
PyFX
A Framework for Real-Time

Graphics Effects

Lennart Ohlsson
Lund University

http://graphics.cs.lth.se/pyfx



Outline

• Programmable GPUs
• Effect frameworks
• Real-time effects in Python 
• Features and benefits
• General purpose number crunching 

on the GPU



Shaders

• Surface details as algorithms, 
not images

• Established technique in 
animated movies

• Renderman Shading Language
• Cinematic graphics may take 

time



Programmable GPUs

• Real-time graphics requires GPUs
• Modern GPUs more complex than CPUs
• Specialized and very high performance
• Programmatic control
• Real-time shaders
• Programmed in high-level languages, 

for example Cg



Integrating shaders into application

• To be done by application on the CPU
• Compiling and loading shaders
• Providing shader parameters 
• Setting up rendering pipeline 
• Associating textures to shaders
• Running multiple rendering passes
• Using intermediate render targets

• Rather low level APIs
• Creates unnecessary dependencies



Effect frameworks

• “Effects”- units of encapsulation
• Existing effect frameworks

• CgFX, DirectX Effects
• Effects specified in declarative mini-

languages
• Still insufficient

• Encapsulation incomplete
• Lack important features
• Not extensible



PyFX
• A Python based effect framework
• Effects are specified in Python
• Framework implemented in Python
• Designed to be independent of graphics 

platform and shader runtime system
• Current implementation on PyOpenGL

and Cg runtime (via SWIG)



A simple effect – Refraction
from FX import *

environmentTexture = Texture(...)
environmentMap = Sampler(environmentTexture, ...)

theta = 1.1    # index of refraction

refract = Cg( """ ... Cg code ... """)

passes =
[Render(

VertexShader = refract.vertex(target=arbvp1),
FragmentShader = refract.fragment(target=arbfp1)

)]

• almost like CgFX so far ...



Generic application interface

e = Effect(”refract”, theta=1.2)
...

while e.hasMorePasses():
render(geometry)

• shader parameters bound by name matching
• instance or class variables on effect
• standard variables from the graphics API
• vertex attribtues on geometry

• complete encapsulation of effects



Another effect - Glow

passes =
[Render(Target=blurBuffer, Color=GlowColor)] +
gaussian2DBlur +
[ImageProcessing(Source=blurTexture,

AlphaBlendEnable=True,
SrcBlend=SRCALPHA,
DestBlend=ONE)]

• Multiple passes
• Needs features not in CgFX

• render to texture
• passes without geometry

• were easily added to framework



Glow continued
from convolution import *

gaussian2DBlur =
3*[gaussian1DBlur(1,0),

gaussian1DBlur(0,1)]

def gaussian1DBlur(x,y):
vs = convolve4x1D.vs(...)
fs = convolve4x1D.fs(...)
return ImageProcessing(

Target=blurBuffer,
VertexShader=vs,
FragmentShader=fs)

• Using ordinary programming language 
features make effects easier to write



GPGPU

• Using GPU as general purpose number 
cruncher

• Typical user scenario is interactive 
calculator

• Perfect match for a script language
• Example: Image processing


	PyFXA Framework for Real-TimeGraphics Effects
	Outline
	Shaders
	Programmable GPUs
	Integrating shaders into application
	Effect frameworks
	PyFX
	A simple effect – Refraction
	Generic application interface
	Another effect - Glow
	Glow continued
	GPGPU

