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Abstract. We present a fast vectorized implementation of a transform that maps

points in the unit square to the surface of the sphere, while preserving fractional

area. The mapping uses the octahedral map combined with an equal-area param-

eterization and has many desirable features such as low distortion, straightforward

interpolation, and fast inverse and forward transforms. Our SIMD implementation

completely avoids branching and uses polynomial approximations for the trigono-

metric operations, along with other tricks. This results in up to 9 times speed-up

over a traditional scalar implementation. Source code is available online.

1. Introduction

Spherical and hemispherical functions are abundant in computer graphics.
Examples include environment maps, BRDFs, visibility data, surface maps
for spherically parameterized objects, and so on. To handle such data, we
need a mapping from the (hemi)spherical domain to the plane. The best
choice of mapping depends on the application. For example, the cube map
is convenient because of its simplicity and hardware support, but it is not
area-preserving (pixels near the corners represent a smaller solid angle).

In many cases, it is desirable to use an equal-area mapping, i.e., a mapping
that preserves fractional area. In applications integrating functions over the
(hemi)sphere, area preservation significantly simplifies the implementation as
we do not have to take the solid angle of each pixel into account. The prime
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example is the evaluation of the rendering equation [Kajiya 86], which in-
volves an integration over the hemisphere. Another desirable property is low
distortion, i.e., the aspect ratio of pixels on the sphere should be close to one.
Otherwise, square pixels can be mapped to long, thin segments on the sphere,
which causes aliasing and reduces the useful resolution. It is also desirable to
have as few discontinuities as possible in order to simplify interpolation.

In this paper, we describe a fast implementation of a mapping with all
these properties: equal area, low distortion, and support for straightforward
interpolation across edges. The mapping uses the octahedral map [Praun and
Hoppe 03] combined with an area-preserving parameterization [Shirley and
Chiu 97]. The described mapping has been successfully used for importance-
sampling purposes [Clarberg and Akenine-Möller 08].

The current trend is microprocessors with many cores and wide data paths.
By exploiting data parallelism using SIMD (single instruction, multiple data)
vectorization, the performance of many applications can be greatly improved.
We provide a SIMD implementation (using Intel SSE) of the described map-
ping that is up to 9× faster than a straightforward scalar implementation and
roughly 4× faster than an optimized scalar version. Most of this paper deals
with the technical details of our implementation, such as avoiding branching,
polynomial approximations of the trigonometric operations, etc. We believe
this is of interest to a wide audience, as knowledge about how to write SIMD
code is becoming increasingly important to fully utilize the enormous perfor-
mance available in modern CPUs.

2. Equal-Area Mapping

2.1. Hemisphere

For mapping the hemisphere, we use the concentric map [Shirley and Chiu 97],
which maps concentric squares to concentric circles on the hemisphere, while
preserving fractional area (see Figure 1). For the first sector, i.e., where
φ ∈ [−π4 ,

π
4 ], a point (s, t) in the unit square P = [0, 1]2 is transformed to a

point on the hemisphere H = {(x, y, z) | x2+y2+z2 =1, z ≥ 0} as follows:

(s, t)→ u = 2s− 1
v = 2t− 1 →

r = u
φ = π

4
v
u

→
x = cosφ · r

√
2− r2

y = sinφ · r
√

2− r2
z = 1− r2

. (1)

Similar transforms apply to the other sectors. The z-coordinate in the last
step is equal to z = 1−r2 = cos θ, where θ is the angle from the z-axis. Hence,
sin θ =

√
1−cos2 θ = r

√
2− r2, which explains the equations for x and y.

As noted by Shirley and Chiu, this simple mapping has a number of desir-
able properties. Most importantly, it preserves fractional area, which means a
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Figure 1. The concentric map [Shirley and Chiu 97] transforms concentric squares
in the plane to concentric circles on the hemisphere. The mapping preserves frac-
tional area and has a relatively low distortion.

uniform point distribution in the square will map to a uniform distribution on
the hemisphere. Second, the mapping preserves adjacency, i.e., nearby points
in the square map to nearby points on the hemisphere. Last, the distortion is
relatively well-behaved, which is important in order to reduce aliasing when
sampling functions over the hemisphere.

2.2. Sphere

To get an equal-area mapping of the sphere, we combine the concentric map
with the octahedral map [Praun and Hoppe 03], which is a clever way to “fold”
a square over the sphere. The square is divided into eight triangles, where
the four innermost triangles are mapped to the northern hemisphere, while
the outer four are folded down to cover the southern hemisphere. Thus, each
triangle maps to a quadrant in one of the two hemispheres, as illustrated in
Figure 2. We rotate the concentric map by 45◦ and insert it into the inner
quad of the octahedral map. To the best of our knowledge, this combination
of the two mappings was first used in [Clarberg and Akenine-Möller 08].

Figure 2. The octahedral map [Praun and Hoppe 03] is obtained by folding a
quad into an octahedron, which is projected onto the sphere using an arbitrary
parameterization. Image courtesy of Emil Praun and Hugues Hoppe.
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Figure 3. The concentric map applied to the first quadrant of the octahedral map.
The inner region (yellow) maps to the northern hemisphere, while the outer (blue)
maps to the southern. The lengths a and b are found using simple trigonometry.

The transform from the unit square P to the sphere S = {(x, y, z) | x2 +
y2+z2 =1} is easy to derive. As before, the first step is to transform (s, t) to
a point (u, v)∈ [−1, 1]2. We start by considering the innermost triangle in the
first quadrant, as shown in Figure 3. The lengths of a and b are a = (u+v)/

√
2

and b = (v − u)/
√

2, and the transform to the unit disk is given by

r =
√

2a = u+ v,

φ =
π

4
b

a
+
π

4
=
π

4

(
v − u
r

+ 1
)
, with 0 ≤ φ ≤ π

2
, (2)

where φ is measured from the positive u-axis (hence the addition of π
4 ). The

outermost triangle maps to the southern hemisphere, and its parameterization
is obtained by mirroring the innermost triangle about the diagonal. Here, b =
(v−u)/

√
2 as before, but a differs slightly and is given as a = (2−u−v)/

√
2.

The transform to the unit disk is

r =
√

2a = 2− u− v,

φ =
π

4
b

a
+
π

4
=
π

4

(
v − u
r

+ 1
)
, with 0 ≤ φ ≤ π

2
. (3)

Note that the computation of φ is the same in both these cases, only r differs.
The mapping from the disk to the sphere is the same as the last step of
Equation (1), except that the z-component is negated, i.e., z = −(1−r2), if
we are in the outer triangle. The final mapping is shown in Figure 4, and a
proof of area preservation is given in Section 6.

So far, we have ignored the remaining quadrants. However, following a sim-
ilar reasoning as above, the transforms are easily derived. A straightforward
implementation, similar to Shirley and Chiu’s version for the hemisphere, re-
sults in three levels of if-statements as there are eight different cases (four
quadrants, each divided into two triangles). The main execution cost lies in
this branching, together with the trigonometric operations.
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3. SIMD Implementation

We will now describe how each part of the algorithm can be efficiently written
using the x86 streaming SIMD extensions (SSE). SSE code can be written di-
rectly using inline assembly language instructions, or using compiler intrinsics
(which we use). Carefully hand-optimized assembly code can be faster but
is tedious and error-prone to write. Intrinsics, which is a C/C++ mapping
of the assembly instructions, enable features like compiler optimizations and
automatic register allocation, which make them easier to use. Intrinsics are
also likely to be more forward compatible (e.g., if more registers are added,
the code can, after recompilation, automatically benefit). With SSE, four
floating-point values are processed in parallel, but future-generation CPUs
will likely have wider data paths. As we do not use any horizontal operations,
it is trivial to adapt our implementation to such architectures.

3.1. The Square-to-Sphere Transform

3.1.1. Avoiding Branching

In SIMD code, branching is handled using conditional instructions which set
a bit mask based on the outcome of some comparison. By executing both
branches and selecting the correct result based on the mask using logical op-
erations (and, or, not), the equivalent of a “parallel” if-statement is created.

In our case, there are eight different ways to compute (r, φ), which makes
this approach inefficient. Hence, we take an alternative route and map the
problem to the first quadrant by taking the absolute values of u and v. A
similar approach is used to find r without using any conditional instructions
(we will come back to this in a moment). We use the following:

φ′ =
π

4

(
|v| − |u|

r
+ 1
)
, where φ′ ∈ [0,

π

2
]. (4)

In the last step of Equation (1), we need to compute the sine and cosine of
φ, but we only have φ′ to work with. Using standard trigonometric rules, we
find the following expressions for sinφ and cosφ in each of the four quadrants:

quadrant φ sinφ cosφ
1 φ′ sinφ′ cosφ′

2 π − φ′ sinφ′ − cosφ′

3 φ′ − π − sinφ′ − cosφ′

4 −φ′ − sinφ′ cosφ′
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Based on this, we realize that

sinφ = sign(v) · sinφ′,
cosφ = sign(u) · cosφ′, where sign(x) =

{
+1 if x ≥ 0,
−1 if x < 0. (5)

Fortunately, both the absolute operator needed in Equation (4), and the sign
operator used in Equation (5), can be efficiently implemented using simple
logic instructions. In the IEEE-754 standard for floating-point numbers, the
most significant bit (MSB) represents the sign, where 0 means positive and
1 means negative. Hence, taking the absolute value is simply a matter of
and’ing by the bit mask 01 . . . 1b = 0x7F . . .F, and changing the sign can be
done by xor’ing with the sign-bit: 10 . . . 0b = 0x80 . . . 0. More formally,

|u| = u & 0x7FFFFFFF,
sign(u) · x = (u & 0x80000000)⊕ x,

where ⊕ represents xor and & means and. In practice, we use the andnps
instruction (and a value with the logical inverse of another) to avoid loading
two different constants from memory as 0x80 . . . 0 is the inverse of 0x7F . . .F.

We apply a similar reasoning to find r (Equations (2) and (3)) and the
z-coordinate (Equation (1)) without branching. First, we compute the signed
distance d along the diagonal in the first quadrant, so that d=1 at the origin,
d=−1 at the upper-right corner, and d = 0 halfway between. By taking the
absolute value, we can thus compute r as 1 − |d|. Also note that a positive
distance (inner triangle) represents points on the northern hemisphere, while
negative values map to the southern hemisphere. Hence, the sign of d can be
used to set the sign of z. We arrive at the following:

d = 1− (|u|+ |v|), and
r = 1− |d|,
z = sign(d) · (1− r2).

3.1.2. Avoiding Division-by-Zero

In the center and the four corners of the square, r is exactly zero, and Equa-
tion (4) results in a division-by-zero. To get a robust solution, we set φ′ = 0
if r = 0. This is a valid behavior as these points map to the south and north
poles, respectively, where the value of φ′ does not matter. Using intrinsics,
the test can be compactly written as follows:

mask = _mm_cmpneq_ps(r, ZERO); // compare r to zero
phi = _mm_and_ps(phi, mask); // clear phi to 0..0 if r=0

The cmpneqps (compare not equal) instruction compares r with a predefined
zero constant, and based on the result, φ′ is either cleared to zero or kept un-
changed. This is valid since the bit sequence 0 . . . 0 also represents a floating-
point zero in the IEEE-754 standard.
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3.1.3. Approximating the Trigonometric Operations

Using simple logical operations, we map the problem to the first quadrant, and
from there, sign extension moves the result back to the correct quadrant. The
only remaining difficulty is the trigonometric operations needed to compute
x and y in Equation (1). As sin and cos are not part of the SSE instruction
set, polynomial approximations have to be used. Table-based approaches are
not recommended as multiple values are computed in parallel, which means
multiple memory accesses at different locations and bad cache performance.
The most straightforward approach is to truncate the Taylor series for sine
and cosine to an arbitrary number of terms:

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . . and cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . . .

The Taylor series are obtained by expanding the power series around the
point x=0. However, the absolute error grows the further from x we get. In
our case, the input is in the range φ′ ∈ [0, π2 ]. If we truncate the expression
for sinx after, e.g., the seventh-degree term, we get a maximum absolute
error of 1.57 · 10−4, which is quite large. The power series can be expanded
around a point somewhere in the middle of the interval, but the basic problem
remains—the error increases quickly as we move away from the chosen point.

A better approach is to use the minimax polynomial approximation, which
is the polynomial that minimizes the maximum approximation error. This has
a number of interesting properties. The Chebyshev equioscillation theorem
(see, e.g., [Hart 78]) states that for a minimax polynomial of degree n over
an interval a ≤ x ≤ b, there exist at least n+2 points in the domain where
the error between the polynomial and the approximated function oscillate in
sign and are of equal magnitude. Thus, the minimax polynomial gives us a
well-controlled error over the entire range. The Remez algorithm [Fraser 65]
can be used to find the polynomial, but as the details are quite technical, we
use the implementation provided by the numapprox package in Maple. As an
example, the seventh-order minimax approximation of sinx for x ∈ [0, π2 ] is

sinx ≈ −1.947 · 10−8 + 1.00000155x− 0.000020227x2 − 0.16657x3

−0.00023977x4 + 0.0086393x5 − 0.00020575x6 − 0.00013731x7,

with a maximum error of only 2.00 · 10−8, as compared to 1.57 · 10−4 for the
Taylor approximation of the same order. However, note that the evaluation
is more expensive, as every term has a nonzero coefficient (seven vs. three
mul’s). To reduce the complexity, we set coefficients for terms of even power
to zero, as these are relatively small anyway. This is done by rewriting the
problem as

sinx ≈ xp(x2)
y=x2

⇐⇒
sin
√
y

√
y
≈ p(y).
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After a change of variables, y = x2, we can find a third-order polynomial
p(y), which after insertion on the left side gives a seventh-order approxima-
tion of sinx with all even coefficients set to zero. Note that the range used
for the minimax optimization must be updated to y ∈ [0, π

2

4 ] as x ∈ [0, π2 ].
The maximum error is now 1.18 · 10−6 at a cost of 4 mul’s, which is a good
compromise.

In our case, we need to compute both sinφ′ and cosφ′. The first thing
that comes to mind is to approximate only the sine, and then apply the rule
cosx=

√
1− sin2 x to find the cosine. However, the approximation of sinx,

which we call f(x), results in an error εs(x) = sinx−f(x). By analyzing εs(x)
over the range 0 ≤ x ≤ π

2 , we find that the largest error is εs = 1.18 · 10−6 at
x = π

2 . The error in the cosine approximaton at this point would be

|εc| = | cosx−
√

1− (sinx− εs)2| =
√
εs(2− εs) ≈

√
2εs = 0.0015,

which is too large. Hence, we have to perform two separate polynomial ap-
proximations (sine and cosine) in order to reach an acceptable precision.

Last, we note that the computation of φ′ in Equation (4) includes a mul-
tiplication by π

4 . By rescaling the coefficients of the minimax polynomials so
that we approximate sin(π4x) rather than sinx, and similarly for the cosine,
this extra multiplication can be avoided (without changing the approximation
error as we only rescale the input). Finally, we arrive at

sin(
π

4
x) ≈ 0.785398x− 0.0807407x3 + 0.00248440x5 − 0.0000341486x7,

cos(
π

4
x) ≈ 0.999993− 0.308371x2 + 0.0157863x4 − 0.000298371x6,

where x ∈ [0, 2] and the coefficients have been rounded to 6 significant digits
(see the source code for full precision).

3.2. The Sphere-to-Square Transform

The inverse transform, i.e., the mapping of vectors on the sphere to points in
the unit square, is useful in a number of applications. The main steps are as
follows.

1. Map the problem to the first quadrant by taking the absolute of (x, y).
2. Compute φ′ from (x, y) using atan, and compute r from z.
3. Convert (r, φ′) to (u, v) in the first quadrant.
4. Flip the sign bits of (u, v) to move the point to the correct quadrant.
5. Map points from [−1, 1]2 to the unit square [0, 1]2.

As many parts of the implementation resemble those described in Section 3.1,
we will only briefly go over the details.
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3.2.1. Approximating the Arctan Function

Our input is a normalized 3D vector (x, y, z). To compute φ′, which is the
rotation in the first quadrant of the xy-plane, we start by computing the
absolute values |x| and |y|. The rationale for this is the same as before,
i.e., to move the problem to the first quadrant. Then, the rotation is found
using φ′= atan |y||x| . Since there is no SSE version of atan, we have to use a
polynomial approximation here as well. However, it proved hard to find an
approximation that yields enough precision for all inputs, as |y||x| → +∞ as
|x| → 0. Therefore, we apply the rule

atan α =
{

atan α if α < 1,
π
2 − atan 1

α if α ≥ 1, (6)

to reduce the input range to [0, 1], i.e., we let |x| and |y| switch places if
|x| < |y|. Using the SSE instructions minps (minimum of two values) and
maxps (maximum of two values), α can be efficiently computed as

α =
min(|x|, |y|)
max(|x|, |y|)

, 0 ≤ α ≤ 1.

With this reduced range, it is easier to find a good minimax approximation.
We strive for about the same precision as in the approximations of sine and
cosine. For the atan function, rational minimax approximations are known
to give low errors. In our case, a third- or second-order approximation would
be sufficient (maximum error of 7.28 · 10−6). However, the necessary division
is rather slow and has a long latency. Thus, we opted for a sixth-order poly-
nomial approximation, which avoids the division and uses the same number
of coefficients. As we will see later, it is useful to include a multiplication by
2
π so that the approximation returns an angle in [0, 1

2 ] rather than [0, π4 ]. Our
final approximation is (note α ∈ [0, 1])

2
π

atan α ≈ 4.06531 · 10−6 + 0.636227α+ 0.00615523α2 − 0.247326α3 +

0.0881627α4 + 0.0419157α5 − 0.0251427α6,

and the maximum error is 4.07 ·10−6. Last, we need to evaluate Equation (6)
(scaled by 2

π ). This can be done using a compare instruction followed by four
logic/arithmetic instructions, as follows:

__m128 mask = _mm_cmplt_ps(x, y); // mask = x<y ? 11..1 : 0
__m128 c = _mm_and_ps(mask, ONE); // c = x<y ? 1.0 : 0.0
mask = _mm_and_ps(mask, SIGNBIT); // mask = x<y ? 10..0 : 0
phi = _mm_xor_ps(phi, mask); // phi = x<y ? -phi : phi
phi = _mm_add_ps(c, phi); // phi = x<y ? 1-phi : phi
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3.2.2. Finding the Radius

The computation of r differs depending on whether we are in the northern or
the southern hemisphere (z ≥ 0 or z < 0). By rearranging the terms in the
equations for z given in Section 2.2, we find that

r =
{ √

1− z if z ≥ 0√
1 + z if z < 0

⇐⇒ r =
√

1− |z|.

Again, by taking the absolute value, we avoid branching.

3.2.3. Mapping from Disc to Square

The computation of the point (u, v) in the square, corresponding to the point
(r, φ′) in the disc, is relatively straightforward. We assume, for now, that
the point lies in the “inner” triangle (northern hemisphere). By inverting the
expressions for r and φ (Equation (2)), we can compute (u, v) as{

r = u+ v
φ′ = π

4

(
v−u
r + 1

)
= . . . = π

2
v
r

⇐⇒
{
v = r · 2

πφ
′

u = r − v.

Then, if we are in the southern hemisphere (z < 0), the point (u, v) is reflected
about the diagonal in the square as follows:

u′ = 1− v and v′ = 1− u.

This is implemented using a compare instruction followed by logic/arithmetic
instructions similar to what we did in Section 3.2.1. The next step is to sign-
extend (u, v) based on the original signs of x and y, i.e., we take the point
from the first quadrant to its correct position. Finally, we transform the point
to the unit square, [−1, 1]2 → [0, 1]2, which completes the transform.

3.3. Precision

The approximations of the trigonometric operations were chosen to provide
sufficient precision for all but the most demanding applications. To measure
the approximation errors, we transformed a large number (109) of random
points in the square to the sphere, using both the “exact” scalar version of the
algorithm (using built-in trigonometric instructions) and our SSE-optimized
version. The error was measured as the Euclidean distance in 3D between
the resulting points on the sphere. As the error is very small, this measure is
approximately the same as the arc length in radians on the unit sphere.

For the inverse transform, a large number of points over the sphere were
mapped to points in the square. To measure the error, these 2D points were
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transform maximum error average error

square→sphere 7.49 · 10−6 3.37 · 10−6

sphere→square 2.43 · 10−4 3.19 · 10−6

Table 1. The maximum and average approximation errors of the forward and
inverse transforms. The errors were measured as the Euclidean distance between
the points on the unit sphere representing the exact and approximated directions.

transformed back to the sphere using the exact algorithm, and the Euclidean
distance was measured as before. The maximum and average errors are given
in Table 1. The average error is on the order of 3 · 10−6 in both directions.
As a comparison, the diagonal of a single pixel in a 4096×4096 image has a
shortest length of 7.7 ·10−4 when mapped to the sphere.1 The average error is
thus only about 0.3% of the edge length of a pixel in a 4k map. The maximum
error is well-behaved in the square-to-sphere transform. In its inverse, there
are a few bad cases where the error goes up to about 1/3 of a pixel (again
assuming a 4k map), even though the average error is low. If a higher precision
is required, it is easy to increase the order of the arctan approximation.

4. Boundary Symmetry

4.1. Tiling

Each edge of the octahedral map is folded about its midpoint so that its two
endpoints meet. This boundary symmetry [Praun and Hoppe 03] is useful as
it means the map can be tiled by mirroring the mapping about both its axes
for every other occurrence,2 as shown in Figure 4(c). Hence, look-ups for
coordinates outside the [0, 1)2 range are trivial, and interpolation across the
edges of the map is well-defined and without singularities.

For a map with N×N pixels, where N = 2k is a power of two, the coor-
dinate transform from a point (s, t) to integer pixel coordinates (x, y) can be
efficiently done using logic operations. We scale the input by N and truncate:

x = bs ·Nc and y = bt ·Nc,

where b.c is the floor operator. The bits 0, . . . , k−1 of the binary representation
of x and y hold the pixel coordinates within the square, while bits k, k+1, . . .
indicate which repetition of the tiling we are in. Mirroring needs to be done
when either x or y is at an odd number of repetitions. We can thus xor x

1With a map of N×N pixels, there are 2N pixels crossing the equator, while the cir-
cumference of the unit sphere is 2π. Hence, the shortest diagonal is of length π/N .

2This is a variant of the “mirrored repeat” tiling used by OpenGL.



i
i

“jgt” — 2008/11/13 — 20:24 — page 64 — #12 i
i

i
i

i
i

64 journal of graphics tools

(a) (b) (c)

Figure 4. Our mapping transforms square pixels (a) into curvilinear quads on the
sphere (b), while preserving fractional area. The boundary symmetry [Praun and
Hoppe 03] of the octahedral map is shown in (c). The rightmost image is courtesy
of Emil Praun and Hugues Hoppe.

and y and look at the kth bit to decide whether to mirror or not:

m = (x⊕ y) & N, if
{
m = 0 → do not mirror,
m 6= 0 → mirror.

The final positions are computed as (x, y) mod N , followed by x=(N−1)−x
(and similar for y) if m 6= 0. The mod-operator translates to an and by N−1,
which is the bit mask with 1’s at the positions 0, . . . , k−1 and 0’s elsewhere.

4.2. Bilinear Interpolation

For bilinear interpolation, the four pixels nearest to the point (s, t) must be
accessed, and their respective interpolation weights computed. In a map of
N×N pixels, we define each pixel’s center to be at (x+0.5, y+0.5)/N , where
(x, y) are the integer coordinates of the pixel. To find the coordinates of the
top-left pixel, we scale (s, t) by N and offset by 0.5, as follows:

x = bs ·N − 0.5c and y = bt ·N − 0.5c. (7)

The fractional distance (αx, αy) from the top-left pixel’s center is given by
αx = (s ·N − 0.5)−x (similar for αy). Based on this, the coordinates and the
weights for the bilinear interpolation are given in Table 2.

As the coordinates may lie outside the {0, . . . , N−1} range, we perform
the wrapping described in Section 4.1 on each of the four pixels. For this
purpose, we have written a code snippet that computes all four pixel positions,
and their respective weights, in parallel using SIMD instructions. We store x
and y as 16-bit integers and pack all eight combinations into a single 128-bit
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pixel x-coordinate y-coordinate weight

0 x y (1− αx) · (1− αy)
1 x+ 1 y αx · (1− αy)
2 x y + 1 (1− αx) · αy

3 x+ 1 y + 1 αx · αy

Table 2. Coordinates and weights for the bilinear interpolation.

XMM register. Using SSE2 integer instructions, we perform the wrapping on
all eight values in parallel. Finally, the coordinates are unpacked into 32-bit
integers and the pixel addresses computed using bit shifts.

The lack of a floor operator in the SSE/SSE2 instruction set presents a
minor difficulty. One option is to use cvttps2dq (convert float to int with
truncation), but this gives unexpected results for negative inputs as it trun-
cates towards zero. Instead, we rewrite the floor operator using rounding:

bxc = round(x− 0.5).

The cvtps2dq (convert float to int) instruction performs correct rounding (as-
suming the rounding control bits in the MXCSR register have been correctly
set up). Thus, Equation (7) can be rewritten:

x = round(s ·N)− 1 and y = round(t ·N)− 1.

In total, we use 27 SSE/SSE2 instructions to compute all pixel indices and
weights. As we use 16-bit integers, the map size is limited to 64k × 64k pixels.

5. Performance

We have implemented three different versions of the forward and inverse trans-
forms: 1) a straightforward scalar version with branching and trigonometric
operations, 2) an optimized scalar version using the tricks described here, and
3) a vectorized version using SSE instructions to transform four points/vectors
in parallel. To evaluate the performance, we have run the algorithms on sets
of N random 2D points in the unit square and N random 3D vectors on the
sphere, respectively, using a large number of iterations.

As the computations are performed repeatedly on the same data, we largely
avoid cache effects and measure pure computational performance. For the
larger datasets, the memory bandwidth limits the performance slightly. The
total memory use for each test is 20N bytes, and all timings are reported as
clock cycles per single transform. Thus, transforming a set of N points/vectors
takes approximately Nt clock cycles, where t is the reported timing. Note that
N has to be a multiple of four, as we use 4-wide SIMD code. All tests were
executed on an Intel 45nm quad-core “Penryn” CPU running at 3.2GHz using
one core, and the code was compiled using gcc 4.0.1 on Mac OS X 10.5.2.



i
i

“jgt” — 2008/11/13 — 20:24 — page 66 — #14 i
i

i
i

i
i

66 journal of graphics tools

N scalar standard scalar optimized SSE optimized

256 121.9 77.9 18.8
4k 156.2 77.9 18.7
64k 160.7 78.0 18.7
1M 162.4 80.4 22.8
16M 162.5 80.5 22.8

Table 3. Execution times of our three different implementations of the square-to-
sphere transform, using datasets of N 2D points as input. The timings are reported
as number of clock cycles per transformed point.

The performance of the square-to-sphere transform is summarized in Ta-
ble 3. The vectorized version is a factor of 3.5×–4.2× faster than the optimized
scalar code and 6.5×–8.6× faster than the standard version. The numbers for
the inverse transform (sphere to square) are listed in Table 4. Here, the
speed-up is a factor of 4.6×–5.0× compared to the optimized scalar code and
5.0×–6.4× compared to the standard version. Theoretically, SSE-optimized
code should be up to a factor of 4× faster than a corresponding scalar im-
plementation, as it uses 4-wide instructions. However, the differences in the
instruction sets make it possible to exceed this limit. For example, branching
is avoided by using compare instructions together with logical operations.

The achieved speed-up can make a significant difference. As an example,
consider ray tracing with 256 rays/pixel, with sampling directions computed
in the unit square and mapped to the sphere using our transform. With a
fast ray tracer capable of 5 million rays/second on a single core, the total
rendering time for a 1 megapixel image would be about 61.0 seconds, using
the standard scalar transform. With the SIMD version, the rendering time
goes down to 52.7 seconds, a 13.5% improvement.

N scalar standard scalar optimized SSE optimized

256 114.7 106.9 23.0
4k 145.1 115.8 23.2
64k 147.8 115.7 23.2
1M 149.1 117.7 25.6
16M 149.0 117.5 25.6

Table 4. Execution times for the inverse transform, i.e., sphere-to-square. The
timings are reported as number of clock cycles per transformed vector.

6. Proof of Area Preservation

Here, we present a formal proof that the described mapping, P : (u, v) →
(x, y, z), from the square to the sphere, indeed preserves fractional area. The
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magnitude of the vector product of the partial derivatives of P with respect
to u and v gives the area-distortion, dA, of the transform:

dA =
∥∥∥∥∂P∂u × ∂P

∂v

∥∥∥∥ =

∥∥∥∥∥∥
yuzv − zuyv
zuxv − xuzv
xuyv − yuxv

∥∥∥∥∥∥ ,
where we have used the shorthand notation xu for ∂x/∂u, and so on. We
consider the inner triangle of the first quadrant in the square (u, v) ∈ [−1, 1]
(see Figure 3) and expand the expressions for the partial derivatives of (x, y, z)
with respect to u and v. Due to symmetry, the same proof applies to the
other parts of the map. Using the chain rule, and noting that ru=rv =1 (as
r = u+ v), we get

xu = xrru + xφφu = xr + xφφu,
xv = xrrv + xφφv = xr + xφφv,

(8)

with similar expressions for the y and z components. Combining Equation (6)
and (8) and simplifying, we obtain

dA =

∥∥∥∥∥∥
(φv − φu)(yrzφ − zryφ)
(φv − φu)(zrxφ − xrzφ)
(φv − φu)(xryφ − yrxφ)

∥∥∥∥∥∥ . (9)

Further, the partial derivatives of φ (Equation (2)) can be written as

φu = −π
2

v

(u+ v)2
and φv =

π

2
u

(u+ v)2
,

which gives

φv − φu =
π

2
1

u+ v
=

π

2r
. (10)

Now, we are ready to write the expressions for the partial derivatives of
(x, y, z) with respect to r and φ:

xr = 2(1−r2)√
2−r2 cosφ xφ = −r

√
2− r2 sinφ,

yr = 2(1−r2)√
2−r2 sinφ yφ = r

√
2− r2 cosφ,

zr = −2r, zφ = 0.

(11)

Applying Equation (10) and (11), Equation (9) reduces to

dA = π

∥∥∥∥∥∥
yφ
−xφ

1− r2

∥∥∥∥∥∥ = π
√
y2
φ + (−xφ)2 + (1− r2)2 = . . . = π.
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Hence, the fractional area grows by a factor of π when we go from the square
(u, v) ∈ [−1, 1] to the sphere S. This is consistent with our expectations as
the area of the square is 4, and the surface area of the unit sphere is 4π.
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