Volume 0 (1981), Number 0 pp. 1-11

Practical HDR Texture Compression

Jacob Munkberg Petrik Clarberg Jon Hasselgren Tomas Akenine-Moller

Lund University

Abstract

The use of high dynamic range (HDR) textures in real-time graphics applications can increase realism and pro-
vide a more vivid experience. However, the increased bandwidth and storage requirements for uncompressed HDR
data can become a major bottleneck. Hence, several recent algorithms for HDR texture compression have been
proposed. In this paper, we discuss several practical issues one has to confront in order to develop and implement
HDR texture compression schemes. These include improved texture filtering and efficient offline compression.
For compression, we describe how Procrustes analysis can be used to quickly match a predefined template shape
against chrominance data. To reduce the cost of HDR texture filtering, we perform filtering prior to the color trans-
formation, and use a simple trick to reduce the incurred errors. We also introduce a number of novel compression
modes, which can be combined with existing compression schemes, or used on their own.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Texture; 1.4.2 [Image Pro-
cessing and Computer Vision]: Compression (Coding); E.4 [Coding and Information Theory]: Data compaction

and compression

1. Introduction

A general trend in computer architecture is that computing
power growth is much faster than the corresponding growth
in memory access speeds [Owe05]. This implies that the
available memory bandwidth should be regarded as a scarce
resource and be exploited as best as possible. One way is to
use different compression techniques to reduce the required
memory bandwidth. For graphics processing units (GPUs),
there are many types of compression, such as buffer com-
pression (e.g., depth, color, and stencil), vertex compression,
and texture compression.

The focus in this paper is on ftexture compression (TC),
where a texture is simply a read-only image. A texture is
stored in compressed form in memory, and when the GPU
requests access to a small part of the texture, the desired part
is sent in compressed form over the bus. The GPU then de-
compresses the data. The pixels in a texture can be accessed
in any order, any number of times, and hence it is of utter-
most importance to provide random access in constant time.
This has a number of implications, including that the major-
ity of TC schemes operate on blocks of pixels (e.g., 4 X 4),
and compress such a block to a fixed number of bits (e.g., 4

(© The Eurographics Association and Blackwell Publishing 2008. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

bits per pixel). In general, this also means that TC schemes
are lossy.

High dynamic range (HDR) images [RWPDOS5] have
had a big impact on the computer graphics community.
Lately, these are used as textures in real-time rendering
as well, and therefore, methods for HDR texture com-
pression [MCHAMO06, RAI06, WWS*07] have been devel-
oped. Roimela et al. [RAIO6] try to minimize the hardware
cost, and propose a simplified color space. They subsam-
ple chrominance, and use a quick floating-point trick to con-
vert to approximately logarithmic luminance. In a recent pa-
per [RAIOS8], they extend the algorithm with a more com-
pact chrominance encoding and higher luminance fidelity.
Munkberg et al. [MCHAMO6] also develop a new compres-
sion algorithm, which uses an S3TC-like [INH99] encod-
ing for the luminance, and introduce shape transforms for
flexible chrominance encoding. All of these methods com-
press 4 x 4 pixel blocks down to eight bits per pixel (bpp).
Wang et al. [WWS™*07] propose an algorithm based on exist-
ing texture compression hardware, rather than targeting new
hardware mechanisms, but only achieve a compression rate
of 16 bpp. Some details of these schemes will be discussed
in later sections.

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

In this paper, we bring to light several practical issues
when dealing with HDR texture compression. To evaluate
the quality of a compression algorithm, an error metric has to
be used. However, standard error metrics are not suitable for
HDR data due to the larger dynamic range and higher pre-
cision of floating-point numbers. A few HDR error metrics
have been proposed, although more work needs to be done in
this area. Section 2 gives a brief review of existing metrics.
Similarly, color spaces must be defined with HDR data in
mind so that efficient compression is achieved, which often
means that a non-linear color space is preferred. In Section 3,
we review the color spaces currently used for HDR texture
compression. The use of non-linear color spaces compli-
cates texture filtering, as each fragment must be converted
to RGB-space prior to filtering for correct results. In Sec-
tion 4, we introduce a novel algorithm for texture filtering in
non-linear color spaces. This is important as it reduces the
cost of hardware filtering.

To improve the compression quality, Section 5 introduces
anew algorithm with better quality than previous algorithms
at 8 bpp. Our algorithm builds on the method of Munkberg
et al. [MCHAMO6], but adds a novel compression mode fo-
cused on improving the chrominance precision. In addition,
several other ideas on HDR texture compression algorithms
are described in Section 6. The implementation of our codec
is discussed in Section 7, where the details of how we use
Procrustes analysis and clustering are presented for the first
time. Furthermore, we use a non-linear optimization trick
for improved chrominance quality and we analyze the de-
sired precision for luminance. We compare all existing algo-
rithms, including our new HDR TC scheme in Section 8, and
finally we offer some conclusions in Section 9.

2. HDR Error Metrics

When you cannot foresee or predict the usage of an HDR
texture, you need to make sure the accuracy of every value,
regardless of its absolute magnitude, is preserved as well as
possible. For example, a very dark region can become bright
and details can appear after tone-mapping. Similarly, the de-
tails of a very bright region can become visible if the ex-
posure is low. Standard LDR error metrics are therefore not
suitable. In this paper, we use three HDR error metrics: the
logarithmic error, multi-exposure PSNR, and HDR-VDP.

Xu et al. [XPHOS] compute the root mean square error
(RMSE) of the compressed image in the log[RGB] color
space. More formally, if (f,g,@) denotes the compressed
texel color and (r,g,b) is the original color, the error is de-
fined as:

NN

(e G o () 6o ()

where N is the number of pixels in the texture.

N

The multi-exposure PSNR (mPSNR) error measure com-

putes the standard mean square error for a range of tone-
mapped exposures of the HDR image, and averages them
together. Then the standard formula for computing peak
signal-to-noise ratio (PSNR) is applied. For details, see
Munkberg et al. [MCHAMO06]. Roimela et al. [RAIO8] com-
pute the PSNR on the L* and a*b* channels in the CIE 1976
L*a*b* color space with the motivation that it is perceptu-
ally linear.

HDR-VDP [MDMSO05] is an extension of the visual dif-
ference predictor, which finds perceived differences over the
dynamic range of the image. The current implementation
only works on the luminance channel, so perceived chromi-
nance artifacts are not detected.

3. HDR Color Spaces

In this section, we will present the color spaces used in previ-
ous HDR texture compression schemes, and shortly discuss
their characteristics.

3.1. LogYuv

Munkberg et al. [MCHAMOG6] use a logYuv color space with
logarithmic luminance and two chrominance channels:

Y = weR+wgG+wpB

_ B R
(Y7ﬁ717) = (10g2Y7Wb?7Wr?> (2)
(R,G,B) = (ivzy,i(ua*v)zy,iﬁzy)
Wy Wg Wp

The luminance channel is encoded as a weighted combina-
tion of the RGB channels, with weights according to the Rec.
601 [Poy03] standard. By storing log-luminance, ¥ =log, Y,
the maximum relative luminance error can be effectively
bounded over the entire dynamic range. The two chromi-
nance channels are constructed to be in the [0,1] interval.
This gives a decorrelated and compact representation of
HDR texture data, with HDR information concentrated to
the luminance channel. This color space is used in the pro-
posed format in Section 5 of this paper.

A minor issue with logarithm-based luminance encodings
is that entirely black pixels, RGB=(0,0,0), need to be treated
with care, as logx — —oo when x — 0T A simple solution
is to clamp the log-luminance to the smallest representable
value, ¥,,;,. However, in some cases it may be desirable to
have a true (0,0,0) black level. A possible solution, which
we use, is to define the inverse luminance transform as:

if ¥ =Y,

0
Y = z 3
{ 2¥ | otherwise. S

However, it should be noted that true black pixels rarely oc-
cur in natural images, and only sometimes in artificial im-
ages.

(© The Eurographics Association and Blackwell Publishing 2008.

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

3.2. Roimela et al.

Roimela et al. [RAIO6] use a different transform in order
to provide very efficient decoding. The forward and inverse
transforms are shown below:

7 R+2G+B

4
van - (7.8 B
(Y7M7V) - (Y7 4y74y) (4)

(R,G,B) = Y(4ii,2(1 — ii —), 47)

Compared with logYuv of Munkberg et al. [MCHAMO6],
the luminance is here encoded with simplified weights with
hardware-friendly constants. Again, the color space decorre-
lates the HDR data in one luminance and two chrominance
channels.

3.3. LUVW

Wang et al. [WWS*07] use a color space called LUVW with
four channels, where the luminance information is concen-
trated to the L channel as follows:

L= +VR+G*+B?
R G B
uvw)=|-,—,— 5
())) <L7 L) L) ()
The L channel is the length of the RGB vector, and the UVW
channels are divided by L to get three values in the range
[0,1]. This is not as compact as the previous approaches, as

four channels are stored, but allows for simplified texture
filtering on existing hardware.

3.4. Log[RGB|

The log[RGB] color space [XPHO5] is simply defined as the
logarithm of the R, G and B components:

(R',G',B') = (log, R, log, G,log, B) (6)

The motivation is that quantization gives a constant, or
nearly constant, relative error over the entire dynamic range.
This makes it a good choice for measuring the error in each
color channel. However, this transform often fails to decor-
relate the image data, so all channels needs to be stored with
equal resolution, which makes it less suitable for compres-
sion algorithms.

4. Texture Filtering

Texture filtering is crucial in real-time graphics, and all mod-
ern GPUs support fast bilinear and trilinear filtering. As the
most widely used color space on GPUs is RGB, a filtered
texture lookup is expected to perform a linear weighting of
each of the R, G, and B channels. In the one-dimensional
case, we have:

r=(l1—o)r +or, @)

(© The Eurographics Association and Blackwell Publishing 2008.

for linear interpolation between the red components, 7| and
2, of two texels (similarly for green and blue).

For compressed HDR textures using a non-RGB space,
texture filtering can be performed before or after convert-
ing to RGB. In post-conversion filtering, we have to per-
form multiple color transforms for each filtered lookup, e.g.,
four Yiiv — RGB transforms in a bilinear two-dimensional
lookup, which may harm performance, or increase the cost
in terms of extra hardware for duplicated color space trans-
form units. However, filtering before conversion gives devi-
ating results, as the currently used HDR color spaces (Sec-
tion 3) involve a non-linear transform, i.e., division by the
luminance. According to Wang et al. [WWS*07], this is a
minor issue as most blocks have a small dynamic range.
However, in areas with sharp luminance transitions, we have
observed clearly visible artifacts (color shifts). See Figure 2
for an example. We propose a simple way to reduce the prob-
lem.

Consider the logYuv color space in Section 3.1. The red
channel is reconstructed as r = vY /w,, and correct post-
transform filtering yields:

1
r:(l—(x)r1+ocr2:W—[(l—(x)le1+(X\72Y2]. 8)
r

If we instead interpolate the Y, i, and ¥ components prior to
the color transform, i.e., ¥ = (1 —)Y + oY, and similarly
for & and v, we get:

1 1
r=—vw = —((1—a)v +a) (1 —a)Y; +ols)
Wy Wr
1
= [(1—0)7 Y, +omYs] + &,)
-

where the error term, €, depends on the difference between
the two luminance values, AY =Y, — Y7, as follows:

g = Wioc(a— 1)(Fy — 51)AY. (10)

This error is due to the non-linearity of the color trans-
form. However, we note that the error goes to zero as AY
gets smaller. We can exploit this to improve the interpolation
quality by normalizing the luminance values so that Y| ~ Y,.
By shifting the bits of ¥, to make it roughly the same magni-
tude as Y1, we drastically reduce the error. At the same time,
we must also shift the bits of ¥, in the opposite direction
to keep the term ¥,Y, constant. The net effect is a change of
variables to ¥ = Y5 /c and ¥ = c¥,, where ¢ = 2*. The num-
ber of bits to shift, &, is chosen by comparing the magnitudes
of Y7 and Y.

Consider the example of interpolating between two texels
with v; = 0.25, ¥, = 0.1, Y] = 1, and Y, varying between
0.1 and 10. The absolute error in the red component with o
arbitrarily set to 0.5, grows from roughly —0.1 to over 1.1
as the luminance Y, increases. This is shown as the blue line
in Figure 1. With our luminance normalization, the error is
much smaller (red line).

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

[N

e o 9o
o » -~

interpolation error

<)
©
N
7

0.2
10 10° 10

Figure 1: Example of the interpolation error (blue line) in-
troduced by performing texture filtering in the log-luminance
color space prior to color transformation. By normalizing
the luminance values with simple bit shifts, we effectively re-
duce the error (red line).

With our color transform (Section 3.1), the green com-
ponent is computed by subtraction of the two chrominance
channels: G = (1 — it — V)Y /w,. This causes a minor diffi-
culty, as this formula is no longer valid if we rescale Y, it, and
V. One solution is to replace the constant 1 with the bit shift
factor, ¢ = 2, in the transform, i.e., G = (c— i — V’)Y’/wg.
Note, as ¢ may differ for the two pixels, we need to interpo-
late its value: ¢ = (1 — at)cy + dicp. This adds a small cost,
but the savings compared to performing a full color trans-
form for all pixels prior to filtering should be significant. In
this discussion, we have studied the one-dimensional case,
but the theory extends naturally to bilinear and trilinear fil-
tering, as well as higher dimensions. We show comparison
images with and without this pre-filter correction in Figure 2.
These images were first compressed using our algorithm and
then bilinearly filtered with and without the texture filtering
correction discussed above.

5. Improved Shape Transform Compression

In this section, we extend the HDR compression algorithm
based on shape transforms [MCHAMO6] (see also Sec-
tion 7.1) to allow for more freedom in the chrominance rep-
resentation. The original algorithm quantizes the chromi-
nance information aggressively to allocate enough space for
a high quality luminance encoding. The ratio between bits
spent on luminance and chrominance is 5 : 3. In most cases,
this is a preferred bit layout, as luminance artifacts are more
visually disturbing. However, in regions with smaller lumi-
nance range but large chrominance variations, a different bit
layout may be more appropriate.

In the original encoder, each luminance value was en-
coded with 4 bits selecting a value linearly interpolated be-
tween two 8-bit end points, resulting in 80 bits for a 4 x 4
block of pixels (16 x 4 +2 x 8 = 80). Reducing the lumi-
nance resolution to 3 bits, we can encode the luminance for

Ve .
7+

RGB-filtered YUV-filtered diff image YUV-filtered with correction
RGB-filtered YUV-filtered YUV-filtered with correction

Figure 2: Bilinear filtering examples. The upper row shows
a filtered cutout from the 'memorial’ image with difference
images to highlight the errors. In natural images, pixel-
sharp edges are rare, and filtering artifacts are not very vi-
sually disturbing. In the example, there are no clearly visi-
ble differences, so we present only difference images (x10)
for this example. The lower row shows a worst-case bilin-
ear filtering scenario (after tone-mapping) where there are
sharp color and luminance transitions. Here the artifacts
are clearly visible. The four colors are (0.1,0,0), (0,10,0),
(0,0,1000) and (1,0,0). As can be seen, our texture filtering
correction reduces the errors for both examples.

a4 x4 block in 16 X 3416 = 64 bits. On a 128-bit budget,
this leaves 64 bits to encode chrominance, resulting in a ratio
1 : 1 between luminance and chrominance. Figure 3 shows
the bit layout of the two modes. In the original paper, one
source of artifacts is the chrominance subsampling, forcing
nearby texels to have the same encoded chrominance. With
an increased chrominance bit budget, we avoid subsampling
and allow for higher chrominance detail.

By combining these two modes, we have an algorithm that
is more flexible and handles difficult chrominance regions
better than before. In practice, we need one bit for indicat-
ing which of these two modes is used per block. We remove
the option of non-linear luminance distribution from the for-
mat [MCHAMO6], and use that bit. The hardware cost of our
algorithm is very modest as many parts of the decoder can
be shared between the two modes. It is mostly a matter of
reallocating the existing resources required for the original
algorithm. Our new format is also more suitable for LDR
textures, as they have a limited luminance range. A standard
test suite of images is evaluated in Figure 10.

A remaining difficult case for the combined algorithm
is slow chrominance gradients. Each block has only four
chrominance values to choose from, resulting in a lim-
ited color resolution. It can be argued that most gradi-
ents in natural images are due to luminance changes from

(© The Eurographics Association and Blackwell Publishing 2008.

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

shadow/occlusion and these are covered by the high lumi-
nance resolution of the algorithm. However, one can con-
struct examples where the limited chrominance resolution is
obvious. To handle these cases, one approach is to include
a high resolution variant of S3TC, using a line in RGB or
logYuv space with higher end point resolution and more val-
ues along the line. This is further described below, but this
mode is not included in our results presented in Section 8.

|<7 luminance 4>|<— chrominance —>|
R TTTTTTTTTT T T T 1 T T
2-8

16-4 2 2-(8+7) 8-2
base per-pixel mode base per-block
luminances indices bits colors indices

|<7 luminance —>|<— chrominance—>|
I T T T T TOTOTTT TR

2-8 16-3 2 2-(8+7) 16-2
base per-pixel mode base per-block
luminances indices bits colors indices

Figure 3: The bit allocation for the two modes included in
our new format. The upper figure shows the bit layout used
by Munkberg et al. [MCHAMOG6], and the lower shows the
bit layout for our new mode, allocating more bits for chromi-
nance.

6. Rejected Compression Modes

Our algorithm presented in Section 5 includes two compres-
sion modes based on shape transforms [MCHAMO6], with
different bit allocations between the luminance and chromi-
nance channels. If more resources are available, it may be
beneficial to include other compression modes in the for-
mat. In this section, we discuss a number of alternative com-
pression modes that were tried during the development of
Munkberg et al.’s format. Although not included in our cur-
rent format, we believe these new modes present many val-
ueable insights and may be of use to other people in the field.

During the encoding of a block, each of the compression
modes is tested, and the one with the smallest error in the
chosen metric (we use log[RGB] error) is selected. Hence,
the inclusion of alternative compression modes can ideally
only improve the result, never increase the error. This as-
sumes we have one or more spare bits to indicate which
compression mode a block uses. If no extra bits are avail-
able, we have to “steal” them from the encoded data, e.g., by
quantizing harder, which may reduce the quality.

An illustration of the usage frequency of the presented ad-
ditional modes is given in Figure 4. In total, the new modes
are only used in on average 17% of the blocks. Thus, we do
not believe the added hardware complexity is motivated by
a large enough increase in quality.

(© The Eurographics Association and Blackwell Publishing 2008.

6.1. Extended S3TC

It is easy to extend the S3 texture compression (S3TC) for-
mat [INH99] to handle HDR images. Traditional S3TC com-
presses a 4 x 4 pixel block by storing two reference col-
ors with 16 bits (RGB565) each, and creates a color palette
from the reference colors and two additional colors com-
puted through linear interpolation. Each pixel in the block
is given a 2-bit index, which is used to select one color from
the palette. The format thus requires 16 X 244 x4 x 2 = 64
bits per block.

We extend S3TC by using 2 x 24 bits (RGB888) for the
reference colors and a color palette with 32 entries, com-
puted using linear interpolation between the base colors just
like traditional S3TC. As a consequence, a 5-bit index is
needed for each pixel, resulting in 2 x 24 4+ 16 x 5 = 128
bits per block, which was our target bit-rate. We also exper-
imented with a palette of 16 colors and 2 x 32 bits for the
reference colors.

Our extended S3TC works remarkably well for blocks
with smooth gradients, and blocks with mostly luminance
features. However, the linear approach fails for blocks with
three or more distinct colors. This often shows as block arti-
facts in regions with complex chrominance.

6.2. Fixed-rate DCT-based Compression

The discrete cosine transform (DCT) is an energy com-
paction transform that is popular in image and video com-
pression. It is, for example, used in the JPEG and MPEG
standards [Poy03]. These formats use a variable bit rate to
allow for a higher precision in important transform coeffi-
cients.

In our application, where we require a fixed rate and no
global per-texture data, the best we can do is to design an al-
gorithm that works well on average. We work in the logYuv
space, and allocate 64 bits to the luminance channel and 32
bits to each of the chrominance channels. To select the bit
allocation within each channel, we estimated the variance of
each DCT coefficient over all 4 x 4 blocks in a set of 18
HDR images of both natural and synthetic origin. These es-
timated variances were used to find a bit allocation table that
minimizes the average reconstruction error using Lagrange
minimization [Den69, Say96].

The quantization method plays a vital role in the perfor-
mance of the algorithm. For the DC-components, we used
uniform quantization over the range of possible values, as
we do not want to favor any particular luminance or chromi-
nance range. Consistent with previous work [RG83, SR96],
we found that the AC-components approximately follow a
Laplacian distribution. Therefore, we applied non-uniform
midtread quantization [Say96] optimized for the Laplacian
distributions given by the estimated variances. The addi-
tional cost of using non-uniform quantization as opposed to

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

shape |
shape Il
eS3TC
DCT
plane

Average freq.

BigFogMap

Memorial Cathedral Room

Figure 4: The leftmost diagram shows the average usage frequency of each of our presented algorithms on our suite of
test images. shape I refers to the new mode (Section 5) with increased chrominance precision, shape Il to Munkberg
et al. [MCHAMO6], S3TC is an S3TC line with 32 levels in RGB space, DCT a fixed-rate DCT codec, and plane encodes
luminance with two planes and chrominance as in the shape I mode. The color-coded images to the right illustrate the usage of
the algorithms in different image regions. As seen in the figures, the proposed format (shape I + shape 1l) is used in more than
80% of the blocks, with the two modes complementing each other well.

uniform quantization was well motivated by the increase in
quality. In hardware, the reconstruction translates to simple
table lookups.

The fixed-rate DCT-based approach works well for a large
number of blocks. However, it has a number of drawbacks.
First, block artifacts between adjacent blocks are relatively
common. These look like typical JPEG-artifacts, and are
rather disturbing. To some extent, this could be remedied
by taking a larger neighborhood into account when com-
puting the quantization levels. For blocks with a large dy-
namic range, it proved difficult to find quantization levels
that work well. In addition, the decompression is relatively
expensive. In summary, the best option is probably to limit
the use of DCT-based compression to blocks with smooth
gradients and other low-frequency features.

6.3. Plane Encoders for Luminance

The luminance values in a block can be seen as a height-
field, z = f(x,y), where x,y is the pixel coordinate of a
point, and the z-value is the luminance. One option for en-
coding luminance is to store the equation of the plane that
approximates the z-values as closely as possible: f(x,y) =
Z0 +x-Ax+y- Ay, where zg is a constant offset, and Ax and
Ay are the slopes. Finding the optimal plane parameters is
a simple linear optimization problem. However, an encoder
based on a single plane is rather restricted, as only linear
luminance gradients can be represented.

A more general approach is to store two (or more) plane
equations for each block, and a per-pixel index to choose
between them. If more bits are available, it is also possible to
add intermediate levels in between the planes. For example,
a 2-bit per-pixel index can be used to select between the two
planes and two additional levels at 1/3 and 2/3 between the
planes, similar to the work by Fenney [Fen03].

We have implemented a simple plane encoder for lumi-
nance information, storing two plane equations with a 10-bit
offset and two 7-bit deltas each. A 16-bit mask was used to
select which of the two planes each pixel belongs to. This
gives a total bit count of 2x (10+7+7) 4+ 16 = 64 for the
luminance encoder. To find the plane equations, we used ex-
haustive search and regression, but more intelligent meth-
ods can be developed. Our luminance plane encoder was
combined with the chrominance encoding using shape trans-
forms as described in Section 5.

Our experiments with the plane encoders yielded promis-
ing results. Many blocks contain relatively smooth gradients,
and the two-plane encoder is good at handling the case of
two partially overlapping surfaces of different luminance.
However, areas with complex high-frequency features are
poorly represented. The main drawback of the method is that
the restriction of the luminance to linear planes can lead to
visually noticeable block artifacts. Hence, the method must
be combined with other, more flexible, encodings.

7. Implementation

In this section, we describe the details of the compression
algorithms based on shape transforms (Section 5).

7.1. Shape Transforms

Shape transforms [MCHAMOG6] is a compact way of encod-
ing the 2D chrominance points of a block. Each block stores
a scaled and rotated template shape chosen out of the set
of pre-defined shapes shown in Figure 5, and a 2-bit index is
used to indicate the nearest chrominance point for each pixel
or group of pixels. The transform parameters, i.e., scale and
rotation, are implicitly encoded by storing the location of
two base colors, marked as black dots in the figure.

(© The Eurographics Association and Blackwell Publishing 2008.

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

Ae—o—0—e Beo—oe C eco———o D N

e /SN e e

Figure 5: The set of template shapes used for representing
chrominance information of a block.

To find the transform parameters that give the best match
for the chrominance information, we have to minimize the
shape fitting error. We use the squared distance between the
original and the compressed chrominance points:

16
E=Y @) +@-)], (an
i=1

where (i;, ;) is the original chrominance point for pixel ,
and (@, 7)) is the corresponding point after compression.
The error is evaluated for the best fit of each template shape,
and we select the shape with the smallest overall error.

In practice, minimizing the shape fitting error (Equa-
tion 11) is a relatively hard problem. The error function has
four degrees of freedom (the location of two base colors),
and 16 different (i;,7v;)-pairs for a 4 x4 block, that each
snaps to the nearest compressed chrominance point. Exhaus-
tive search is possible, but impractical. If the base colors are
quantized to 8 bits per component, there are 232 combina-
tions to try for each block. For a quick approximate solution,
it is possible to use Procrustes analysis, which is further de-
scribed in the next section. Other alternatives we have tried
include simulated annealing and exhaustive search (see be-
low).

After shape fitting, the position of the two base colors are
encoded as two fixed-point values. The limited precision in-
troduces some additional compression error. To further im-
prove the solution, we search in a small radius of quantized
values around each base point to minimize the mean square
error for the reconstructed chrominance block.

Procrustes Analysis and Clustering

A landmark is a specific feature of an object, in our case
represented as 2D coordinates. The idea behind Procrustes
analysis [DM98] is to compare the shapes of objects, repre-
sented as sets of landmarks, by removing translation, rota-
tion and scaling. More formally, this analysis finds the simi-
larity transformations to be applied to one set of landmarks,
X (template shape coordinates), which minimize its Eu-
clidean distance from a second set, X, (chrominance values).
These are: b (uniform scaling), R (rotation) and v (transla-
tion), which minimize the functional:

X, — bX R — 197 ||%. (12)

The problem of finding the parameters that minimize this
functional has an exact, fast solution: First, center X; and

(© The Eurographics Association and Blackwell Publishing 2008.

X, by subtracting the average from each coordinate. v is
given as the average of X5 prior to centering. Form the ma-
trix A = XzTXl, and apply a singular value decomposition
A = VSU”. The transform parameters that minimize the
functional above are given by (where trace is the sum of the
diagonal elements of a square matrix):

R=UV’,
_ trace(AR)
 trace(X; X))
With 2D points, the matrix A is of size 2 X 2, so the SVD
decomposition is lightweight.

(13)

We use blocks of 4 x 4 texels, containing 16 chrominance
points, so the problem is to fit a shape with four landmarks
to 16 chrominance points (iz, 7) € [0,1]>. To set up the point
correspondences, we create up to four clusters of the chromi-
nance points using pnn-clustering and the k-means algorithm
[Say96]. Clustering the points is an approximation of the op-
timal solution to the fitting problem, but it allows us to com-
pare blocks against template shapes in constant time.

Procrustes analysis needs consistent ordering of the two
sets of landmark points. Therefore, each cluster is linked to a
point on the template shape. With four landmarks per shape,
the number of unique mappings is 4! = 24, and we test all
combinations. It is worth noting that for a problem with a
larger set of landmarks per shape, this is obviously not a fea-
sible approach. Numbering schemes based on the template
shape geometry can be developed to avoid this brute-force
solution.

Once the point correspondences are set up, each cluster
k€ {1...4}, is assigned a gravity point and a weight wy, =
ny/ 16, where ny, is the number of points in cluster k. In order
to take the number of points per cluster into account, we
multiply the functional above with a diagonal matrix:

wg 0 0 O
0 wp, 0 O
0 0 w3 0 ’
0 0 0 wy

W= (14)

containing the cluster weights wy. Our new functional is:
IW(X; — X R =1y, (15)

which favors solutions with close fits for clusters contain-
ing many points. Another possibility is to duplicate template
points according to the number of points in the matching
cluster, avoiding the need of cluster weights altogether. We
have evaluated both approaches, and they give equal quality
in our tests. We use the former approach in our implementa-
tion as it is slightly faster.

The shape fitting routines were implemented in C++. The
Procrustes step is fast, as we are only interested in a 2D fit,
and the most complex step is the singular value decompo-
sition of a 2 X2 matrix. As previously discussed, we need
to set up point correspondences in order to use Procrustes

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

analysis, and we tested both ordering schemes and a brute-
force solution. The latter was selected as the many special
cases of the former made it more error-prone and inflexible
when adding new template shapes. A 1024 x 1024 image is
encoded in about a minute, using non-optimized code. The
same image is decompressed in a fraction of a second using
our software decompressor.

Simulated Annealing and Exhaustive Search

Our shape fitting algorithm based on Procrustes analysis and
clustering works very well in practice, but it should be noted
that it is a heuristic and is not guaranteed to yield optimal
results. We have also examined two other approaches for
finding shape parameters, based on simulated annealing and
exhaustive search.

Simulated annealing (SA) [KGV83] is a probabilistic op-
timization algorithm that finds some minimum (not neces-
sarily the global minimum) through a series of small ran-
dom steps of decreasing length. Unlike greedier methods,
spurious “uphill” moves are allowed, which makes the al-
gorithm less prone to getting stuck at local minima. In our
case, we wish to minimize the four-dimensional function
f(uy,vi,uz,v72), which takes the two base colors used to rep-
resent a shape as input and computes the error according to
Equation 11.

When compared to Procrustes analysis, we found that SA
is prone to generate a few bad blocks per image due to its
probabilistic nature. This problem can be reduced by running
more iterations for blocks with higher errors, but it is very
hard to reach the same level of stability and performance as
we got with Procrustes analysis. SA can potentially generate
better shape fits, but only if a very large number of iterations
are used, leading to excessive compression times.

Our exhaustive search used the same functional repre-
sentation as for simulated annealing, but here we redefine
the problem using interval arithmetic [Moo66]. That is, the
function takes intervals as parameters and computes inter-
val bounds of the error. We search for the global minimum
by evaluating the function over the entire search space, and
then recursively split the search space into two halves. The
traversal of splits are sorted by error intervals, and when we
find a solution, it can be used to cull further traversal. This
search is exhaustive since we continue the recursion until we
reach the resolution used to store the base colors.

Although exhaustive search provides optimal results, it is
not practically useful due to the extreme compression times.
Even images of moderate sizes take over a day to compress.
However, exhaustive search can be used as a reference so-
lution, against which other optimization algorithms can be
compared.

Figure 6: The chrominance information in the test image
"desk’. The left image shows all (i, V) pairs in the image, and
the right shows the same points after stretching the (ii,V)-
space.

7.2. Optimizing with a Non-linear Error Function

The shape transform algorithm enables a compact represen-
tation of chrominance information. However, the quantiza-
tion of the base colors and the limited set of shapes introduce
small errors. We have noticed that the (i,) values in natural
images are typically concentrated to a small region close to
the i and 7 axes. Figure 6 (left) shows an example of this.
Therefore, it is often better to use a non-linear error function
that gives more weight to small chrominance values.

We employ a transform, f(x)=x%, to the (it,¥) points
prior to measuring the shape fitting error. By choosing the
constant o in the range [0, 1], we effectively “stretch” the
(@, V) space, as illustrated in Figure 6 (right). The drawback
is that errors in the green component, 1 — i — v, get slightly
smaller weights. We use a value o = 0.455, which is in-
spired by the gamma-adjustment step typically included in
tone-mapping operators. This works well in practice, but it
should be noted that other transforms may perform better,
and we have not performed extensive experiments with this.

Note that this trick of using a non-linear error function
when minimizing the shape fitting error is only applied dur-
ing the compression step. Hence, the shapes are stored ex-
actly as before, and no modifications to the decompression
hardware are needed. The drawback is slightly longer com-
pression times. As seen in Table 1, the log[RGB] error de-
creases by 20% on average, compared to performing shape
optimization using the original linear error function (Equa-
tion 11).

Image Non-linear Linear | Improvement (%)
bigFogMap 0.06 0.07 12
cathedral 0.17 0.21 18
memorial 0.13 0.18 27
room 0.08 0.09 11
desk 0.22 0.53 59
tubes 0.28 0.31 10

Table 1: log/ RGB] error comparison with non-linear vs lin-
ear error functions for the chrominance points.

(© The Eurographics Association and Blackwell Publishing 2008.

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

7.3. Luminance Precision

In this section, we discuss the necessary precision for en-
coding logarithmic luminance, as used in the color space
defined in Section 3.1. Assume we work with values in the
range ¥ € [Yiyin, Ymax], and uniformly quantize ¥ using k bits.
Then, the maximum absolute quantization error, |AY], is:

1 Ymax -7, min
2 2k

In linear luminance values, this quantization error translates
to a maximum relative luminance error, |AY|, equal to:

|AY| = (16)

7 |A7|

|AY| = max —1| =241 _y (17)

As an example, consider the dynamic range supported by
the 16-bit half type, which is approximately [27'6,216].
The maximum relative error after quantizationtok=6...16
bits are presented in Figure 7. It is widely accepted that a rel-
ative luminance error of about 1% is the smallest visually de-
tectable difference [Wan95]. Accordingly, a log-luminance
precision of 10 bits (i.e., 1.09% relative error) should be suf-
ficient. Mantiuk et al. [MKMS04] came to the same conclu-
sion after a similar reasoning based on measured luminance
threshold curves of the human visual system. Note that they
use a perceptual quantization of luminance, so the results are
not directly comparable.

20
18
16
14
12
10

8

relative error (%)

oN MO

i
6 7 8 9 10 11 12 13 14 15 16
number of bits

Figure 7: Maximum relative luminance error with uniform
quantization of the log-luminance.

Munkberg et al. [MCHAMO6] encode luminance values
by quantizing the minimum and maximum log-luminance
over a 4 x4 block to 8 bits precision. Then, a 4-bit per-pixel
index is used to choose between 16 intermediate luminance
levels, uniformly distributed between the block’s minimum
and maximum. In practice, this gives a variable luminance
precision, where blocks with a small dynamic range will
have the best precision.

Figure 8 shows a histogram over the difference between
the maximum and minimum log-luminance over all blocks
in our test images (Figure 11). With our luminance encod-
ing, the histogram shows that we get 10 bits precision or
better for 51.0% of the blocks (maximum difference 0.5),

(© The Eurographics Association and Blackwell Publishing 2008.

4
x10

number of blocks

o = N w
S v = o N w ow
.

0 5 10 15 20 25 30 35
max-min difference
Figure 8: Histogram over the difference between the small-

est and the largest log-luminance values over all 4 x4 blocks
in our suite of test images (Figure 11).

84.7% falls within 8 bits precision, and 99.8% within 6 bits.
However, as described by Munkberg et al. [MCHAMO6], we
search in a small neighborhood around the end-points of the
luminance range to minimize the error. In many cases, it is
possible to find a combination that better fits the data, as il-
lustrated in Figure 9.

oO—O0——0—o0 O O

— ek —————> — ek —————>
(a) (b)

Figure 9: By searching around the end-points of the lumi-
nance range, we can often find a better match (b) for the
luminance values in a block, rather than just picking the min
and max as in (a). The example shows a quantization to 4
distinct levels for clarity, although our format supports 16
different levels.

8. Results

Here, we compare our combined compression mode (Sec-
tion 5) against state-of-the-art HDR texture compression
schemes. We also show that our algorithm works well on
regular LDR textures.

8.1. Comparison with Other Approaches

We compare our algorithm with the recently published
HDR texture compression formats [MCHAMO06, RAIO6,
WWS*07]. We would like to point out that the approaches
have different goals: Roimela et al’s algorithm is very
fast and designed for a simple hardware implementation,
while Wang et al. present a format that can be directly
implemented in DX9/10 without any hardware changes.
Munkberg et al. focus on image quality, while keeping the

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

decompression hardware simple. Our algorithm extends this
by including a chrominance mode without subsampling.

A set of six test images was used, as shown in Figure 11.
One image (‘tubes’) is artificial, while the others are natural
images commonly used in the research community. Table 2
shows the log[RGB] error (Section 2) for the test images.
Our combined mode shows slightly better or equal results
for all images. Not surprisingly, the largest improvement is
in the "tubes’ image, which contains sharp chrominance tran-
sitions. The combined mode handles this better by avoiding
chrominance subsampling. Table 3 shows that the mPSNR
error (Section 2) follows a similar pattern.

Table 4 shows the HDR-VDP (Section 2) error at 75% de-
tection probability at an adaptation luminance manually ad-
justed per image so that it is close to 300 ca’/mz. We found
that the implementation of the HDR-VDP we used (v1.6)
had problems with true zeros in images, indicating errors
even in totally black areas, e.g., in the "tubes’ image. The re-
sults for this image are therefore overly conservative. Our al-
gorithm has one mode with lower luminance resolution, and
as the encoder selects the best mode based on the l1og[RGB]
error, the HDR-VDP scores are somewhat higher than with
Munkberg et al.’s algorithm. This is because HDR-VDP only
measures perceived luminance, so chrominance artifacts are
not captured.

Our Munkberg Roimela Wang
image 8 bpp 8 bpp 8 bpp 16 bpp
bigFogMap | 0.06 0.06 0.10 0.14
cathedral 0.17 0.20 0.33 0.36
memorial 0.13 0.14 0.26 0.69
room 0.08 0.09 0.23 0.71
desk 0.22 0.25 1.14 2.92
tubes 0.28 0.43 0.85 0.81

Table 2: Log[RGB] error (smaller is better).

Our Munkberg Roimela Wang
image 8 bpp 8 bpp 8 bpp 16 bpp
bigFogMap | 51.9 51.7 47.1 46.3
cathedral 40.0 38.9 34.2 35.8
memorial 46.5 46.1 41.3 38.0
room 48.6 48.1 41.6 34.1
desk 40.3 39.7 31.1 21.3
tubes 35.7 322 26.6 29.1

Table 3: Multi-exposure PSNR (larger is better).

A visual comparison is presented in Figure 11, where the
compressed images are diagonally split, showing the squared
log differences in the upper left triangle, and the compressed
result in the lower right. As can be seen, the images obtained
using Wang et al.’s algorithm (fourth column) often (1!, 2",
4™ and 51 row) have relatively large errors in the luminance

Our Munkberg Roimela Wang
image 8 bpp 8 bpp 8 bpp 16 bpp
bigFogMap | 0.00 0.00 0.01 7.18
cathedral 0.02 0.00 0.19 0.04
memorial 0.01 0.01 0.15 15.4
room 0.02 0.02 0.64 26.4
desk 0.03 0.00 2.58 4.34
tubes 1.59 0.66 3.35 2.00

Table 4: HDR-VDP error with 75% detection probability
at an adaptation luminance of 300 cd /m2 (smaller is bet-
ter). Note that the HDR-VDP only measures luminance er-
rors, while our format improves the chrominance precision.
Hence the higher scores.

channel. This can be seen in that the error images contain
gray regions. In addition, there are also often larger chromi-
nance errors than for the other algorithms (except for the
last row, where the method of Roimela et al. seems to pro-
duce the largest errors). Our algorithm and that of Roimela
et al. reproduce the luminance quite accurately. However,
Roimela et al.’s subsampling strategy for the chrominance
gives a higher error than our algorithm in all test images. We
believe it is clear from these images that our algorithm is
more robust and accurate than previous methods.

8.2. LDR Measures

We have also compared the quality of our algorithm on a set
of standard low dynamic range (RGB888) images. Here we
have used a standard RGB to YUV color transform [Poy03]
instead of the HDR color spaces discussed earlier. All other
parts of the algorithm were left unchanged. Figure 10 shows
the results for a set of standard test images, and it is clear
that our format performs significantly better than the indus-
try standard (S3TC), though at a higher bit-rate.

9. Conclusion

The HDR texture compression algorithm by Wang et al.
[WWS*07] focuses on reusing existing hardware for texture
compression, and therefore arrive at an algorithm using 16
bits per pixel with rather low image quality. However, the
algorithm can be used today on all DX9 hardware, which is
a major advantage. The algorithm by Roimela et al. [RAI06]
is a proposal for new hardware, and their focus was to pro-
vide very simple decompression hardware, and still the im-
age quality is rather high.

In contrast, our focus has been to increase the image qual-
ity as much as possible, as we think this is very important for
content creators. We have introduced a new mode for blocks
of pixels with difficult chrominance, and combined that with
the algorithm of Munkberg et al. [MCHAMO6]. To make this
usable, we provide an inexpensive texture filtering method.

(© The Eurographics Association and Blackwell Publishing 2008.

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

50

B Our
B Munkberg
WS3TC

kodim01 kodim02 kodim03 kodim04 kodim05 lena lorikeet colors

Figure 10: PSNR for a set of standard 24-bit LDR images.
We compare our algorithm against S3TC and Munkberg
et al’s algorithm. Our new format gives up to 10 dB im-
provement over S3TC, but note that S3TC uses only 4 bpp
(compared to 8 bpp for the other formats). The ’colors’ im-
age consists entirely of color gradients along directed lines,
which is well captured by S3TC.

In addition, the details of our compressor using Procrustes
analysis and k-means clustering have been described. We
hope that all this information will be useful to many when
developing new HDR TC schemes.

Acknowledgements

We acknowledge support from the Swedish Foundation for
Strategic Research and Vetenskapsradet. Thanks to Rafal
Mantiuk for sharing the HDR-VDP implementation, Kimmo
Roimela and Xi Wang for sharing their respective codecs.

References

[Den69] DENN M. M.: Optimization by Variational Meth-
ods. McGraw-Hill, 1969.

[DM98] DRYDEN I., MARDIA K.: Statistical Shape Anal-
ysis. Wiley, 1998.

[Fen03] FENNEY S.: Texture Compression using Low-
Frequency Signal Modulation. In Graphics Hardware
(2003), pp. 84-91.

[INH99] IourcHA K., NAYAK K., HONG Z.: System and
Method for Fixed-Rate Block-Based Image Compression
with Inferred Pixel Values. US Patent 5,956,431, 1999.

[KGV83] KIRKPATRICK S., GELATT C. D., VECCHI
M. P.: Optimization by Simulated Annealing. Science
220, 4598 (1983), 671-680.

[MCHAMO6] MUNKBERG J., CLARBERG P., HASSEL-
GREN J., AKENINE-MOLLER T.: High Dynamic Range
Texture Compression for Graphics Hardware. ACM
Transactions on Graphics, 25, 3 (2006), 698-706.

(© The Eurographics Association and Blackwell Publishing 2008.

[MDMSO05] MANTIUK R., DALY S., MYSZKOWSKI K.,
SEIDEL H.-P.: Predicting Visible Differences in High
Dynamic Range Images — Model and its Calibration. In
Human Vision and Electronic Imaging X (2005), pp. 204—
214.

[MKMS04] MANTIUK R., KRAWCZYK G.,
MYSzKOWSKI K., SEIDEL H.-P.: Perception-Motivated
High Dynamic Range Video Encoding. ACM Transac-
tions on Graphics, 23, 3 (2004), 733-741.

[Moo66] MOORE R. E.: Interval Analysis. Prentice-Hall,
1966.

[Owe05] OWENS J. D.: Streaming Architectures and
Technology Trends. In GPU Gems 2. Addison-Wesley,
2005, pp. 457-470.

[Poy03] POYNTON C.: Digital Video and HDTV Algo-
rithms and Interfaces. Morgan Kaufmann, 2003.

[RAIO6] ROIMELA K., AARNIO T., ITARANTA J.: High
Dynamic Range Texture Compression. ACM Transac-
tions on Graphics, 25, 3 (2006), 707-712.

[RAIO8] ROIMELA K., AARNIO T., ITARANTA J.: Effi-
cient High Dynamic Range Texture Compression. In Pro-
ceedings of 13D (2008), pp. 207-214.

[RG83] REININGER R. C., GIBSON J. D.: Distrubutions
of the Two-Dimensional DCT Coefficients for Images.
IEEE Transactions on Communications 31, 6 (1983),
835-839.

[RWPDO05] REINHARD E., WARD G., PATTANAIK S.,
DEBEVEC P.: High Dynamic Range Imaging: Acquisi-
tion, Display and Image-Based Lighting. Morgan Kauf-
mann, 2005.

[Say96] SAvooD K.: Introduction to Data Compression.
Morgan Kaufmann, 1996.

[SR96] SmooT S., ROWE L.: Study of DCT Coefficient
Distributions. In Proceedings of the SPIE Symposium on
Electronic Imaging (1996), vol. 2657, pp. 403—441.

[Wan95] WANDELL B.: Foundations of Vision. Sinauer
Associates, 1995.

[WWS*07] WANG L., WANG X., SLOAN P.-P., WEI L.-
Y., ToNG X., GUO B.: Rendering from Compressed
High Dynamic Range Textures on Programmable Graph-
ics Hardware. In Proceedings of 13D (2007), pp. 17-24.

[XPHO5] XU R., PATTANAIK S. N., HUGHES C. E.:
High-Dynamic-Range Still-Image Encoding in JPEG
2000. [EEE Computer Graphics and Applications, 25,
6 (2005), 57-64.

Munkberg, Clarberg, Hasselgren, Akenine-Moller / Practical HDR Texture Compression

room

desk

tubes

bigFogMap

memorial

cathedral

Original Roimela Wang

Figure 11: Image comparison. The upper left triangles in the compressed images show the squared log differences.

(© The Eurographics Association and Blackwell Publishing 2008.

