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Abstract

For triangles with linear vertex motion, common practice is to backface cull a triangle if it
is backfacing at both the start and end of the motion. However, this is not conservative. We
derive conservative tests that guarantee that a moving triangle is backfacing over an entire time
interval and over the area of a lens. In addition, we present tests for the special cases of only
motion blur and only depth of field. Our techniques apply to real-time and offline rendering,
and to both stochastic point sampling and analytical visibility methods. The rendering errors
introduced by the previous technique can easily be detected for large defocus blur, but in
the majority of cases, the errors introduced are hard to detect. We conclude that our tests
are needed if one needs guaranteed artifact-free images. Finally, as a side result, we derive
time-continuous Bézier edge equations.

1 Introduction

One of the most important culling tests is backface culling. When rendering motion blur and depth
of field, an excessive amount of inside tests can be generated, and therefore, accurate backface
culling tests are needed also for these contexts. For moving triangles, where each vertex moves
along a line in three dimensions, a commonly used technique assumes that a moving triangle is
backfacing over the entire time interval if the triangle is backfacing at the start and end of the
motion. However, this is not true in the general case, and certainly, this has been known in some
groups, but we are not aware of any documentation of this, nor of any previous solution. We derive
tests for the special cases of using either only motion blur or only depth of field. The combination
of these effects is harder to handle, and therefore, we derive a coarser conservative test for motion
blur with depth of field.

Let us start with a motivating example that clearly shows that a triangle can be backfacing at
the start of the motion (at t = 0), then turns frontfacing, and then again is backfacing at the end
of the motion (at t = 1). Consider a triangle with vertices in xyw space as follows:

p0 = (α− t, 0, 1), p1 = (0, t− β, 1), p2 = (0, β − t, 1), (1)

where α, β ∈ [0, 1], α < β are constants, and t is the time parameter. Each triangle vertex moves
linearly in time, and the triangle is shown at three different times Figure 1. In the same figure,
the swept surface is also illustrated. The sign of the determinant of the three points determines
whether the triangle can be backface culled [McCool et al. 02]:

p0 · (p1 × p2) = −2(α− t)(β − t), (2)
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Figure 1: Left: The triangle is backfacing at t = 0 and t = 1, and frontfacing at t = 0.5. Right:
The surfaces that the moving triangle sweeps out are visualized, and one can see that the “edge
surfaces” intersect when the facing changes. This happens at t = α = 0.3 and t = β = 0.7.

where a negative sign indicates a backfacing triangle. Given α < β, we note that the triangle is
frontfacing when t ∈ [α, β], even though the triangle is backfacing at t = 0 and t = 1. At t = α
and t = β, the triangle is degenerate, i.e., it is here that the switch from backfacing to frontfacing
or vice versa occurs. A stochastically rasterized example of this configuration is shown to the left
in Figure 2.

backfacing frontfacing backfacing frontfacing

A: Quadratic BF function B: Cubic BF function

Figure 2: Motion blur rasterized triangles. The shutter is opened in t ∈ [0, 1]. A: The triangle
moving according to Equation 1 is rasterized on screen with α = 0.1 and β = 0.9, where the triangle
is backfacing at t = 0 and t = 1. The left image shows the covered samples for back faces only, while
the right image shows covered samples for front faces. Note that with näıve backface culling, all the
covered samples to the right will be missed, which is incorrect. B: The triangle moving according
to Equation 3 flips from front to backfacing (or vice versa) three times in the time interval. The
left image shows a rendering of the backfacing region, and the right image shows the frontfacing
region.

In general, the determinant is a cubic polynomial, which can be seen when considering the
following time-continuous triangle:

p0 = (α− t, 0, 1), p1 = (0, β − t, 1), p2 = (0, 0, γ − t), (3)
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where α, β, γ ∈ [0, 1] are constants, and t is the time parameter. The determinant then becomes:

p0 · (p1 × p2) = (α− t)(β − t)(γ − t), (4)

which has three real roots in the interval t ∈ [0, 1]. This means that the facing can change three
times. An illustration of such a triangle is shown to the right in Figure 2. At this point, we have
motivated the need for a more correct test, and derivations for such tests follow in the subsequent
sections.

2 Backface Culling for Motion Blur

In general, we follow the notation from previous work in the field of stochastic [Akenine-Möller et al. 07]
and analytical rasterization [Gribel et al. 10]. Assume that we have a moving triangle, where the
vertices move linearly within a frame, from time t = 0 to t = 1. At t = 0, we denote the the vertices
qi and at t = 1 we call them ri. We work in clip space, using 2D homogeneous coordinates (2DH),
so a vertex is defined as p = (px, py, pw) [Olano and Greer 97]. A linearly interpolated vertex is
then expressed as:

pi(t) = (1− t)qi + tri. (5)

Given a moving triangle with vertices (p0(t),p1(t),p2(t)), we form the matrix:

M(t) =

p0x p1x p2x
p0y p1y p2y
p0w p1w p2w

 , (6)

where we have omitted the temporal dependence for readability. The triangle can be backface culled
if det(M) < 0, where the determinant is expressed as [McCool et al. 02]:

det(M) = p0 · (p1 × p2). (7)

Geometrically, this can be interpreted as a (scaled) signed volume computation of the tetrahe-
dron spanned by the origin and the triangle. Thus, we want to determine if p0(t) · (p1(t) ×
p2(t)) < 0 for t ∈ [0, 1]. The cross product of two linearly moving vertices can be expanded
as [Akenine-Möller et al. 07]:

p1 × p2 = ((1− t)q1 + tr1)× ((1− t)q2 + tr2) = t2f + tg + h, (8)

where:

f = (r1 − q1)× (r2 − q2),

g = (r1 − q1)× q2 − (r2 − q2)× q1,

h = q1 × q2. (9)

Using this expression, we can derive the time-dependent determinant:

det(M) = p0(t) · (p1(t)× p2(t))

= ((1− t)q0 + tr0) · (t2f + tg + h)

= at3 + bt2 + ct+ d, (10)
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where:

a = (r0 − q0) · f ,
b = (r0 − q0) · g + q0 · f ,
c = (r0 − q0) · h + q0 · g,
d = q0 · h. (11)

Note that the coefficient d = q0 · h = q0 · (q1 × q2) is the backface test for the triangle at t = 0.
Also, the value of the polynomial at t = 1 is a+ b+ c+ d = r0 · (r1× r2), which, analogously, is the
backface test at t = 1. The expression for the coefficient:

a = (r0 − q0) · [(r1 − q1)× (r2 − q2)], (12)

is the determinant test for the motion vectors of the three vertices, and if they all lie in the same
plane, the cubic term is zero, i.e., a = 0. Thus, it is only when the motion vectors span a volume
in 2DH that the determinant will be a cubic function.

We note that if the polynomial does not have any roots in t ∈ [0, 1] and d < 0, then the triangle
can be safely backface culled.

Optimization for Motion Along a Vector If the triangle’s motion vectors are parallel, such
that:

pi(t) = (1− t)qi + tri = qi + tγid, (13)

where γi ∈ R, the computations can be simplified. It follows that f = (q1 − r1) × (q2 − r2) =
γ1γ2d×d = 0, and the cubic coefficient a = 0. Using f = 0 and Equation 13, we can show that the
coefficient b is zero when the motion vectors are parallel:

b = (r0 − q0) · g + q0 · f
= (r0 − q0) · ((r1 − q1)× q2)− (r2 − q2)× q1))

= γ0γ1d · (d× (q2 − q1)) = 0.

Thus, for motion along a common direction, including pure translation, the determinant is a linear
function in t, and given that the value of the determinant at both t = 0 and t = 1 is negative, the
triangle can be backface culled.

2.1 Practical Backface Culling Test

The cubic coefficient a (Equation 12) of the backface function is the determinant of the triangle’s
three motion vectors, which are often small or near parallel. Therefore, directly computing the
backfacing function on power form (Equation 10) can be numerically unstable. To alleviate the
problem, we note that a vertex moving linearly in time as in Equation 5 is a Bézier curve of degree
1. Furthermore, the time-dependent edge equations are cross products of linearly moving vertices,
and can also be expressed on Bernstein form as:

pi(t)× pj(t) = (1− t)2c0 + 2(1− t)tc1 + t2c2, (14)

where:

c0 = qi × qj , c1 =
1

2
(qi × rj + ri × qj) and c2 = ri × rj . (15)
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Hence, the full edge equation is expressed on Bernstein form as shown below:

e(t, x, y) =
(
(1− t)2c0 + 2(1− t)tc1 + t2c2

)
· (x, y, 1). (16)

The backfacing function, given by the determinant (Equation 10) expressed on cubic Bernstein
form then becomes:

det(M(t)) =

3∑
i=0

bi

(
3

i

)
(1− t)3−iti, (17)

with coefficients, bi, given by:

b0 = q0 · (q1 × q2),

b1 = 1/3[q0 · (q1 × r2 + r1 × q2) + r0 · (q1 × q2)],

b2 = 1/3[r0 · (q1 × r2 + r1 × q2) + q0 · (r1 × r2)],

b3 = r0 · (r1 × r2). (18)

Note that there are no vector subtractions involved in these expressions, which avoids the precision
issue of directly computing a in Equation 10. We exploit the convex hull property of the Bernstein
basis for our test. By simply checking if all of the coefficients, bi, i ∈ {0, 1, 2, 3}, are negative, we
know that the triangle is conservatively backfacing. This is a coarser test than testing against the
true maximum of the cubic polynomial, but reduces the risk of numerical precision issues. Note
that b0 and b3 are the backface tests at t=0 and t=1 respectively. The test can be refined by
applying de Casteljau steps to the coefficients and testing if any generated coefficient is positive.

2.2 Higher-Order Vertex Motion

If the triangle vertex motion can be expressed as a polynomial, we can generalize the previous test.
We express the motion of each triangle vertex as a Bézier curve of degree n in 2DH:

pi(t) =

n∑
j=0

bi
jB

n
j (t). (19)

The backface test then becomes:

det(M(t)) = p0(t) · (p1(t)× p2(t))

=

n∑
i=0

b0
iB

n
i (t) · (

n∑
j=0

b1
jB

n
j (t)×

n∑
k=0

b2
kB

n
k (t))

=

n∑
i,j,k=0

B3n
i+j+k

(
n
i

)(
n
j

)(
n
k

)(
3n

i+j+k

) b0
i · (b1

j × b2
k).

This is a Bézier curve of degree 3n, where the control points are sums of scaled determinants of
three control points, one from each of the three curves describing the vertex motion. A conservative
backface test can again be derived by using the convex hull property and testing the sign of the
control points. As expected, we obtain Equation 18 for the linear motion case, i.e., when n = 1.
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2.3 Backface Culling for Motion Blur in Screen Space

For screen-space rasterization, a common backface test is given by the sign of the screen-space area
of the triangle. Let us define two edges of the projected triangle as:

e1(t) =
p1(t)

p1w(t)
− p0(t)

p0w(t)
, e2(t) =

p2(t)

p2w(t)
− p0(t)

p0w(t)
. (20)

Twice the signed area can now be expressed as:

2A(t) = e1(t)× e2(t) =
p2wp0 × p1 + p0wp1 × p2 + p1wp2 × p0

p0wp1wp2w
. (21)

Recall that that each vertex is a function of t (Equation 5), which results in that the backface test
in screen space is a cubic rational function in t. The triangle moves in a plane, but the vertex
positions are no longer linearly interpolated in t and the triangle can change facing at most three
times.

The magnitude of the denominator p0wp1wp2w is irrelevant for the area test, so if we know the
signs of the vertices w components after clipping, the denominator can be omitted. Similar to the
homogeneous case, the signed area is a cubic polynomial.

Linear motion in screen space For this case, the area function becomes: 2A(t) = (p̄1(t)−
p̄0(t))×(p̄2(t)−p̄0(t)), where p̄i are moving vertices derived from linearly interpolating the projected
start (q̄i) and end (r̄i) vertices. This is a quadratic polynomial, so even in this case, the moving
triangle can be backfacing at t = 0 and t = 1, and still be frontfacing somewhere in between. This
is precisely the scenario illustrated in Figure 1.

3 Backface Culling for Depth of Field

F=near F=far F=near F=far

BF cull at center of lens Conservative BF cull

Figure 3: A red cube with a black front face is rendered with depth of field. Focus is set at the front
and back of the cube. The cube is positioned so that the left face has a normal perpendicular to
the view vector at the center of the lens. The left face can thus be backface culled for that camera
position. For rays starting slightly off-center, the left (red) side is visible, and contributes to the
final image. The two leftmost images show the result when the backface test is done only at the
center of the lens, and the two rightmost images the reference result.
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A näıve backface test for depth of field is to only check the backface status at the center of the
lens. Figure 3 shows that this is not correct. Depth of field is a shear in clip space [Cook et al. 84].
This shear can be represented by applying the matrix [Ragan-Kelley et al. ]:

S(u, v) =

1 0 −Hu/J Hu
0 1 −Iv/J Iv
0 0 1 0
0 0 0 1

 , (22)

to the clip space coordinates of the triangle. H, I and J are constants given by the location of the
focal plane, the camera aperture size and the near & far plane. The location on the lens is given by
(u, v). Applying this matrix to a three-dimensional homogeneous vertex, p̂i = (pix, piy, piz, piw),
in clip space results in a sheared position

ŝi(u, v) = (pix + αiu, piy + βiv, piz , piw) (23)

where αi = −H/Jpiz +Hpiw and βi = −I/Jpiz + Ipiw . To simplify notation below, we introduce
li = (αiu, βiv, 0) and let si(u, v) and pi(u, v) denote the two-dimensional homogeneous vertices,
consisting of the xyw components of ŝi(u, v) and p̂i respectively, that is:

si(u, v) = pi + li(u, v). (24)

Note that li×lj = uv(0, 0, αiβj−αjβi) = 0 since αi = H
I βi. The backfacing criterion then becomes:

det(M(u, v)) = s0 · (s1 × s2),

= p0 · (p1 × p2) + l0 · (p1 × p2)

+l1 · (p2 × p0) + l2 · (p0 × p1)

= au+ bv + c. (25)

The coefficients are given by:

a = α0(p1 × p2)x + α1(p2 × p0)x + α2(p0 × p1)x

b = β0(p1 × p2)y + β1(p2 × p0)y + β2(p0 × p1)y

c = p0 · (p1 × p2). (26)

The triangle will change its facing somewhere on a circular lens with radius R only if there is a
solution to the following system of equations:

au+ bv + c = 0,

u2 + v2 < R2, (27)

Geometrically, this is an intersection between a circle and a line, which has solutions only if c2 <
R2(a2 + b2). Consequently, if the triangle is backfacing at the center of the lens (c < 0) and there
are no face changes when moving over the lens, the triangle can be backface culled. More formally,
if:

c < 0, and

c2 > R2(a2 + b2), (28)

the triangle can be conservatively backface culled. Intuitively, the triangle changes facing over the
lens only if the triangle’s plane equation (in three dimensions) intersects the shape of the lens.
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4 Conservative Backface Culling in 5D

By multiplying the moving vertex in Equation 5 with the shear matrix, S, in Equation 22, the
resulting vertex displacement from motion and depth of field, o(u, v, t), is obtained:

ôi(u, v, t) = S(u, v)p̂i(t) = S(u, v)((1− t)q̂i + tr̂i),

oi(u, v, t) = (pix(t) + αi(t)u, piy(t) + βi(t)v, piw(t)), (29)

where αi(t) = H/Jpiz(t) +Hpiw(t) and βi(t) = I/Jpiz(t) + Ipiw(t) are linear functions in t.
The corresponding backface test from Equation 25 is now expressed as:

det(M(u, v, t)) = o0 · (o1 × o2) = a(t)u+ b(t)v + c(t). (30)

The coefficients a(t), b(t), and c(t) are cubic functions in t, and following Equation 28, the triangle
can be conservatively backface culled when:

c(t) < 0, and

c2(t) > R2(a2(t) + b2(t)), t ∈ [0, 1]. (31)

4.1 Practical 5D Backface Culling Test

In this section, we sketch a practical implementation of the backface culling test for motion blurred
and defocused triangles.

Solving Equation 31 using a numerical root solver is unlikely to be worth the effort. Instead,
interval arithmetic [Moore 66] can be used, where we denote an interval ĉ = [mint(c),maxt(c)] =
[c, c̄]. A conservative test is then:

c < 0, and

c̄2 > R2(max(a2 + b2)), t ∈ [0, 1], (32)

where we used c̄ < 0 ⇒ min(c2, c̄2) = c̄2 to simplify the second condition. We first note that a
coarse, but fast approximation of the upper bound of a2(t) + b2(t) is given by:

max
t∈[0,1]

(
a2 + b2

)
≤ max

t∈[0,1]
(a2, ā2) + max

t∈[0,1]
(b2, b̄2), (33)

which essentially is a Manhattan distance approximation.
In the scenes tested, the t3 and t2 terms of the polynomials a(t) and b(t) are close to zero for

most triangles. This implies that the a(t), b(t) and c(t) terms in Equation 32 are approximately
linear, but also that care must be taken to avoid precision issues. By using first-order Taylor
models [Makino and Berz 03], we ensure stability when the t3 and t2 terms are small, but preserves
the linear dependence in t. An arbitrary cubic polynomial is bounded over t ∈ [0, 1] by:

k3t
3 + k2t

2 + k1t+ k0 ≈ k1t+ k0 + r̂k, (34)

where r̂ is a remainder interval which bounds the quadratic and cubic terms:

r̂k = [−|k3| − |k2|, |k3|+ |k2|] . (35)
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We use this to conservatively express a2(t) + b2(t) as:

a2(t) + b2(t) ≈ (a1t+ a0 + r̂a)2 + (b1t+ b0 + r̂b)
2. (36)

A conservative upper bound is given by:

max
t∈[0,1]

(
a2(t) + b2(t)

)
≤ a21 + b21 + 2 max(0, a0a1 + b0b1) + a20 + b20 + r̄a2+b2 , (37)

where r̄a2+b2 is a linear function in the remainder intervals r̂a and r̂b. If a(t) and b(t) are linear in
t, r̂a = r̂b = 0 and r̄a2+b2 = 0. We use the backface test for motion blur to determine the backface
status at the center of the lens as described above. The final test is given by the conditions in
Equation 32, where a2(t) + b2(t) is bounded using Equation 37.

Square Lens Approximation If we approximate the lens with a square with side length 2R,
we get a coarser backfacing conditions given by the equations:

c < 0, and

max(±R(a± b) + c) < 0, t ∈ [0, 1]. (38)

However, our experiments show that Equation 32 using the Taylor model bounds (Equation 37) has
slightly higher cull rates, as the vast majority of false backfacing decisions are due to DOF. This
implies that the test should be optimized for DOF.

5 Results

In this section, statistics are gathered from a number of key-framed animations taken from the
Utah Animation Repository1 and the UNC Dynamic Scene Benchmark.2 We denote the test of
only checking backface status at the start and end time as StartEnd in the evaluations below.

5.1 Cost Estimation

The cost in scalar instructions of the different tests are given in Table 1, with the assumption that
the edge equation coefficients (Equation 15) can be reused. For depth of field, the coefficients αi

and βi are triangle constants and are not included in the cost. The correct backface test costs less
than a single inside tests for the motion blur only or DOF only case. For the full 5D test, we do not
use 5D edge equations, but instead position the triangle for each uvt tuple. Therefore, no triangle
setup computations can be reused, and the backface test becomes considerably more expensive.
As a lower limit, a 5D backface test with coarse bounds of the cubic polynomials involved in the
expressions, costs > 3× of a single 5D inside test.

5.2 Motion Blur

All examples were rendered in 512 × 512 pixels using 64 samples per pixel. The motion blur test
scenes are shown in Figure 4 with three different motion blur settings. For each animation, we

1http://www.sci.utah.edu/~wald/animrep/
2http://gamma.cs.unc.edu/DYNAMICB/
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Instr. Inside StartEnd BfMb BfDOF Inside5D Bf5D

MAD/MSUB 24 4 12 7 39 100
MUL - 2 6 6 27 54
ADD/SUB - - 3 - 1 60
CMP 3 2 4 1 3 2
MIN/ABS - - - - - 14
SUM: 27 8 25 14 70 > 230

Table 1: Cost of correct backface tests for motion blur and depth of field. Inside reports the cost
for one per-sample inside test (without tiebreaker rules). Inside5D is the positioning and inside test
for full 5D rasterization. BF5D denotes the 5D backface test with depth of field and motion blur,
and is a lower estimate with coarse bounds of the involved cubic functions.

report the percentage of triangles potentially visible, but rejected by the StartEnd test. The cubic
backfacing function is bounded using a subdivided Bézier control cage (using 10 control points),
so the percentage reported is slightly higher than the actual miss rate. The number of affected
fragments are reported by the per-sample inside test and is an exact measure of the impact on the
final result. The results are presented in Table 2.

The Ben animation shows a running man with 78029 triangles. Cloth contains complex motion
and a large triangle count (92230). Wood Doll is a simple rigid body animation with modest
triangle count (5378 triangles). A camera motion has been added to highlight the common case
when both the object and the camera are animated. Figure 5 shows a zoomed in version of the
animation with camera rotation. Using a perceptual metric [Yee 04], 2% of the pixels differ for this
particular frame.

For motion blur, the number of triangles falsely rejected by the StartEnd test is modest, and
the visual impact is negligible. It is indeed possible to construct cases where this matters (see
Section 1), but for many practical examples with small triangles, closed meshes and limited motion
per frame, we conclude that the StartEnd backface test may be sufficient.

∆ = 1 ∆ = 5 ∆ = 10
Name rej.tris (%) s̄ rej.tris (%) s̄ rej.tris (%) s̄
Ben 0.1 13 0.2 726 0.7 4450
Cloth 0.004 78 0.02 425 0.1 4162
Wood Doll 0 0 0.1 532 0.3 1539

Table 2: Statistics gathered from animations with motion blur. ∆ indicates the step in key frames
between the start and end position of the triangle. For each ∆, we report the percentage of triangles
potentially visible but culled by the StartEnd backface test, and s̄ reports the maximum number
of samples in any frame that comes from triangles falsely culled by the StartEnd test.

5.3 Depth of Field

For large apertures, the number of frontfacing triangles increases. The invalid test of only checking
backface status in the center of the lens gives visible artifacts around silhouettes. This is shown in
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Figure 4: The test scenes with different animation speeds. ∆ denotes the steps in keyframes in the
animations.

Figure 6. The correct test is inexpensive and we recommend that it is always enabled.

5.4 Depth of Field and Motion Blur

For the combined case of both motion blur and DOF, the vast majority of artifacts stems from
DOF, so the tests should be tuned for a tight DOF test and a coarser motion blur test, as shown
in Section 4.1. Figure 7 shows an example of this.
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Exact backface test Center of lens BF test Difference ×10

Figure 6: Two examples with large defocus blur with a correct backface test (left) and the center
of the lens test (middle). Note the white streak in the blur on top of the hand in the middle image,
and the missing occlusion on the right side of the displaced patch.

Sharp MB (0) DOF (491) MB+DOF (604)

Figure 7: An example with both motion blur and depth of field. The numbers indicate how many
triangles that are falsely culled by the incorrect backface test for each configuration. The model
contains 15855 triangles.


