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Figure 1: Our programmable culling unit applied to Quake 4 (courtesy of id Software). Left: Rendered image. Middle: False color image of
the number of instructions executed per pixel using a standard GPU. Right: Similar visualization using our programmable culling unit.

Abstract

Culling techniques have always been a central part of computer
graphics, but graphics hardware still lack efficient and flexible sup-
port for culling. To improve the situation, we introduce the pro-
grammable culling unit, which is as flexible as the fragment pro-
gram unit and capable of quickly culling entire blocks of fragments.
Furthermore, it is very easy for the developer to use the PCU as
culling programs can be automatically derived from fragment pro-
grams containing a discard instruction. Our PCU can be integrated
into an existing fragment program unit with a modest hardware
overhead of only about 10%. Using the PCU, we have observed
shader speedups between 1.4 and 2.1 for relevant scenes.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors
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1 Introduction

Faster rendering is a major field in computer graphics research due
to the ever-increasing demands of applications. A prime example of
such applications are games with high image quality, complex shad-
ing, and detailed geometry. In real-time graphics, programmable
vertex, geometry, and fragment shaders provide the programmers
with more flexibility for the rendering tasks, but higher image qual-
ity and using more complex shading incur a cost in performance.

The fragment pipeline is often considered to be the major bottle-
neck in a GPU [Aila et al. 2003], and hence it is a clear candidate
for acceleration algorithms. At a high level, the task of the frag-
ment pipeline is to access memory and execute instructions in order

to produce the output (e.g., color, depth, stencil) of a fragment. The
focus of our research is on the latter.

To make shader programs run faster, one can insert KIL (fragment
discard) instructions at appropriate places, in order to provide an
early-out. In practice, these instructions seldom make the execu-
tion faster on contemporary GPUs, due to the underlying hardware
design. In addition, a GPU designer can employ pipelining and
parallelization techniques for faster shader instruction execution.
Note, however, that the fastest instruction is the one that never is
executed to begin with. Hence, the target of our paper is to avoid
executing, i.e., cull, a substantial amount of instructions which do
not contribute to the final image.

To that end, we present the programmable culling unit (PCU). The
idea is to execute a cull program on tiles of pixels before the per-
pixel shader processing starts. In many cases, a conservative deci-
sion can be made based on the outcome of the cull program, and
per-pixel executions completely avoided. For example, if all pixels
in a tile are in shadow, it may be possible to determine this on a tile-
level, and shading instructions can be avoided for all pixels in the
tile. Our PCU is flexible in that the programs can be automatically
generated from the fragment shader programs (i.e., transparent to
the programmer), or written explicitly. The core idea of the PCU
is to use interval arithmetic [Moore 1966] to bound the value of
a floating-point variable, and let the fragment pipeline operate on
such bounded number representations.

The PCU makes existing fragment programs run faster, and opens
up new possibilities for culling algorithms specifically written for
the PCU. In addition, a major advantage is that the rendering pro-
grammer can work in a more carefree way. For example, many cur-
rent games are doing back-face culling from the light source on the
CPU, before sending the geometry to the GPU for shading. Such
culling can be done automatically on a per-tile basis using the PCU.
For an example of how our PCU can improve performance, even in
a highly optimized computer game, see Figure 1.

A prototype hardware implementation of a fragment pipeline has
been developed, and the increase in size is about 10%. We provide
extensive simulation results using a variety of benchmarks, such
as commercial games and relevant shader effect demos. For these,
we observed that 29–52% of the instructions can be avoided, which
implies a speedup of 1.4 – 2.1×. The memory bandwidth utilization
is also decreased by approximately 15%.



2 Previous Work

In our research, we have used interval arithmetic [Moore 1966]
(IA), which is an arithmetic defined on intervals rather than real
numbers. It dates back to the early 20th century, and is now an es-
tablished field of research. IA has already been used on several oc-
casions in the field of computer graphics, and we will mention only
the ones that relates to our research. For a more in-depth overview,
consult Kearfott’s survey [1996].

The Achilles heel of interval arithmetic is that the width of an
interval can grow rapidly for complex equations. Affine arith-
metic [Comba and Stolfi 1993] reduces this problem by tracking
all linear dependencies in an equation and evaluates them exactly.
Higher order dependencies are solved using linear approximation
and by adding an extra term that bounds the approximation error.

Culling To speed up execution in both software and hardware, it
is common to use culling algorithms. Hardware culling is typically
limited to fixed function mechanisms, such as back-face culling or
hierarchical depth culling [Greene et al. 1993; Morein 2000].

Hierarchical depth culling (HDC) is an optimization of depth
buffering. When a tile of fragments is about to be rasterized, a con-
servative test is performed to prove whether that tile is covered by
the contents in the depth buffer. If it is, the entire tile can be skipped
which results in performance gains. Aila et al. [2003] improve the
culling rate of HDC by introducing a delay stream, which basi-
cally performs depth buffering first, and then puts the triangles on
hold until the “occluding power” of the depth buffer has been built
up. Another variant of HDC, called Z-min culling [Akenine-Möller
and Ström 2003], avoids depth reads when a tile of fragments being
generated are in front of the contents of the depth buffer.

In an attempt to implement more flexible hardware culling, Purcell
et al. [2003] introduced computation masks. The basic idea is to
let a fragment program set up the depth buffer so that all fragments
that can be culled fail the depth test. The hierarchical depth culling
hardware will then perform the actual culling. The weak points of
computation masks are all related to overlapping geometry. First,
the computation mask will overwrite the content of the depth buffer,
which makes it hard to use depth testing in conjunction with com-
putation masks. Second, the computation mask is given in screen
space with just one entry per pixel. This makes it difficult to make
different culling decisions for overlapping geometry.

Occlusion queries provide functionality to query the graphics hard-
ware for the number of fragments that pass the depth test. The
prime example of using occlusion queries is to draw the bound-
ing box of a mesh. If no fragments pass the depth test, the entire
mesh is occluded and does not need to be rendered. These algo-
rithms require intervention by the programmer, and it can be diffi-
cult to achieve good performance due to the latency and overhead
of a query, or require sophisticated CPU algorithms [Bittner et al.
2004]. In general, occlusion queries are orthogonal to our work.

Programmable Shaders The core feature of modern GPUs is
the availability of programmable shaders. These are commonly di-
vided into geometry shaders [Blythe 2006], vertex shaders [Lind-
holm et al. 2001], and pixel/fragment shaders. However, as the
programming languages are very similar, the implementation trend
is to use unified shader units [Doggett 2005], which can execute
the program for any type of shader. This enables more efficient
load balancing between the different tasks. For instance, if a scene
contains many small triangles, more processing units can be allo-
cated for vertex processing. On the other hand, if we draw a typical
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Figure 2: Behavioral model of our proposed rasterization architec-
ture. We add a new programmable unit between the depth culling
unit and the fragment-producing unit. Our unit executes a cull pro-
gram, and decides whether a tile can be culled or not based on the
results of the program.

GPGPU full-screen quad, all units can be allocated for fragment
processing.

There has been some work made on software evaluation of pro-
grammable shaders using interval or affine arithmetic. Greene and
Kass [1994] evaluated shade trees [Cook 1984] using interval arith-
metic. This was used to compute bounds for the final color over
a surface area element. The width of the bounds was used to
guide adaptive refinement antialiasing. Heidrich et al. [1998] used
affine arithmetic to evaluate procedural shaders written in Render-
Man. Doing so enabled them to sample a procedural shader over
an area element. The authors argue that this can be used to, for
instance, adaptively sample procedural textures, or taking mate-
rial into account in bounded lighting equations [Stamminger et al.
1997]. Moule and McCool [2002] use interval arithmetic to bound
the approximation errors when performing adaptive tesselation of
displacement maps. As a hierarchical representation of the dis-
placement map function, they use a mipmap structure of intervals.

3 Programmable Culling Unit Overview

In this section, we give a high-level overview of our programmable
culling unit, and motivate some early design choices.

Figure 2 shows a behavioral overview of our novel rasterization
architecture, which includes the PCU as a new unit. The PCU is the
last unit which processes entire tiles of fragments. It conservatively
decides whether to terminate the tile or send it down the pipeline
for further per-fragment processing. The fundamental difference,
compared to hierarchical depth culling (covered in Section 2), is
that the PCU bases its decision on the output from a shader program
execution, rather than fixed function computations.

One of our main ambitions was to make it as simple as possible for
the programmer to take advantage of the PCU. With our approach,
the programmer does not have to care about new programming lan-
guages, writing conservative algorithms, or taking tile sizes into
account. The whole PCU can simply be seen as a very fast KIL
(fragment discard) instruction that operates on a per-tile basis.

As an example, consider the “combined program” in Figure 2. This
program performs diffuse lighting by computing the dot product
between the normal and light vectors, and multiplies the result by



a diffuse material coefficient stored in a texture. In this case, the
programmer added a KIL instruction to terminate fragments where
the normal does not face the light. We see this KIL instruction as
an opportunity for culling a whole tile of fragments. In order to do
so, we need a way to conservatively prove that the condition for the
KIL instruction is fulfilled for every fragment within the tile. From
this follows that we must also be able to conservatively evaluate
the DP3 instruction, since the KIL instruction depends on its result.
We must also be able to find conservative bounds of the input (the
normal and light vectors in this case) for a whole tile, since the DP3
instruction in turn depends on these values.

In order to implement this chain of conservative evaluations, we
base the PCU on the same instruction set as the fragment program
unit. However, instead of floating-point variables as source and des-
tination registers to an instruction, we use intervals and implement
the instruction using the principles of interval arithmetic [Moore
1966].1 As a simple example, consider a standard ADD instruction:

ADD c,a,b ⇐⇒ c = a+b (1)

For the corresponding PCU interval instruction, we replace the
operands by intervals, â, b̂, ĉ, where an interval, e.g., â is defined
as:

â = [a,a] = {x |a≤ x≤ a}. (2)

The PCU interval ADD instruction is then:

ADD ĉ, â, b̂ ⇐⇒ ĉ = â+ b̂, (3)

where the interval addition operation is implemented as:

â+ b̂ = [a,a]+ [b,b] = [a+b,a+b]. (4)

As can be seen, the result of the interval addition contains all pos-
sible results of “normal” additions, or more formally, it holds that
a + b ∈ â + b̂ given that a ∈ â and b ∈ b̂. It is therefore conserva-
tively correct. In similar fashion, we redefine the behavior of ev-
ery instruction in the fragment program instruction set. Full details
of our interval instructions, including conservative texture lookups,
can be found in Appendix A.

In addition to using interval instructions, the input must also be
defined as intervals. Therefore, we must be able to compute con-
servative bounds for quantities interpolated over an entire tile of
fragments. This is treated in more detail in Section 4.2.1.

Given this architecture, we can execute the shader program for an
entire tile at a time. When a KIL instruction is executed, we de-
termine if the conditional expression is unambiguously fulfilled by
checking the interval of the input. In such a case, we can quickly
discard the entire tile and its fragments, which saves valuable pro-
cessing time. Otherwise, per-fragment shader execution follows.

2D Interval Dot Product Example Let us once again revisit
the example in Figure 2, while also looking at the figure to the
right. For an entire tile of fragments,
assume that we have determined that
the input interval of the normals is
n̂ = ([−

√
3/2,−1/2], [1/2,

√
3/2]),

and the interval for the light vector is
l̂ = ([1/

√
2,1], [−1/

√
2,0]), as illustrated

in the figure. The dot product between
these interval representations results in
d̂ = n̂ · l̂ = [−(

√
6 +
√

3)/
√

8,−1/
√

8]

x

y
n̂

l̂

1We decided to use interval arithmetic because it is simple to implement
in hardware. An alternative approach is to use affine arithmetic [Comba and
Stolfi 1993]. See Section 7 for further discussion.

(see the DP3 instruction in Table 2). We then reach the KIL in-
struction and note that the operand, d̂, can be at most d =−1/

√
8.

Since this value is strictly less than zero, we can cull this whole tile
without executing the fragment program for every fragment. This
is the source of the performance gain in our algorithm. �

4 PCU Interaction

In this section, we will treat the PCU as a black box which takes
intervals as input and determines whether a tile can be culled. It is
important to note that the PCU is a part of a much larger system
including both hardware and the driver. In this section, we focus on
the interaction between that system and the PCU.

4.1 Driver

Here, we will introduce a new CUL instruction, present compilation
issues, and discuss optional instruction support. All these features
are implemented in the driver.

4.1.1 CUL Instruction

The system in Section 3 allows for rapid culling of fragment pro-
grams containing KIL instructions, but we also introduce a CUL in-
struction that can improve performance in some cases. As an ex-
ample of when it is useful, consider a fragment program designed
for multi-pass shading, such as the program from Figure 2. These
programs rarely or never use a KIL instruction to discard fragments
whose normals face away from the light. The light contribution will
be zero anyway, so the KIL instruction is not needed for correctness
and will in most cases only reduce performance.

In this case, we want the KIL instruction to exist only in the cull
program, which is exactly how we define the CUL instruction. The
CUL instruction, and all instructions depending on it, will only be
propagated to the cull program. Thus, where a KIL instruction is
always guaranteed to discard a fragment if the condition is fulfilled,
a CUL instruction may or may not discard the fragment depending
on if it belongs to a tile that can be culled. The CUL instructions can
be removed for hardware not supporting cull programs.

4.1.2 Program Compilation and Separation

A key point of our programmable culling unit is the ease of use.
The programmer writes a combined program, and it is up to the
driver or compiler to separate the cull and fragment program. This
process can be done easily and efficiently using dead code elimina-
tion [Cytron et al. 1991]. For the fragment program, we mark the
color outputs, depth outputs, and all KIL statements as live code.
We then perform dead code elimination, efficiently removing all
code not contributing to the final result. For the cull program, we
mark all CUL and KIL statements as live, and again perform dead
code elimination to remove all code not contributing to the result.

It should be noted that dead code elimination is a lightweight op-
timization technique that does not introduce any significant perfor-
mance impact on the driver, even if it is carried out at runtime.

4.1.3 Optional Instruction Support

A convenient feature of our PCU, and culling algorithms in gen-
eral, is that lack of culling does not compromise the correctness of
the result. An implementation may therefore freely omit PCU sup-
port for any instructions or features present in the fragment program
unit. The driver can then examine all KIL and CUL instructions and
determine if they depend on some unsupported feature. If this is
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Figure 3: The perspective-correct interpolation problem. The left
figure shows the perspective-correct interpolation space of a trian-
gle, when extended outside the triangle boundaries. Note the yellow
line where the checkerboard is mirrored. This is where the horizon
of the triangle would be projected if it was infinitely large. The right
figure shows the perspective-correct interpolation function as gray
curve, and the projection line (at x = 0) marked in yellow. Note
that computing bounds using the corners of the tile (in blue) gives
an incorrect result.

the case, the KIL or CUL instruction is simply marked as dead code
when extracting the cull program.

We use this strategy to handle dynamic loops (loops with a variable
number of iterations). For simple static loops, with a constant num-
ber of iterations, we can simply use loop unrolling. However, dy-
namic loops present more of a challenge, and we do not currently
support them in the cull program. There are ways of reformulat-
ing a dynamic loop on interval form [Heidrich et al. 1998], but the
problem is that we cannot guarantee that a loop converging on a
per-fragment level will also converge when using our interval in-
structions. There is a possibility of undesired infinite loops.

To support dynamic loops, we believe the best approach would be
to extend the instruction set of the PCU with instructions for this
purpose, and to force the programmer to write a custom cull pro-
gram. Thereby, the programmer gets the responsibility to formulate
a loops that converge. This is left for future work.

4.2 Hardware

When considering the PCU as a black box, there are still some is-
sues that can be discussed when it comes to hardware. In this sub-
section, we will first discuss how to compute the input intervals to
a tile, and then present a solution to how small triangles can be
handled efficiently.

4.2.1 Interpolation

Given an implementation of the instruction set in Appendix A, we
may execute a fragment program for a whole tile of fragments.
However, in order to do so, we also need to compute bounding in-
tervals for the varying (or interpolated) inputs.

We use a method inspired by the depth bounds computations of
hierarchical depth culling. Initially, we compute the value of the
varying attribute in all four corners of the tile using interpolation.
We then compute the bounding interval of these four values, and
call it âc = [ac,ac]. We also compute the bounding interval of the
varying attribute at the triangle vertices, and call it âtri = [atri,atri].
The final bounding interval of the varying attribute over the tile can
be computed as âtile = [max(atri,ac),min(atri,ac)].

Finally, we must take care of a special case, which is illustrated in
Figure 3. Here, perspective-correct interpolation over a triangle is

illustrated in form of a checkerboard texture. As can be seen, the
texture is mirrored about the yellow projection line, which is where
the horizon of the triangle would project if it was infinitely large.
This mirroring effect is a form of back-projection caused by the
division used in perspective-correct interpolation.

Now, assume we wish to compute the bounding interval of some
varying attribute over the blue tile, which overlaps the projection
line. The right part of Figure 3 shows the perspective-correct inter-
polation function, as well as the values we get when we interpolate
the four corners of the tile. Note that the bounding interval of these
corners (dashed blue lines) is obviously incorrect since the function
approaches infinity at the projection line.

We handle this special case by setting âtile := âtri as the bound-
ing interval for tiles overlapping the projection line. One might
argue that this interval is overly conservative, but these problematic
tiles are so rare that it is hard to motivate more complex computa-
tions. In our implementation, we only traverse tiles actually over-
lapping the triangle, and use perspective-correct barycentric coor-
dinates [McCool et al. 2002] to do the interpolation. We can eas-
ily detect the problematic tiles when computing perspective-correct
barycentric coordinates for the corners of a tile. The perspective-
correct barycentric coordinates are expressed as a rational function,
and if the denominator is less than zero for any of the tile corners,
then the tile crosses the projection line.

4.2.2 Higher Level Culling

A potential weakness of our PCU is that the culling is done on a
per-tile and per-triangle basis. In the case of micro-polygons, tri-
angles can be smaller than a pixel, which means that executing the
cull program will cost at least as much as executing the fragment
program. Here, we describe a solution to this problem.

In order to handle micro-triangles efficiently, we use a delay stream
like unit [Aila et al. 2003]. This unit receives triangles in the same
order as they are sent to the graphics card. It also keeps an internal
state with bounding intervals of the varying attributes. The unit
groups triangles as long as the accumulated bounding interval for
the position attribute is smaller than the size of a tile. This means
that grouping is done as long as the bounding box of the triangles
is smaller than the size of a tile. When the accumulated triangles
reach this limit, we execute the cull program using the accumulated
bounding intervals. If the outcome indicates that culling can be
done, the entire set of small triangles is terminated. Otherwise, per-
fragment processing commences for each triangle in the set.

Triangles overlapping more than one tile are rendered as usual. That
is, we execute the cull program for every tile during rasterization.

4.2.3 Fragment Program Switching

In some cases, such as shader level of detail, it may be convenient
to be able to use the cull program to specify which, out of many,
fragment program should be executed for the fragments in a tile.
A nice example of this is our “Soft Shadows” scene in Section 6.
Here, we may skip a considerable amount of shadow map lookups
if we can prove that a tile is entirely lit, but we must still perform
the lighting on a per-fragment level so we cannot completely cull
the tile.

We can support this if the underlying hardware is capable of rapidly
switching between a small number of fragment programs. In this
case, we simply attach a fragment program index to each cull in-
struction, and use the corresponding fragment program when ren-
dering the fragments of a tile that has been culled by that instruc-
tion.
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Figure 4: Conceptual diagram of a contemporary fragment pro-
gram unit which we have extended to a PCU. The new units are
marked in red.

5 Implementation - Combined Shader Unit

So far, our description of the programmable culling unit has been
on a functional level. However, our goal has been to reuse existing
hardware when possible, so it is only natural to combine the PCU
and the fragment program unit (or the unified shader unit, if such
an architecture is used) into a single programmable unit.

Figure 4 shows a block diagram of a possible fragment program
unit. The execution pipelines are organized as four separate parallel
units, with a direct mapping to a quad of 2× 2 fragments. This
enables simple approximations of derivatives by finite differences,
which is essential for correct mipmapping. The fragment program
pipeline is broken down into several steps, and in order to avoid
hazards, it is reasonable to assume that the GPU executes at least
as many parallel program threads as there are pipeline steps in the
program unit.

In order to implement our PCU, we augment the fragment program
unit with new logic shown in red in Figure 4. These additions
mainly consists of extra control logic before and after the ALU.
The logic is responsible for value rerouting, detecting and handling
the special cases of Table 2, and handling the special case for in-
terpolation. There are also additions in the texture unit to handle
mipmap computations and filtering, and a final set of min & max
units to assemble the result. These units may be taken from the
ALU and moved to the end of the pipeline. No extra hardware is
needed in this case.

We have implemented a simple fragment program unit augmented
with a subset of the PCU, in VHDL. We restricted our hardware im-
plementation to the arithmetic and logic functions, while omitting
texturing and interpolation. The reason for this was that we had no
access to peripheral units, such as texture caching, vertex buffers,
and so forth. Admittedly, our implementation is only a fraction of
a GPU, but implementing the entire hardware would take consider-
able effort. In addition, for the same reasons, our processor model
is most likely much simpler than what can be found in the GPUs
on the market. However, we learned two facts which we believe
will generalize to any GPU design. First, we can greatly reuse the
computational resources and only need to add a small amount of

logic to handle rerouting and special cases for interval arithmetic.
In our particular implementation this overhead amounts to about
8%, and in this case we used duplicated min and max units. Sec-
ond, using interval arithmetic increases the latency for executing
an instruction. We therefore need more executing threads in or-
der to avoid hazards, and consequently need a larger register file in
on-chip memory. In our particular implementation, the execution
pipeline increased from 22 to 24 steps, which gives a 9% increase
in register space.

Note that we implemented the PCU by extending a fragment pro-
gram unit. This indicates that it should be relatively straightforward
to make the PCU a part of a unified shader architecture. No matter
what architecture we choose, it should be noted that the PCU intro-
duces an additional delay in the pipeline, since we add an additional
program that needs to be executed. However, we do not believe this
will have any negative effect on the throughput.

6 Results

We have evaluated our PCU experimentally using a variety of
modern shader based applications, all rendered at a resolution of
1280×1024 pixels. The evaluations are based on a functional sim-
ulator written in C++, which implements all features of the PCU
specified in this paper, as well as most other features of modern
graphics hardware. This includes interval-based texture lookups,
texture caching, HDC, and depth & color buffer compression and
caching. We implemented the PCU on top of a normal rasterizer,
and also implemented an “optimal” culling unit for reference. In
practice, we implement this optimal unit by executing the cull pro-
gram for every fragment overlapping the triangle inside a tile, but
without counting the instructions. We then make the culling deci-
sion based on the results of all fragments. This result can be seen
as an upper bound for culling when using a particular program and
tile size.

Quake 4 is a modern game based on the Doom 3 engine which uses
advanced per-pixel lighting, bump mapping, and stencil shadows.
We used a logging OpenGL driver to output frames from the actual
game, which means that we can completely recreate its behavior.

The only modifications we made to the logged data was to enhance
the fragment programs with culling code. Since we did not have
access to the game code or any geometric data, we chose to disable
shadowing in the game and concentrated our optimizations on the
lighting only. With access to the full code it might be possible to
use more sophisticated culling, such as clipping shadow volumes
against portal frustums. We got the best balance of performance and
culling rate when applying simple culling algorithms such as back-
face (bump-mapped), attenuation, and spot-light frustum culling.

It should be noted that the Doom 3 game engine is optimized to per-
form a fill rate heavy task on a wide range of graphics cards with
varying performance. It therefore makes heavy use of CPU culling,
and possibly even pre-computations such as splitting geometry by
static lights in order to save fill rate. Hence, as it is already opti-
mized, this can be considered as a very difficult case for our PCU.

Soft Shadows is based on the soft shadows demo in the NVIDIA
OpenGL SDK [Uralsky 2005], which we replicated using our log-
ging driver. This program uses a shader that draws eight jittered
samples from the shadow map. If the shadow status for the samples
varies, the fragment is assumed to be in the shadow penumbra and
an additional 56 samples are drawn.

For this scene, we used a custom cull program. The reason is that
we can use the powerful interval-based texture lookup (see Ap-
pendix A.2) to determine if a fragment is outside the penumbra.



Quake 4 Soft Shadows OIT Spheres
Scene A B
Dynamic instructions 143 M 165 M 481 M 54 M 187 M
Instruction ratio PCU 68% (1.5×) 71% (1.4×) 48% (2.1×) 61% (1.6×) 49% (2.0×)
Instruction ratio optimal 60% (1.7×) 60% (1.7×) N/A 56% (1.8×) 45% (2.2×)
Tile cull ratio PCU 40% 31% 57% 78% 58%
Tile cull ratio optimal 40% 37% N/A 83% 82%
Total BW 82% 85% 86% 87% 72%

Table 1: The top section shows performance figures in terms of dynamic instructions, i.e., the total number of instructions executed when
rendering a frame. We first show the number of instructions used by a normal architecture. Thereafter follows the number of instructions
executed with the PCU (in percent of the original, i.e, the lower the better), and the corresponding speedup. Note that this figure includes
the PCU interval instructions, where each such instruction counts as four normal fragment program instructions. Finally, we show the same
statistics for an “optimal” culling unit, as described in Section 6. This unit is assumed to execute the cull program in zero time, so the culling
instructions are not counted. In the middle section, we show the cull ratio in percentage of the tiles that actually use a cull program. Note
that the instruction ratios include all instructions, even those when a culling program cannot be used, which explains why the tile cull ratio
is better than the instruction ratio. In the lower section, we present bandwidth figures for our PCU in percent of a standard architecture. We
only present the total bandwidth since the gains were quite evenly distributed over texture, depth buffer, and color buffer bandwidth.

We do this using just one interval texture lookup, where the tex-
ture coordinate interval is computed so that it covers the entire filter
used for sampling. We can then determine if a tile is entirely in
shadow or entirely lit. If the tile is in shadow, we immediately dis-
card it, and if it is completely lit, we skip all shadow map sampling
in the fragment program. Finally, if the tile is in the penumbra re-
gion we use the original fragment program. In addition, we have
implemented back-face and attenuation culling for the light source.
We do not present any results for the optimal culling unit for this
example, since it is not completely defined how the interval texture
lookup would work in the optimal case.

Order Independent Transparency (OIT) is based on the depth
peeling algorithm [Mammen 1989]. Once again we used our log-
ging driver and an example found in the NVIDIA OpenGL SDK.
Depth peeling is an iterative multi-pass algorithm which creates one
depth layer per pass. This is done by holding the depth values of the
previous pass in a texture, and performing a two-sided depth test.
This test discards all fragments with a depth component less than or
equal to the value of the previous pass, or greater than the current
value in the depth buffer.

Since the original shader code already contained a KIL instruction,
we made no significant modifications to it. We simply noted that
the PCU provides a two-sided hierarchical depth test, while a nor-
mal architecture only provides a one-sided hierarchical depth test
(namely the depth buffer).

The results for this scene were generated under the assumption that
a “sparse mipmap” of the depth buffer is available, as discussed in
Appendix A.2. In this case, it simply means that the tile’s Zmin and
Zmax of the depth buffer are available in the PCU. This is perfectly
reasonable since modern hardware supports Zmin/Zmax-culling. It
should be noted that the number of instructions when using our
PCU is reduced by an additional factor of two if a sparse mipmap is
available for the color buffer as well. In this case, we get a massive
speedup of a factor 3.7.

Spheres is a simple test scene that renders procedural spheres us-
ing billboards and a fragment program. A KIL instruction is used

to discard all fragments in the billboard which do not overlap the
sphere. The overlap test is performed in two-dimensional texture
space.

An important feature for this test scene is that we also compute
a custom depth value in the shader, which is simply the depth of
the sphere at each pixel. This typically breaks hierarchical depth
culling functionality on current hardware. However, with our PCU
it is a simple extension to output a bounding interval for the depth
values in a tile, and we can then feed the bounding interval directly
to the hierarchical depth culling unit. This way, we can efficiently
handle depth culling of shaders with custom depth computations,
which was previously an unsolved problem. This is desirable in
many applications, such as rendering curved surfaces [Loop and
Blinn 2006] and parallax mapping [Tatarchuk 2006]. It should be
noted, however, that we must execute the cull program before the
hierarchical depth test in this case. This opens a question whether
the PCU should be placed before or after the hierarchical depth unit.
Preferably, the order of the units should be configurable.

Discussion of Results The results of our evaluations are sum-
marized in Table 1. Note that the PCU performance figures in-
clude execution of the culling program. As can be seen, we achieve
significant performance improvements for all test scenes. The im-
provements are larger for the simpler demos than for the game
scene, as expected, since the game already makes heavy use of
CPU-based culling. Still, we believe that a performance improve-
ment of 1.4× is significant considering how easy it was to modify
the game. Notice also how well our culling unit performs when
compared to the “optimal” case for that scene and program. In the
bottom part of Table 1, we present bandwidth figures. Bandwidth
reduction was not our primary goal, but even here we noticed im-
provements when compared to a standard GPU.

6.1 Small Triangles

We also examined how our PCU architecture scales with decreas-
ing triangle size, with and without the extension presented in Sec-



tion 4.2.2. In this test, we used a very simple scene in order to focus
entirely on the effects of varying tessellation. The scene consists of
a unit sphere that is clipped arithmetically by a cylinder in the frag-
ment program. We varied the tessellation of the sphere in order to
study how the algorithm performs at different triangle sizes.

We evaluated three different
rasterization algorithms, and
the results are shown in the
diagram to the right. The
standard rasterizer emulates
a modern hardware rasteriza-
tion architecture. That is, it
is based on pixel quads as the
smallest set of pixels that can
be rasterized. It should be
noted that it is therefore sub-

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Tesselation Level

N
um

be
r o

f I
ns

tru
ct

io
ns

 (M
ill

io
ns

)

Standard Rasterizer
PCU
Extended PCU

optimal for rendering extremely small triangles, but this is a prob-
lem inherent in most current hardware rasterizers. The PCU al-
gorithm refers to our PCU architecture without the extension in
Section 4.2.2. As we predicted, the performance decreases more
rapidly with increasing tessellation than for a standard rasterizer.
In this particular scene, we have found that the two curves inter-
sect when the average projected triangle area is around three pixels.
Finally, we have the extended PCU algorithm as discussed in Sec-
tion 4.2.2. Note that the extended PCU now follows the same trend
as a normal rasterizer, with a virtually constant performance advan-
tage due to the culling.

7 Discussion
The prime use of our PCU is to speed up fragment shader execution
using a very simple culling program. We believe this is the reason
why we have achieved such good results using interval arithmetic,
which may otherwise suffer from rapidly growing bounds when
computations become too complicated. This has terminated many
efforts of implementing interval-arithmetic-capable CPUs. How-
ever, in culling it is more a rule than an exception to use a very
simple algorithm, and this makes interval arithmetic well-suited for
the task.

During the course of this project, we noted that
existing fragment shader programs can be used
by the PCU without any additional work by the
programmer. However, with some additional ef-
fort, much better culling can be obtained in many
cases. For instance, we found that Quake 4 uses a texture for spot-
light angular falloff, as shown to the right. If we perform a tex-
ture lookup on the green region which is clearly outside the falloff,
mipmapping and clamping may cause the result to be the interval
of the texture over the red region. Much better results are achieved
if the culling is done directly on the texture coordinates, rather than
using the more conservative texture lookup.

The texture lookup is one of our biggest sources of interval growth,
and it is a clear candidate for improvements and future work. In
fact, one of our main reasons for discarding affine arithmetic (apart
from interval arithmetic being better suited for hardware) is that
there is no obvious way to efficiently improve texture lookups with
affine arithmetic, and that the texture lookups instantly break all
linear dependencies. We did some preliminary tests using affine
arithmetic for the arithmetic instructions, but most results were dis-
couraging. The cull programs were either too simple with few de-
pendencies, or contained texture lookups.

8 Conclusion

A long awaited feature in the GPU programming community is the
ability to treat the depth buffer, color buffer, and possibly even sten-
cil buffer contents as inputs to the fragment program. This would
essentially remove the need for depth/stencil/alpha tests and blend-
ing, which are the last remaining parts of the fixed function pipeline.

According to Blythe [2006], the reasons why this functionality has
yet to be implemented in hardware are, 1) pipeline hazards (a.k.a.
read before write hazards), 2) multisampling issues, and 3) lack of
culling due to the unpredictability of shader programs. Even though
our PCU cannot help in the two first issues, it provides the func-
tionality needed to solve the culling problem. For instance, it is not
clear how to use hierarchical depth culling when an arbitrary depth
test function is specified by the fragment program. With our PCU
the culling comes automatically as long as the fragment program
uses a KIL instruction for the depth test, and as long as the depth
bounds of the triangle and depth buffer contents are given as inputs
to the culling program.

The two remaining issues still are still open problems. Pipeline
hazards has been, at least partially, solved by Donovan [2006] and
Molnar [2006], who both introduce conflict detection units which
ensure that no program threads are allowed to simultaneously ac-
cess the same pixel elements. If such a conflict is detected, the
conflicting threads are executed sequentially in the same order as
they were issued, stalling the conflicting threads.
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Instruction Operation Condition
MOV d, a di← ai

MAD d, a, b, c di← [min(ai ∗bi,ai ∗bi,ai ∗bi,ai ∗bi)+ ci,

max(ai ∗bi,ai ∗bi,ai ∗bi,ai ∗bi)+ ci]
DP4 d, a, b dx ← [∑i min(ai ∗bi,ai ∗bi,ai ∗bi,ai ∗bi),

∑i max(ai ∗bi,ai ∗bi,ai ∗bi,ai ∗bi)]
RCP d, a di← [1/ax,1/ax] 0 6∈ ax

d← [−∞,∞] 0 ∈ ax

RSQ d, a di← [1/
√

ax,1/
√ax] ax > 0

di← [NaN,NaN] ax ≤ 0

EX2 d, a di← [2ax ,2ax ]

LG2 d, a di← [log2 ax, log2 ax] ax > 0
di← [NaN,NaN] ax ≤ 0

MAX d, a, b di← [max(ai,bi),max(ai,bi)]

MIN d, a, b di← [min(ai,bi),min(ai,bi)]

SGE d, a, b di← 0 ai < bi

di← 1 ai ≥ bi

di← [0,1] otherwise

SLT d, a, b di← 0 ai ≥ bi

di← 1 ai < bi

di← [0,1] otherwise

FLR d, a di← [baic,baic]

NEG d, a di←−[ai,ai]
SAT d, a di← [max(0,min(1,ai)),max(0,min(1,ai))]

Table 2: The arithmetic and conditional expressions of our minimal
instruction set, named in accordance to the ARB fragment program
extension. We use d for the destination register, and a, b & c for
source registers. Note that NEG and SAT are not actual instruc-
tions. They refer to the optional negation of source registers, and
the optional saturation of the result. Also, the DP3/DPH are left out
since they are simple modifications of the DP4 instruction. Note that
whenever i is used above, it implies componentwise computations,
i.e., i ∈ {x,y,z,w}, and also we have omitted the hats (ˆ) to avoid
cluttering.

A Interval Arithmetic Instruction Set

In this section we introduce an instruction set operating on inter-
vals. This includes arithmetic operations, conditionals, and texture
lookups. We base the native instruction set of our PCU on a subset
of the fragment program instructions defined by the OpenGL ARB.

A.1 Arithmetic and Conditional Instructions

Arithmetic and conditional operations have been thoroughly stud-
ied in interval arithmetic [Moore 1966; Kearfott 1996], and we base
our instruction set on those findings. The instructions and their cor-
responding operational behavior are summarized in Table 2.

A.2 N-Dimensional Texture Lookups

The interval instructions for performing N-dimensional texture
lookups are inspired by Moule and McCool’s [2002] approach,
originally used for displacement map subdivision. The general idea
is to provide an efficient way of computing the bounding interval of
the texture data over a given area2. The remainder of this section

2Interval-based texture example: assume we render a fence as a quad,
using alpha testing and a texture to represent the geometry. It would then
make sense to cull tiles where textureα = 0 over the whole tile. This can be
done using the interval-based texture lookup.



Min Max 

level n

level n+1

Figure 5: The mipmap pyramids used for conservative texture
lookups. We compute two pyramids, where each texel contains the
minimum and maximum values respectively, of the corresponding
four texels in the mipmap level directly below.

Figure 6: The four different lookup patterns of conservative texture
lookups. Mipmap selection makes sure that the texture coordinate
interval (red rectangle) is never more than one texel wide. There-
fore, only the four cases shown in the image are possible. Since we
always read a block of 2×2 texels (in the spirit of linear filtering)
we exclude the texels shaded in red from the final result.

will only consider two-dimensional textures, but generalization to a
higher dimension is straightforward.

We initially compute two mipmap pyramids for each texture that is
subject to interval-based texture lookup. As shown in Figure 5, each
element in a mipmap is computed as the component-wise minimum
or maximum value of the four corresponding texels immediately
below it in the pyramid. The final result can be seen as a mipmap
pyramid of bounding intervals. This type of pre-computation can
easily be handled by the driver, similar to how standard mipmaps
are auto-generated.

When performing a texture lookup, we wish to compute the bound-
ing interval of the texture data over an axis-aligned bounding box,
which is the texture coordinate interval. First, we compute an ap-
propriate mipmap level as:

λ =
⌈

log2

(
max(tx− tx, ty− ty)

)⌉
(5)

where t̂ = (t̂x, t̂y) is a two-dimensional interval of the unnormalized
integer texture coordinates (i.e., they include the dimensions of the
texture). These are conservatively rounded so that ti is floored and
ti is ceiled for i ∈ {x,y}.

When transformed to this mipmap level, t̂ will never be more than
one texel wide in any dimension, and always least 1/2 texels wide
in the widest dimension. Thus, we get four possible cases of tex-
ture coordinate intervals as illustrated in Figure 6. Here, we deviate
slightly from Moule and McCool [2002] who used these cases to
determine how many texels they need to sample. Instead, we al-
ways sample a square of 2× 2 texels with the lower left corner at
the texel of (tx, ty), in the access scheme used for normal linear in-
terpolation. The result of the texture lookup is then computed as the
bounds of the colors of the texels that actually overlap the texture
coordinate interval. That is, we discard the texels shaded in red in
Figure 6. Since the mipmap transformed t̂ will be rounded to the
nearest integer coordinates, this overlap test can be implemented

Figure 7: Left: The cube mapping problem. A texture coordinate
interval (the red box) may map to several sides on the cube (the
projection of the red box), but current hardware only allows one
side at a time to be accessed. Right: Min-Max mipmap generation
for interval-based cube mapping. Only a small part of the cubemap
is shown here. We use texels from both sides of an edge (the green
regions), and texels from three sides in the corners (the red region).

very efficiently by comparing just the final bit.

It can be shown that this texture lookup process is conservative with
respect to filtered texture lookups, such as bi-linear, tri-linear and
anisotropic filtering, as long as the filtered texture lookups compute
derivatives using finite differences, and as long as the texture filter
does not extend outside the area spanned by the derivatives. The
texture lookup also natively supports all different kinds of wrap-
ping modes, such as clamping and repeating. The appropriate wrap-
ping mode can simply be applied to the interval coordinates, after
mipmap level computation, to get the expected result. Our texture
lookup process is essentially as costly as a normal tri-linearly fil-
tered texture lookup. The biggest differences are that we need to be
able to sample from the same level in two different mipmap pyra-
mids rather than two adjacent levels, and that we compute the final
result as a bounds rather than using linear interpolation.

Discussion If more texture units are available, it is possible to
improve the bounds of the interval texture lookup. The normal tex-
ture lookup assumes that we can read a block of 2× 2 texels at a
time. If we have enough hardware resources to read a block of 4×4
texels instead, then we can move one level down in the mipmap hi-
erarchy and get a more accurate result.

Another important observation is that we only need to create the
mipmap levels that are actually used in the cull program. This
optimization is particularly important for algorithms taking place
in screen space such as order independent transparency (see Sec-
tion 6). In this case, we know beforehand that we only need the
texture at its base level and the mipmap level that corresponds to a
tile on the screen. Note that such tile information is already avail-
able in modern hardware and can be read “for free”. The minimum
and maximum depth values can, for instance, be found in the hi-
erarchical depth culling unit. It is also possible (but less likely)
that the min and max colors are already computed for compression
purposes, otherwise we need to compute them. Extensions for ren-
dering to the base and tile mipmap level of a texture would greatly
accelerate screen space algorithms.

A.3 Cube Map Lookups

Cube maps present more of a challenge than normal texture
lookups. Normally, a cube map is accessed through a vector co-
ordinate (x,y,z), and thus we get a three-dimensional coordinate
interval. As can be seen in the left part of Figure 7, we want to
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Figure 8: Our method for projecting the bounds of a texture coor-
dinate interval on the cube map. Here x is the major axis, and we
want to find the texture coordinate interval when projected on any
of the x-sides of the cube map. The figure illustrates the six possi-
ble cases of texture coordinate intervals, and the projected extreme
points. The table summarizes the different cases of extreme points
and show how they can be determined using signs.

project that interval onto the cube map and compute the interval of
the texture data under the projected area.

There are two problems with this approach. First, it is expensive to
project a cube onto the shape of another cube. Second, hardware is
typically designed with the restriction that each texture lookup may
only access a single side of the cube. Since we strive for as modest
hardware modifications as possible, we propose an alternate method
which trades accuracy3 for a simpler algorithm.

We compute the min/max mipmap pyramid for the cube map, using
the same approach as for two-dimensional textures. However, near
edges and corners of the cube, special treatment is necessary as
shown to the right in Figure 7. For the edges, we compute the
mipmap color as the min or max of four texels on both sides of
the edge, and for the corners we compute the mipmap color as the
min or max of four texels on all three sides emanating from that
corner. Texels on opposite sides of edges will therefore share the
same colors in higher mipmap levels. Similarly, the three texels in
a corner will also share a common color. It should be noted that the
highest level mipmap will contain the min and max value over the
full cube, as expected.

We can now use this mipmap pyramid to do conservative cube map
lookups with accesses to only one side of the cube. First, we com-
pute the interval-based equivalent of the major axis. Given a texture
coordinate interval t̂ = (t̂x, t̂y, t̂z), we define the major axis, i, as the
axis where ti and ti have the same sign, and where min(|ti|, |ti|) is
maximized. This is essentially the axis where the texture coordinate
interval does not contain the origin, and lies nearest to a cube map
face. If ti and ti have different signs over all axes, then we cannot
find a major axis. However, this can only happen if the origin lies
within the texture coordinate interval. In this case, the texture coor-
dinate interval will project onto the entire cube map. We can easily
handle this by choosing the highest mipmap level, and sample an
arbitrary cube map face.

Once we have found a major axis, we conservatively project the tex-
ture coordinate interval on the corresponding side of the cube map.
The projection is done by projecting the bounds of each of the two
remaining axes separately. Figure 8 shows such a projection, where
x is the major axis, and y is the axis for which we want to project
the bounds. The figure shows the six possible cases of texture co-
ordinate intervals (note that no interval may cross the y-axis since
the x-axis would not be a major axis in that case), and the extreme

3In the sense of interval width. The algorithm is still fully conservative.

points we have to project to compute the bounds. Fortunately, it is
very easy to determine which these extreme points are. It is suffi-
cient to look at the signs of the texture coordinate interval, as shown
in the table in Figure 8.

We project the extreme points for the remaining two axes to form a
two-dimensional projected coordinate interval. This interval is used
to compute a mipmap level and perform a two-dimensional texture
lookup, identically to the method described in Section A.2.

It is possible to show that this algorithm is conservative because
of the information-bleeding during mipmap generation. Further-
more, it is computationally inexpensive. Finding the major axis,
and projection can be expected to be twice as costly as a normal
cube mapping implementation, which is reasonable considering we
use intervals. In addition we need the tabulated function from Fig-
ure 8, which is already very inexpensive.


