2008). 1

