
Munkberg et al. / Efficient Bounding of Displaced Bézier Patches 1

Efficient Bounding of Displaced Bézier Patches

Jacob Munkberg†1 Jon Hasselgren1 Robert Toth1 Tomas Akenine-Möller1,2

1Intel Corporation 2Lund University

Abstract
In this paper, we present a new approach to conservative bounding of displaced Bézier patches. These surfaces
are expected to be a common use case for tessellation in interactive and real-time rendering. Our algorithm
combines efficient normal bounding techniques, min-max mipmap hierarchies and oriented bounding boxes. This
results in substantially faster convergence for the bounding volumes of displaced surfaces, prior to tessellation
and displacement shading. Our work can be used for different types of culling, ray tracing, and to sort higher
order primitives in tiling architectures. For our hull shader implementation, we report performance benefits even
for moderate tessellation rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics Processors I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Hidden line/surface
removal

1. Introduction

Modern graphics processors contain dedicated hardware for
tessellating base patches into many small triangles. The Di-
rect3D 11 API adds three new stages to the graphics pipeline
to support tessellation: the hull shader, which is executed
once per patch and once per control point, typically to com-
pute tessellation factors and change control point bases. The
fixed-function tessellator, which generates a large set of ver-
tex positions in the domain of the input primitive. The do-
main shader, which is executed once per generated vertex
position and outputs a displaced point in clip space. We ex-
pect high pressure on these shader stages, due to significant
geometry amplification. It is therefore of utmost importance
to reduce the number of domain shader evaluations. This can
be done by culling patches that do not contribute to the final
image. To make this efficient, an algorithm for computing
tight bounds of displaced surfaces is needed.

In tile-based rendering architectures [FPE∗89, LDE∗08],
bounds for input primitives are needed for efficient sorting
into tiles. Since the domain shader is programmable, it is
hard to give conservative and tight bounds of the output po-
sitions. Thus, the generated small triangles have to be sorted
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Figure 1: CBOX, which represent previous work, bounds
displaced Bézier surfaces by its control points and a user-
provided displacement bound. Our approach, TPATCH, uses
oriented bounding boxes, a min/max hierarchy of the dis-
placement map and an efficient normal bounding algorithm,
that combined bound the patches significantly tighter.

into tiles individually. This increases the memory require-
ments for the tile queues and prevents efficient occlusion
culling on a patch level.

Related Work In some REYES/RenderMan [CCC87,
AG00] implementations, the user can provide an explicit
displacementbound parameter, so that the primitive
can be bounded and possibly culled during the split-dice step
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of the pipeline. However, this places the burden on the user,
who has to estimate the maximum displacement radius. In
addition, this value does not decrease during the split-dice
loop, so the convergence is rather poor, as can be seen in
the left side of Figure 1. Our approach is to compute these
bounds based on the domain shader only (i.e., no need for
any user specified parameter), and to adaptively refine the
bounds as the primitive is split into smaller sub-patches.

Previous work on pre-tessellation culling [HMAM09] has
shown that bounding displaced surfaces can give perfor-
mance benefits for sub-pixel sized polygons. In contrast
to that work, we focus on a particular use case (displaced
Bézier patches). In addition, we approach the problem hier-
archically in order to improve the total performance.

Several algorithms for normal vector bounding of Bézier
surfaces exist [SM88, SAE93, Yam97, LE09]. We extend
these approaches so that they fit in our framework of bound-
ing displaced patches. This is a harder problem than bound-
ing the Bézier normal vector in isolation.

Displacement map lookups can be bounded by using min-
max mipmap hierarchies [MM02,HAM07], storing the min-
imum and maximum displacement values for each texture
footprint and miplevel. We use this technique for conserva-
tive texture bounds.

The main contribution of this paper is a complete al-
gorithm for conservative and tight bounding of displaced
Bézier patches, using efficient normal bounding, oriented
bounding boxes and min-max mipmap hierarchies of the
displacement texture. The algorithm is applicable in DX11
GPUs and for hierarchical bounding in offline rendering.

2. Bounding Displaced Bézier Patches

Collections of bi-cubic Bézier patches are popular render-
ing primitives in production pipelines and CAGD [NCP∗09].
Commonly, displacements from high resolution textures are
added in the patch’s normal direction to increase the surface
detail. Furthermore, recent work [LS08,LSNC09,NYM∗08,
MNP08] has shown that Catmull-Clark subdivision surfaces
can be approximated by collections of Bézier patches. This
implies that the Bézier patch with displacement could be
a prime use case for domain shaders in DX11. The Bézier
patch is compactly represented by its control points, and this
parametric surface representation can be efficiently evalu-
ated in parallel (unlike recursive subdivision surfaces).

A Bézier patch, p(u,v), is a surface defined over two para-
metric coordinates, u and v. A displaced Bézier patch,

d(u,v) = p(u,v)+ n̂(u,v)t(u,v), (1)

contains the base patch position, p(u,v), and a displacement
value, t(u,v), acting along the normalized surface normal
n̂(u,v). Typically t(u,v) is taken from a texture. The clip
space position, q, in homogeneous coordinates, is obtained

by multiplying the displaced point with the model view pro-
jection matrix, M:

q(u,v) = M d(u,v) = M(p(u,v)+ n̂(u,v)t(u,v)). (2)

This equation constitutes the domain shader we want to
bound. The task at hand is finding conservative bounds of
q(u,v) over a parametric domain, (u,v) ∈ [a,b]× [c,d].

3. Algorithm

This section describes how we bound each term in Equa-
tion 2.

3.1. Bounding Bézier Patches

Following standard notation for tensor product Bézier sur-
faces [Far96], a Bézier patch p(u,v) : R2 → R3 is defined
by:

pm,n(u,v) =
m

∑
i=0

n

∑
j=0

ci, jB
m
i (u)B

n
j(v), (3)

where ci, j are the control points, m and n are the degrees of
the patch in the parametric coordinates, u and v, respectively,
and the B(·)’s are Bernstein polynomials. In the following,
we will use the term base patch to denote the Bézier patch
which has not (yet) been displaced. This is to distinguish
it from the final displaced surface. Bézier patches have the
convex hull property [Far96], and they can easily be bounded
by their control points. Finding an axis-aligned bounding
box (AABB) for a Bézier patch accounts for 3 min and 3
max operations per control point.

3.1.1. Coordinate Frame from Control Points

We have devised a simple method for finding a coordinate
frame which more tightly encloses the base patch. For a
Bézier curve, the vector between the first and last control
point often forms a good, first axis for a two-dimensional
OBB. For a Bézier patch, we simply average the vectors
from the corner control points (Figure 2), to get two axes.
Given a patch with m×n control points, we denote the four
corner control points c0,0, cm,0, c0,n and cm,n, and form the
two vectors:

t = cm,0− c0,0 + cm,n− c0,n, (4)

b = c0,n− c0,0 + cm,n− cm,0. (5)

t and b can be seen as approximate average gradients in the
u and v parametric directions respectively. Their cross prod-
uct gives a third axis n = t× b, and to form an orthonor-
mal coordinate system, we set x = t, y = n× t, and z = n
and normalize each vector. The final coordinate system is:
(x̂, ŷ, ẑ). More elaborate OBB fitting schemes based on the
control point cage could be derived, but in practice, the sim-
ple approach above produces axes for OBBs that bound the
surface tightly. The difference in quality between bounding
with AABBs and OBBs is highlighted in Figure 3 for curves
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Figure 2: By forming vectors between the corners of the
patch, the OBB axes can be derived.

AABB OBB

Figure 3: A cubic Bézier curve with high frequency dis-
placement is bounded. The left image use AABBs, and the
right image use OBBs, whose axes are determined by the
control points of the Bézier curve.

and in Figure 1 for a displaced Bézier patch. As we will show
below, the derived OBB axes are reused in the normal bound-
ing algorithms.

3.2. Bounding the Normal

Bounding the patch normal, n̂(u,v), over a domain is consid-
erably more difficult than bounding the base position. The
normal direction is computed as the cross product of two
parametric derivatives of the base patch, p(u,v). The partial
derivatives of a Bézier patch (Equation 3) can be written as:

∂p
∂u

(u,v) =
m−1

∑
i=0

n

∑
j=0

ai, jB
m−1
i (u)Bn

j(v), (6)

∂p
∂v

(u,v) =
m

∑
i=0

n−1

∑
j=0

bi, jB
m
i (u)B

n−1
j (v), (7)

where:

ai, j = m(ci+1, j− ci, j), bi, j = n(ci, j+1− ci, j). (8)

Note that ai, j and bi, j are (scaled) differences of the control
points of the base patch, and therefore vectors. If the bide-
gree of p(u,v) is (m,n) in the parametric coordinates (u,v),
the first order parametric derivatives have degrees (m−1,n)
and (m,n− 1), which can be seen in Equations 6 and 7. As
shown below, the bidegree of the patch after taking the cross
product of the patches is (m+n−1,m+n−1). A patch rep-
resenting the normal vector of a bi-cubic Bézier patch thus
needs bidegree (5,5) to be represented exactly.

3.2.1. Normal Bounds from the Normal Vector Patch

Here, we describe a normal bounding algorithm, inspired by
Bézier cone techniques [SM88,SAE93]. In summary, Bézier

patches for the parametric derivatives are computed, and
used to calculate a normal vector Bézier patch [Yam97]. Its
control vectors are normalized, and the solid angle of this
patch on the unit sphere is bounded in an OBB coordinate
frame, resulting in conservative bounds of the normalized
normal.

The Bézier patch’s normal direction is defined by:

n(u,v)=∂p
∂u

(u,v)× ∂p
∂v

(u,v) =

n

∑
j=0

m−1

∑
i=0

ai, jB
m−1
i (u)Bn

j(v)×
m

∑
k=0

n−1

∑
l=0

bk,lB
m
k (u)B

n−1
l (v). (9)

Using the formula for products of Bernstein polynomi-
als [Far96],

Bm
i (u)B

n
j(u) =

(m
i
)(n

j
)(m+n

i+ j
) Bm+n

i+ j (u), (10)

Equation 9 is written as:

∑
i, j,k,l

ai, j×bk,l

(m−1
i
)(m

k
)(n

j
)(n−1

l
)(m+n−1

i+k
)(m+n−1

j+l
) Bm+n−1

i+k (u)Bm+n−1
j+l (v).

(11)
This is a Bézier patch of bi-degree (m+ n− 1,m+ n− 1)
with control vectors, vp,q, given by:

vp,q = ∑
i+k=p
j+l=q

ai, j×bk,l

(m−1
i
)(m

k
)(n

j
)(n−1

l
)(m+n−1

i+k
)(m+n−1

j+l
) . (12)

To conservatively bound the normal over the patch, we fol-
low the approach by Sederberg and Myers [SM88]. The con-
trol vectors, vp,q, are normalized and bounded by a cone
on the unit sphere, as shown in Figure 4. For efficiency,
we reuse the ẑ-axis from the OBB coordinate frame derived
for the base patch (Section 3.1.1) as cone axis, which is an
approximation of the patch’s average normal. The minimal
scalar product between this axis and any normalized con-
trol vector gives the cosine of the half-angle, θ, of a cone
N : {n̂,θ}, where n̂ = ẑ. The cone N will enclose all the
normals. As shown in Figure 5A, the bounds for the normal
expressed in the OBB coordinate frame are:

([−sinθ,sinθ], [−sinθ,sinθ], [cosθ,1]). (13)

In our experience, this approach gives very tight bounds,
and as the patch is subdivided, the normal bounds converges
quickly. The normal vectors could be bounded using a more
elaborate algorithm for finding a bounding volume on the
spherical surface. However, the cone approach combined
with our OBB coordinate frame is efficient and facilitates
the enclosure of the bounds from the base patch and the
displacement along the normal vector. The main disadvan-
tage is the cost of deriving the normal vector patch. For a
bi-cubic Bézier patch, the computation of vp,q includes 144
cross products and 36 normalization operations. The bino-
mial coefficients, though, can be pre-computed in a small
lookup table of 36 entries.
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Figure 4: Bounding control vector patches (e.g. normal or
tangents). The leftmost image shows a control vector patch.
In the middle image, each control vector is normalized, so
that they map to points on the unit sphere (marked in red).
Finally, in the rightmost image, points on the unit sphere are
bounded by a cone.
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Figure 5: A. In an OBB coordinate frame with one axis
aligned with the cone’s axis, the bounds of the cone on the
unit sphere are easily derived using the cone half angle θ. B.
Given bounding cones for the the two parametric derivatives
(denoted T and B), a cone that bounds the cross product of
any vector inside T and any vector inside B can be derived,
here denoted N.

3.2.2. Normal Bounds From Tangent Cones

As shown by Sederberg and Myers [SM88], coarser bounds
can be obtained more quickly by forming two tangent cones
from the control vectors of the first order parametric deriva-
tive patches, ∂p/∂u and ∂p/∂v (see Equations 6 and 7). The
control vectors of the two derivative patches are normalized
and bounded on the unit sphere (as shown in Figure 4), form-
ing two cones T : {t̂,αt} and B : {b̂,αb}. We use the t̂ and b̂
axes derived in Section 3.1.1 as axes for the cones T and B.
Note that these are not necessarily orthogonal. As discussed
in Section 3.2.1, the cosine of the cone angle αt is the min-
imum scalar product of any normalized control vector from
the tangent patch ∂p/∂u with the t̂ axis. The half angle αb
is derived analogously. If the cones T and B do not over-
lap, a cone N that bounds all possible cross products of two
vectors, one from each of T and B, can be constructed (Fig-
ure 5B). Its axis is in the direction t×b and its half-angle is
given by [SM88]:

sinθ =

√
sin2

αt +2sinαt sinαb cosβ+ sin2
αb

sinβ
, (14)

where β is the smallest of the two angles between the axes
in the t̂ and b̂ directions. The cone, N : {t̂×b,θ}, conserva-
tively bounds the patch’s normalized normal. Given θ and

our choice of tangent cone axes, the normal cone axis is
aligned with the OBB ẑ-axis, and we can again use Equa-
tion 13 to obtain normal vector bounds in the base patch’s
OBB coordinate frame.

If the tangent cones overlap (αt +αb > β), we bound the
normal using the unit box in the OBB coordinate frame. The
tangent cone approach results in coarser bounds than the full
normal vector patch approach, but is considerably less ex-
pensive. Furthermore, if the input patch is subdivided, the
bounds converge quickly.

3.3. Bounded Texture Lookups

Techniques for bounding texture lookups are covered in pre-
vious work [MM02, HAM07]. The idea is to keep two ex-
tra mipmap hierarchies. The first stores maximum displace-
ment values for each texture footprint and level and the sec-
ond stores the corresponding minimum displacement values.
In general, when the parametric domain decreases (e.g. the
patch is subdivided), so do the texture bounds, which is a
desirable characteristic.

The final bounds of the displacement vector, o = n̂t, is
the product (on interval arithmetic form) of the interval from
the texture lookup [tmin, tmax] times the intervals of the nor-
malized normal vector along each axis. Using the notation
[a, ā] to define an interval, where a is the lower limit and ā
is the upper limit, multiplication of two intervals is defined
by [Moo66]:

[a, ā]⊗[b, b̄]=[min(ab,ab̄, āb, āb̄),max(ab,ab̄, āb, āb̄)].
(15)

Hence, the interval version of the x-component of o, is sim-
ply: [ox,ox] = [t, t]⊗ [n̂x, n̂x], and the other components are
derived similarly.

3.4. Matrix Transformation

The last step in Equation 2 is the matrix transformation to
clip space, so the remaining part in obtaining bounds for q
is the model view projection matrix, which does not depend
on the parametric domain, and can be seen as a constant.
This constant matrix is multiplied with the eight corners of
the OBB obtained for the displaced patch d, resulting in clip
space bounds for q.

3.5. Hierarchical Refinement

To obtain tighter bounds, the patch can be subdivided in
its parametric domain. In each subdivision step, a patch is
split in two pieces, pA and pB. The normal bounds are re-
computed for each subpatch and the min/max displacement
maps are queried on the smaller footprints. The de Casteljau
steps needed to generate the control points for pA will gen-
erate the control points for pB as a side product. The control
point cage for the base patch converges quickly. The normal
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bounds and texture lookups generally become more accurate
in each subdivision steps, resulting in a convergent hierar-
chical bounding algorithm. Re-evaluating the normal bounds
for each subdivision step is costly, so in some scenarios, we
can keep the normal bounds from a coarse level, and rely
on inexpensive base patch subdivision and bounded texture
lookups in the remaining steps. Also, for position bound-
ing in surface regions without displacement (regions where
t(u,v) is zero), no normal bounding is needed and can be
bypassed.

For adaptive refinement, such as in a REYES-like bound
& split loop, we can maintain a priority queue of the bound-
ing boxes of the subdomains and in each subdivision step,
take the top element of the queue, split it, and insert the child
boxes back into the queue. The exact sorting criteria is appli-
cation dependent, and may include the screen-space extents
of the bounding box, the depth values, or to prioritize boxes
intersecting a frustum plane for view frustum culling.

4. Applications

As mentioned in Section 1, the obtained bounds can be used
in a wide array of rendering techniques and optimizations. In
this section, we present a few applications areas and suitable
subdivision metrics for each.

Culling View frustum culling is performed by testing the
OBB corners against the frustum planes. We can prioritize
sub-patches straddling the camera frustum planes, so that
geometry outside the frustum planes is culled. The culling
results of the patch can also be used to avoid clip-testing the
generated triangles when the patch is completely inside the
view frustum.

Given a coarse depth buffer, a subpatch can be occlusion
culled if its bounding box is entirely occluded by already
drawn primitives [GKM93]. We can adapt the subdivision
criterion so that sub-patches closer to the camera are pro-
cessed and rasterized first, therefore increasing the likeli-
hood of z-culling.

Backface culling is the hardest type of culling, due to the
difficulty of efficiently bounding the geometric normal after
displacement. However, given the tessellation rate, the nor-
mal bounds and a tight interval of the displacement, bounds
for the displaced surface normal can be derived [HMAM09].
Furthermore, the subdivision criterion can be adapted to split
patches with high normal variation [LE09].

Tile-Sorting from Bounds A bounded representation of the
displaced Bézier patch can be used to sort patches into tiles
before tessellation. Tile-overlap can be reduced by hierarchi-
cal subdivision of the largest screen-space bounding box.

Ray Tracing & Collision Detection In a ray tracing envi-
ronment, we want to reduce the total surface area of each

#instr ATI HD5870 CPU
Domain Shader 1 1 1
CBOX 1.5 1.6 1.5
OBBTEX 2.7 2.7 2.4
TPATCH 4.5 3.8 4.5
NPATCH 11 83 11

Table 1: Cost comparison of bounding algorithms. The pre-
sented cost is relative to the cost of executing a single do-
main shader. The domain shader evaluates a cubic Bézier
patch, including texture based displacement in the normal
direction and model view projection. For reference, we re-
port CPU scores with texture lookups removed (as texture
sampling is considerably more costly on CPUs).

bounding box. Using the algorithms from Section 3, we can
build a tight bounding hierarchy for the displaced patches
offline, where each split is carefully chosen to minimize the
surface area of the child boxes. This bounding hierarchy can
then be used at runtime for efficient hierarchical intersection
testing. Alternatively, the hierarchy can be built on the fly
and be cached for coherent ray paths [PKGH97, HS98]. In
collision detection, the splits should be chosen to minimize
the OBB volumes in world space.

5. Results

In this section, we denote the bounding algorithms as fol-
lows: CBOX refers to bounding the patch by its control
points by finding the minimum and maximum value along
the Cartesian axes. A constant displacement bound (the min-
max value of the displacement texture) is added in all direc-
tions. In OBBTEX, the control points are projected on OBB
axes, and the displacement value is bounded by min-max
mipmap textures. No normal bounding is applied. NPATCH
extends OBBTEX with the normal patch bounding algorithm
from Section 3.2.1. TPATCH extends OBBTEX with the tan-
gent cone normal bounding approach from Section 3.2.2.
Finally, TAYLOR is Taylor model domain shader bound-
ing [HMAM09] of bi-degree 5 (so that the normal direction
of a cubic patch can be represented exactly), using an OBB
for the bounds computations.

5.1. Cost Analysis

We first look at the case of a displaced bi-cubic patch and
compare the execution cost of the bounding shader with the
cost of the domain shader (evaluating Equation 2). We mea-
sure the relative performance running the shaders on an Intel
Core i7 3.2 GHz CPU (on one thread) and an ATI Radeon
HD5870 graphics card. We also count the number of scalar
shader assembly instructions for reference. As seen in Ta-
ble 1, the algorithms scale as expected from the instruction
count, with the exception of the NPATCH algorithm which
exhausts the hardware resources (temporary registers) of the
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ATI card, making it perform very poorly. TAYLOR is consid-
erably more expensive than the other bounding approaches,
due to the normalization operation, which is very costly
when implemented using Taylor models. When measured on
the CPU without normalization, TAYLOR has approximately
the same cost as NPATCH, but with the normalization oper-
ation included, the cost increases to about 25× the cost of
NPATCH, which makes it non-competitive from a cost per-
spective.

It should be noted that although the bounding shaders are
more expensive than the corresponding domain shader, we
only need to execute the bounding shader once per patch,
while the domain shader may be executed thousands of times
per patch due to tessellation. Therefore, the total cost of exe-
cuting the bounding shaders is typically considerably lower
than the total cost of executing the domain shaders. For ex-
ample, if we assume that we tessellate only down to the con-
trol point level (16 vertices / patch), the cost of the TPATCH
bounding algorithm will only be approximately 25% of the
total domain shader cost. However, it is reasonable that the
tessellation level is higher than the number of control points,
since it would otherwise be better to simply send the vertices
and avoid tessellation and Bézier evaluations altogether. The
tessellation factors are often known at the time the culling
shader is applied, which implies that the bounding shader
can be dynamically enabled only in areas of high tessella-
tion.

5.2. Quality Analysis

Our test scenes consist of the three subdivision meshes
shown in Figure 8, as well as the Spikelog mesh shown in
Figure 10, which is a difficult stress case for the OBBTEX al-
gorithm. The SubD11 mesh comes from a February 2010
DX11 SDK sample, and the Killeroo and Monsterfrog
meshes are popular test cases for subdivision surfaces. For
all our test scenes, the Catmull-Clark subdivision mesh
is converted to bi-cubic Bézier patches with correspond-
ing tangent patches, using Loop & Schaefer’s ACC algo-
rithm [LS08]. The conversion gives us 3753 Bézier patches
for the SubD11 mesh, 2728 patches for Killeroo, 1292
patches for Monsterfrog, and 96 patches for Spikelog. It
should be noted that all meshes except SubD11 use displace-
ment maps to add surface detail. For the SubD11 mesh, a
constant displacement is added in the normal direction, repli-
cating the SDK sample. We use a displacement magnitude of
1.0 for the SubD11 mesh unless explicitly specified.

Figure 6 presents volume and projected screen space area
relative to to a near-optimal reference. The reference is com-
puted by evaluating the domain shader at 32× 32 domain
points per patch and bounding the generated vertices in the
OBB coordinate frame described in Section 3.1.1. Thereafter
we apply our bounding algorithms and compare the resulting
bounds with the reference bounds. We use the relative total
volume (the total volume for an algorithm divided by the
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Figure 6: Quality comparison of the bounding methods. The
left chart shows the total screen space bounding box area ob-
tained by the different methods, relative to reference screen
space bounding boxes. Similarly, the right chart shows the
total volume of the generated bounding boxes, relative to
reference bounds.

total reference volume) and relative projected screen space
area as accuracy metrics. The volume metric is intended to
represent quality for volume based algorithms, such as colli-
sion detection, and the projected screen space area is an effi-
ciency metric for tile-based rendering. Both metrics are also
indicators for view frustum and occlusion culling potential.

We observe that OBBTEX is significantly tighter than
CBOX for all four scenes. This indicates that the OBB co-
ordinate frame and min-map displacement lookups do make
the bounds tighter. Also note that for Killeroo and Monster-
frog, OBBTEX is close in quality to TPATCH and NPATCH
despite the lack of normal bounding. This is due to the low
displacement magnitudes relative to the patch sizes in these
scenes. Figure 7 shows the patch bounding boxes visually.

The Spikelog scene contains large displacement ampli-
tudes. This is a difficult case for the OBBTEX algorithm,
where the bounding boxes are expanded in all directions
rather than just around the surface normal. As can be seen in
Figure 6 and Figure 10, the TPATCH algorithm gives tighter
bounds. Also note that the TPATCH bounds converge quickly
as the patches are subdivided.

In a tile-based architecture, higher order primitives may
be sorted into tile-specific queues based on their screen space
extents before they are tessellated into small triangles. De-
pending on the rendering architecture, each tile may tessel-
late and domain shade its overlapping primitives indepen-
dently, instead of caching and reusing processed geometry.
This is especially true in highly parallel tiling architectures
where the communication between processing units often
should be kept at a minimum. It is therefore important to
reduce the tile overlap so that primitives are not added to
more tile-queues than necessary. However, this requires tight
screen space bounds. With accurate bounds, the tile overlap
can be significantly reduced for displaced patches. This is
shown in Figure 8, where the screen-space overlap has been
encoded as a heat map.

Figure 9 shows the bounding quality as function of dis-
placement amplitude and subdivision level for the SubD11
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CBOX OBBTEX TPATCH NPATCH

Figure 7: Object space volumes for the Killeroo and Monsterfrog models. OBBTEX bounds are smaller than CBOX thanks
to the use of OBBs and the min-max texture hierarchy. The low displacement amplitudes make the benefit of accurate normal
bounds small for these models.
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Figure 8: False color images that show the bounding box overlap in screen space. Red means 128 or more overlapping
bounding boxes. For the SubD11 mesh, a constant displacement is added to the base mesh in the base patch’s normal direction.
For the Killeroo and Monsterfrog meshes, the original displacement maps are used.

mesh. When the displacement amplitude increases, TPATCH
and NPATCH provide significantly tighter bounds, since they
bound the normal more accurately. When the patch is subdi-
vided, the convergence rate compared to CBOX and OBBTEX
is even more significant. As the displacement is a constant
offset in this test, the min-max textures do not help, and the
only quality difference between CBOX and OBBTEX is due
to the use of the OBB coordinate frame.

TAYLOR bounds the base patch very tightly, but as soon
as displacement is added, the bounds are similar in qual-
ity to OBBTEX, as the Taylor model algorithm struggles to
bound the normal efficiently. This is largely due to the high
polynomial degrees involved in the Taylor model normaliza-
tion operation. As seen in the rightmost chart in Figure 9,
as the patches are subdivided and their normal vectors be-

come more coherent, TAYLOR converges, but it is far from
the quality of TPATCH and NPATCH. For very high subdivi-
sion levels (> 64), TAYLOR, TPATCH and NPATCH are very
similar in quality, but TAYLOR is considerably more expen-
sive. The Spikelog scene is an exception, where TAYLOR
performs very well. The reason for this is that the curva-
tures of the base patches are relatively low, which means that
the normalization operation can be accurately represented.
When this happens, the higher polynomial degree of the Tay-
lor model gives an additional improvement.

5.3. GPU Based Culling

As a stress test case for our bounding algorithms, we imple-
mented culling in the shaders of the SubD11 sample. Due
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Figure 9: Measurements of bounding quality of all patches from the SubD11 sample. The total volume/area for each algorithm
is divided by a reference total volume/area, and we report this ratio for each algorithm. The leftmost chart shows the screen
space area as a function of the displacement height. The middle chart shows the total volume (before transformation into clip
space). Finally, the rightmost chart shows the total volume as a function of the number of subdivisions applied to each patch.
In this chart, the displacement value is set to 1.0. As can be seen, normal bounding is critical for convergence. Note that the
rightmost chart uses a logarithmic scale on the y-axis.

CBOX OBBTEX TPATCH

Figure 10: The Spikelog scene contains high amplitude displacement compared to the size of of the base patches. The upper row
shows the bounding volumes around the base patches, and in the lower row, each patch has been divided into 16 subpatches. This
is a difficult case for the CBOX algorithm as it can never refine the texture bounds. Similarly, the OBBTEX algorithm gives
poor bounds, as the displacement is added in all directions. In contrast, the TPATCH algorithm only applies the displacement
around the normal direction. This gives tighter bounds, that converge towards the underlying surface when the base patches
are subdivided.

to the poor GPU scaling of the NPATCH algorithm that we
observed in the cost analysis, we chose not to use that algo-
rithm for this application.

We implement our bounding algorithms and culling tests
in the patch-constant hull shader. This part of the hull shader
may read the Bézier control cage generated in the control
point hull shader, and we use this control cage in our bound-
ing algorithms. We then perform simple view frustum and
backface culling tests and output a zero tessellation factor
if the patch can be culled. Passing zero as tessellation factor
will cause the tessellation hardware to discard the patch early

in the pipeline. Due to graphics API limitations, we do not
subdivide the patches hierarchically. The application sup-
ports displacement, but in the current version, all displace-
ment maps contain a constant value that the user can scale by
a slider. Therefore, we can implement backface culling using
the normal bounds computed in the TPATCH algorithm, by
creating a cone that bounding both the geometric normal of
the patch and the normal given by the ACC tangent patches.
It should be noted that backface culling can be done even for
general displacement maps [HMAM09], but in this case the
culling rate is expected to be significantly lower.
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Figure 11: Each chart shows the frame time during the SubD11 animation measured on an ATI HD5870 GPU. In the second
part of the animation, the camera zooms in on the character, and there is more view frustum culling potential. NOCULL
represent the original demo without culling. As can be seen, for high tessellation levels, and for the regular patches, TPATCH
has a performance edge, but for lower tessellation levels, the naive bounding approaches are faster. Note that TPATCH reduces
the longest frame time in all three charts, which is the most important to accelerate for real-time rendering.

Tessellation: 4×4 8×8 16×16 32×32

R
eg

ul
ar

No Culling 2.39 3.59 15.2 61.3
CBOX 2.42 2.93 11.2 45.0

OBBTEX 2.50 2.93 11.2 45.0
TPATCH 2.48 2.69 9.82 39.1

A
ll

Pa
tc

he
s No Culling 2.75 7.01 30.6 125

CBOX 3.14 5.76 23.1 93.5
OBBTEX 3.27 5.83 23.1 93.6
TPATCH 3.89 6.92 22.7 86.0

Table 2: Average frame time (ms) for the SubD11 anima-
tion at different tessellation levels. In the upper four rows,
the sample is modified to render only the regular patches.
The lower four rows is the original sample, including both
regular and irregular patches.

For regular patches, there is an exact Bézier surface rep-
resentation of the Catmull-Clark surface. However, for ir-
regular patches, the Catmull-Clark surface and its normal
needs to be approximated by separate Bézier patches for the
position and tangent vectors [LS08]. Unfortunately, this ap-
proximation is relatively complex and needs to be done in
the hull shader. When we add our bounding algorithms, it is
very easy to reach the hardware resource limits mentioned in
Section 5.1, which causes hull shader performance to scale
very poorly. Since this is a limitation of the particular hard-
ware architecture, we ran two benchmarks, which gave the
results shown in Table 2. In the first benchmark, we modified
the SubD11 sample to render only regular patches, which we
believe represents approximately how the culling will scale
on future hardware with sufficient registers or efficient sup-
port for register spilling. In the second benchmark, we per-
form culling on all patches. As can be seen in Table 2, this
approach can still be beneficial for high-quality GPU accel-
erated rendering applications where the tessellation factors
are expected to be very high. Figure 11 shows the frame
time variation over the animation for 16× 16 and 32× 32
tessellation.

For the irregular patches, the pressure on the hull shader
is significant, and high tessellation rates are needed to main-
tain a consistent performance benefit from the TPATCH al-
gorithm. For the (cheaper) regular patches, there is a clear
performance benefit even for lower tessellation rates.

6. Conclusions and Future Work

We have presented algorithms for efficient bounding of dis-
placed Bézier patches, which accelerates early culling of ge-
ometry, binning of higher order primitives and construction
of high quality bounding volume hierarchies. In many cases,
the OBBTEX algorithm performs very well, and we expect
that this algorithm will be the best short time alternative
for GPU-based culling. However, for high quality tile-based
renderers, larger displacements need to be handled robustly
and subdivision convergence rate is important. For these
cases, we believe that the TPATCH algorithm provides a bet-
ter tradeoff between performance and bounding box tight-
ness. With hardware/pipeline modifications such as support
for coarse occlusion culling based on hull shader bounds,
min-max texture filtering and better register management,
we believe this technique can be even faster. As future work,
we want to apply a variant of the TPATCH algorithm for effi-
cient culling of displaced Gregory patches [LSNC09].
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