
Copy & Paste Redeemed

Christoph Reichenbach

Copy & Paste

int dist(coord a, coord b) {
int dx = abs(a.x - b.x);
int dy = abs(a.y - b.y);
return std::max(dx, dy);

}

int dist(coord a, coord b) {
int dx = abs(a.x - b.x);
int dy = abs(a.y - b.y);
return std::max(dx, dy); std::hypot(dx, dy) ;

}

int distG(coord a, coord b,
int (*f)(int, int)) {

int dx = abs(a.x - b.x);
int dy = abs(a.y - b.y);
return f (dx, dy);

}

The Benefits of Copy & Paste

Five C++ programmers asked to reimplement missing clone
Abstraction:

Users tend to prefer abstraction
7/1012/15 tasks completed in time
Factor 2-3 slower than abstraction

Copy-Paste:
15/15 tasks completed in time
Universally faster (except for a single tie)

0 2 4 6

2

4

0
1
2
3
4
5

0 20 40 60

2

4

0
1
2
3
4
5

0 10 20 30

2

4

0
1
2
3
4
5

0 5 10 15

2

4

0
1
2
3
4
5

0 10 20

2

4

0
1
2
3
4
5

Copy-paste programming is great!?

The Cost of Clones

“In this paper we provide strong evidence
that inconsistent clones constitute a major
source of faults, which means that cloning

can be a substantial problem during
development and maintenance unless
special care is taken to find and track
existing clones and their evolution.”

Do Code Clones Matter?

Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, Stefan Wagner
Institut für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany
{juergens,deissenb,hummelb,wagnerst}@in.tum.de

Abstract

Code cloning is not only assumed to inflate mainte-
nance costs but also considered defect-prone as inconsistent
changes to code duplicates can lead to unexpected behavior.
Consequently, the identification of duplicated code, clone
detection, has been a very active area of research in recent
years. Up to now, however, no substantial investigation of
the consequences of code cloning on program correctness
has been carried out. To remedy this shortcoming, this pa-
per presents the results of a large-scale case study that was
undertaken to find out if inconsistent changes to cloned code
can indicate faults. For the analyzed commercial and open
source systems we not only found that inconsistent changes
to clones are very frequent but also identified a significant
number of faults induced by such changes. The clone de-
tection tool used in the case study implements a novel algo-
rithm for the detection of inconsistent clones. It is available
as open source to enable other researchers to use it as basis
for further investigations.

1. Clones & correctness

Research in software maintenance has shown that
many programs contain a significant amount of duplicated
(cloned) code. Such cloned code is considered harmful for
two reasons: (1) multiple, possibly unnecessary, duplicates
of code increase maintenance costs and, (2) inconsistent
changes to cloned code can create faults and, hence, lead
to incorrect program behavior [20, 29]. While clone detec-
tion has been a very active area of research in recent years,
up to now, there is no thorough understanding of the degree
of harmfulness of code cloning. In fact, some researchers
even started to doubt the harmfulness of cloning at all [17].

To shed light on the situation, we investigated the ef-
fects of code cloning on program correctness. It is impor-
tant to understand, that clones do not directly cause faults
but inconsistent changes to clones can lead to unexpected
program behavior. A particularly dangerous type of change
to cloned code is the inconsistent bug fix. If a fault was

found in cloned code but not fixed in all clone instances,
the system is likely to still exhibit the incorrect behavior.
To illustrate this, Fig. 1 shows an example, where a missing
null-check was retrofitted in only one clone instance.

This paper presents the results of a large-scale case study
that was undertaken to find out (1) if clones are changed in-
consistently, (2) if these inconsistencies are introduced in-
tentionally and, (3) if unintentional inconsistencies can rep-
resent faults. In this case study we analyzed three commer-
cial systems written in C#, one written in Cobol and one
open-source system written in Java. To conduct the study
we developed a novel detection algorithm that enables us
to detect inconsistent clones. We manually inspected about
900 clone groups to handle the inevitable false positives and
discussed each of the over 700 inconsistent clone groups
with the developers of the respective systems to determine
if the inconsistencies are intentional and if they represent
faults. Altogether, around 1800 individual clone group as-
sessments were manually performed in the course of the
case study. The study lead to the identification of 107 faults
that have been confirmed by the systems’ developers.

Research Problem Although most previous work agrees
that code cloning poses a problem for software mainte-
nance, “there is little information available concerning the
impacts of code clones on software quality” [29]. As the
consequences of code cloning on program correctness, in
particular, are not fully understood today, it remains unclear
how harmful code clones really are. We consider the ab-
sence of a thorough understanding of code cloning precari-
ous for software engineering research, education and prac-
tice.

Contribution The contribution of this paper is twofold.
First, we extend the existing empirical knowledge by a case
study that demonstrates that clones get changed inconsis-
tently and that such changes can represent faults. Second,
we present a novel suffix-tree based algorithm for the detec-
tion of inconsistent clones. In contrast to other algorithms
for the detection of inconsistent clones, our tool suite is
made available for other researchers as open source.

“Several studies show that software
systems with code clones are more
difficult to maintain than the ones

without them [118, 18]. The
tendency of cloning not only

produces code that is difficult to
maintain, but may also introduce

subtle errors [51, 168, 169].”

A Survey on Software Clone Detection Research∗

Chanchal Kumar Roy and James R. Cordy

September 26, 2007

Technical Report No. 2007-541
School of Computing

Queen’s University at Kingston
Ontario, Canada

Abstract

Code duplication or copying a code fragment and then reuse by pasting with or
without any modifications is a well known code smell in software maintenance. Several
studies show that about 5% to 20% of a software systems can contain duplicated code,
which is basically the results of copying existing code fragments and using then by
pasting with or without minor modifications. One of the major shortcomings of such
duplicated fragments is that if a bug is detected in a code fragment, all the other
fragments similar to it should be investigated to check the possible existence of the
same bug in the similar fragments. Refactoring of the duplicated code is another prime
issue in software maintenance although several studies claim that refactoring of certain
clones are not desirable and there is a risk of removing them. However, it is also widely
agreed that clones should at least be detected.

In this paper, we survey the state of the art in clone detection research. First, we
describe the clone terms commonly used in the literature along with their corresponding
mappings to the commonly used clone types. Second, we provide a review of the existing
clone taxonomies, detection approaches and experimental evaluations of clone detection
tools. Applications of clone detection research to other domains of software engineering
and in the same time how other domain can assist clone detection research have also
been pointed out. Finally, this paper concludes by pointing out several open problems
related to clone detection research.

∗This document represents our initial findings and a further study is being carried on. Reader’s feedback
is welcome at croy@cs.queensu.ca.

The Reuse Discrepancy

Copy-Paste-Modify Create Abstractions

+ Fast
– Creates technical debt
– Clones bugs
– Bloats code base

+ Avoids cloning
+ Opportunity to develop insights
– Slow
– Complex ⇒ error-prone

A New Workflow

int dist(coord a, coord b) {
int dx = abs(a.x - b.x);
int dy = abs(a.y - b.y);
return std::max(dx, dy);

}

int dist(coord a, coord b) {
int dx = abs(a.x - b.x);
int dy = abs(a.y - b.y);
return std::max(dx, dy); std::hypot(dx, dy) ;

}

int dist(coord a, coord b) {
int dx = abs(a.x - b.x);
int dy = abs(a.y - b.y);
return std::max(dx, dy); std::hypot(dx, dy) ;

}

int distG(coord a, coord b,
int (*f)(int, int)) {

int dx = abs(a.x - b.x);
int dy = abs(a.y - b.y);
return f (dx, dy);

}

An Example
void function1()
{

fake db init(&fakedb, true);
run mode = MODE DEBUG;
start(&service);

}
void function2()
{

fake db init(&fakedb, false);
run mode = MODE INFO;
start(&service);

}
void function3()
{

db init();
db sanity check();
run mode = MODE REGULAR;
start(&service);

}
void function1()
{

b(c,d);
y = f1;
x(z);

}
void function2()
{

b(c,e);
y = f2;
x(z);

}
void function3()
{

b2();
n();
y = f3;
x(z);

}

a

b

c d

y f1 x

z

a

b

c e

y f2 x

z

a

b2 n y f3 x

z
void fnMerged(int functionId,

int fValue, bool bParam)
{

if (functionId == 1
|| functionId == 2) {
b(c, bParam);

}
if (functionId == 3) {

b2();
n();

}
y = fValue;
x(z);

}
void function1() {

fnMerged(1,f1,d);
}

Automating Abstraction

a

b

c d

y f1 x

z

a

b

c e

y f2 x

z

a

b2 n y f3 x

z

merge

a

M(12,3)

b

c M(1,2)

d e

b2

M(3)

n

y M(1,2,3)

f1 f2 f3

x

z

a

M(12,3)

b

c M(1,2)

d e

b2

M(3)

n

y M(1,2,3)

f1 f2 f3

x

z

Merge Strategies

g(. . .) {

M(1,2)

f(1) f(2)

g(true) void g(boolean opt)
if opt f(1) else f(2)
...

g(opt1) void g(enumty opt)
switch (opt) {
case opt1: f(1) ; break;
case opt2: f(2) ; break;
}
...

g([](){ f(1) }) void g(int (*fun)(void))
x = fun();
...

g(new ArgObj() {
int getf() {

return f(1) ;
}

});

void g(ArgObj arg)
x = arg.getf();
...

Clone Fusion Approaches

a

b
c d

y f1 x
z

a

b
c e

y f2 x
z

a

b2 n y f3 x
z

merge

a

M(12,3)

b
c M(1,2)

d e

b2

M(3)
n

y M(1,2,3)
f1 f2 f3

x
z

a

M(12,3)

b
c M(1,2)

d e

b2

M(3)
n

y M(1,2,3)

f1 f2 f3

x
z

Automated Software Engineering
https://doi.org/10.1007/s10515-018-0238-5

Cleaning up copy–paste clones with interactive merging

Krishna Narasimhan1 · Christoph Reichenbach2 · Julia Lawall3

Received: 19 September 2016 / Accepted: 11 June 2018
© The Author(s) 2018

Abstract
Copy-paste-modify is a form of software reuse inwhich developers explicitly duplicate
source code. This duplicated source code, amounting to a code clone, is adapted for
a new purpose. Copy-paste-modify is popular among software developers, however,
empirical evidence shows that it complicates software maintenance and increases the
frequency of bugs. To allow developers to use copy-paste-modify without having to
worry about these concerns, we propose an approach that automaticallymerges similar
pieces of code by creating suitable abstractions. Because different kinds of abstractions
may be beneficial in different contexts, our approach offers multiple abstractionmech-
anisms, which were selected based on a study of popular open-source repositories. To
demonstrate the feasibility of our approach, we have designed and implemented a pro-
totype merging tool for C++ and evaluated it on a number of code clones exhibiting
some variation, i.e., near-miss clones, in popular Open Source packages. We observed
that maintainers find our algorithmically created abstractions to be largely preferable
to the existing duplicated code.

Keywords Program analysis · Static analysis · Clone management · Source code
analysis

B Christoph Reichenbach
christoph.reichenbach@cs.lth.se

Krishna Narasimhan
knarasimhan@itemis.de

Julia Lawall
julia.lawall@lip6.fr
https://pages.lip6.fr/Julia.Lawall/

1 Itemis, Faßnachtstraße 1, 70378 Stuttgart, Germany

2 Department of Computer Science, Lund University, Lund, Sweden

3 Sorbonne University/Inria/LIP6, Paris, France

123

define the Nesting Structure Tree (NST), as the tree that con-
tains only the control predicate nodes (e.g., if, for state-
ments) of the original PST. For example, the NST for the PST
of Fig. 1c contains only nodes root,A,D, and F.

2.2 Program Dependence Graph

The Program Dependence Graph (PDG) [17] is a directed
graph with multiple edge types, in which the nodes
represent the statements of a function or method, and the
edges represent control and data flow dependencies
between statements. More specifically, we distinguish two
kinds of statements, namely control predicate statements
(i.e., statements with a body e.g., if, for) and non-
predicate statements (i.e., leaf statements without a body).
In the case of a control predicate statement, we consider
only its conditional expression(s) (i.e., we ignore the state-
ments inside its body) when computing dependencies
from/to it. In the case of a leaf statement, we consider the
entire statement (i.e., all expressions inside it) when com-
puting dependencies from/to it.

A control dependence edge denotes that the execution of
the statement at the end point of the edge depends on the
control conditions of the control predicate statement at the
start point of the edge. A data dependence edge is always
labeled with a variable v and denotes that the statement at
the end point of the edge is using the value of v, which has
been previously modified by the statement at the start point
of the edge. If the data dependence is carried through a loop
node l, then it is considered as a loop-carried dependence.

The PDG representation used in this paper is extended in
two ways. First, we introduce composite variables [18] repre-
senting the state of the objects being referenced within the
body of a method, and create additional data dependencies
for these variables by analyzingmethod calls thatmaymodify
or use the state of the referenced objects. Second, we add two
more types of edges in the PDG, which are used in the exami-
nation of preconditions (Section 3.4). These edges are anti-
dependencies and output-dependencies. An anti-dependence
edge due to variable v denotes that the statement at the end
point of the edge is modifying the value of v, which has been
used by the statement at the start point of the edge (i.e., the
opposite of a data dependence). An output-dependence edge
due to variable v denotes that both statements at the start and
end points of the edgemodify the value of v.

3 APPROACH

Our approach is designed to process two different forms of
input:

1) Two code fragments within the body of the same
method, or different methods, reported as clones by
a clone detection tool.

2) Two method declarations considered to be dupli-
cated (i.e., method-level clones), or containing dupli-
cate code fragments somewhere inside their bodies.

In a nutshell, our approach for assessing the refactorabil-
ity of two clone fragments comprises three major steps, as
shown in Fig. 2:

Fig. 2. An overview of the proposed refactorability analysis approach.

Fig. 1. Generating the program structure tree from a control flow graph with SESE regions.

TSANTALIS ET AL.: ASSESSING THE REFACTORABILITY OF SOFTWARE CLONES 1057

Tsantalis, Krishnan,
Mazinanian:
Alternative approach
JDeodorant tool
Combined with clone detection

Assessing the Refactorability
of Software Clones

Nikolaos Tsantalis,Member, IEEE, Davood Mazinanian, and Giri Panamoottil Krishnan

Abstract—The presence of duplicated code in software systems is significant and several studies have shown that clones can be

potentially harmful with respect to the maintainability and evolution of the source code. Despite the significance of the problem, there is

still limited support for eliminating software clones through refactoring, because the unification and merging of duplicated code is a very

challenging problem, especially when software clones have gone through several modifications after their initial introduction. In this

work, we propose an approach for automatically assessing whether a pair of clones can be safely refactored without changing the

behavior of the program. In particular, our approach examines if the differences present between the clones can be safely

parameterized without causing any side-effects. The evaluation results have shown that the clones assessed as refactorable by our

approach can be indeed refactored without causing any compile errors or test failures. Additionally, the computational cost of the

proposed approach is negligible (less than a second) in the vast majority of the examined cases. Finally, we perform a large-scale

empirical study on over a million clone pairs detected by four different clone detection tools in nine open-source projects to investigate

how refactorability is affected by different clone properties and tool configuration options. Among the highlights of our conclusions, we

found that a) clones in production code tend to be more refactorable than clones in test code, b) clones with a close relative location

(i.e., same method, type, or file) tend to be more refactorable than clones in distant locations (i.e., same hierarchy, or unrelated types),

c) Type-1 clones tend to be more refactorable than the other clone types, and d) clones with a small size tend to be more refactorable

than clones with a larger size.

Index Terms—Code duplication, software clone management, clone refactoring, refactorability assessment, empirical study

Ç

1 INTRODUCTION

CODE duplication has been recognized as a potentially
serious problem having a negative impact on the main-

tainability, comprehensibility, and evolution of software
systems. Over the years, the software clone research com-
munity has developed several techniques for the detection
and analysis of duplicated code [1], and more recently has
focused on clone management activities [2], such as tracing
clones in the history of a project, analyzing the consistency
of modifications to clones [3], updating incrementally clone
groups as the project evolves [4], and prioritizing the refac-
toring of clones [5], [6].

In addition to the development of tools and techniques
for the detection and management of software clones,
several researchers investigated empirically the effect of
duplicated code on maintenance effort and cost [7], error-
proneness due to inconsistent updates [8], [9], software
defects [10], change-proneness [11], and change propaga-
tion [12]. However, to the best of our knowledge, there is no
study investigating the refactorability of software clones.
What portion of the clones detected by tools can be actually refac-
tored? Additionally, there is a lack of tools that can automat-
ically analyze software clones to determine whether they

can be safely refactored without changing the program
behavior. Refactorability analysis is an important missing fea-
ture from clone management, since it could be used to filter
clones that can be directly refactored, when the developers
are interested in finding refactoring opportunities for dupli-
cated code. In this way, maintainers can focus their effort on
parts of the code that can immediately benefit from refactor-
ing, and thus expedite maintainability improvement.

In this paper, we present an approach that takes as input
two clone fragments detected from any tool and applies
three steps to determine whether they can be safely refac-
tored (i.e., without any side effects). First, our approach
finds code fragments with identical nesting structures
within the input clones that could serve as potential refactor-
ing opportunities. We consider that two code fragments can
be unified, and therefore refactored, if they share a common
nesting structure. In the second step, our approach finds a
mapping between the statements of the code fragments
that maximizes the number of mapped statements and min-
imizes the number of differences between the mapped state-
ments by exploring the search space of alternative mapping
solutions. This is generally an NP-hard problem [13], and
since exhaustive search is impractical, our solution relies on
heuristics to reduce the search space. From the refactoring
point of view, we support that a mapping solution with a
smaller number of differences between the mapped state-
ments has a higher refactorability compared to an alternative
mapping solution with a larger number of differences. The
reason is that some differences cannot be safely parameter-
ized, and thus a larger number of differences increases the
probability of side effects from the parameterization of
differences. Finally, in the last step, the differences between

� The authors are with the Department of Computer Science and Software
Engineering, Concordia University, Montreal, Quebec, Canada H3G 1M8.
E-mail: {nikolaos.tsantalis, giri.krishnan}@concordia.ca,
d_mazina@cse.concordia.ca.

Manuscript received 8 Sept. 2014; revised 5 May 2015; accepted 16 June 2015.
Date of publication 21 June 2015; date of current version 13 Nov. 2015.
Recommended for acceptance by A. Hassan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2448531

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 11, NOVEMBER 2015 1055

0098-5589� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Research Results

Selected near-clones from Open Source C++ projects (Facebook
rocksdb, Google protobuf, Oracle node-oracledb, mongodb, . . .)
Used our tool to merge
Manual cleanup: Formatting, variable renaming
Phase 1 (Early prototype, limited to two-way merge):

Submitted Accepted Rejected Pending
8 1 4 3

⇒ Feedback: Need multi-way merge, separate merge-points
Phase 2:

Submitted Accepted Rejected Pending
10 9 0 1

Effective as a Refactoring Tool

Summary: Copy-Paste-Edit-Merge Cycle

Clones are technical debt
Clone-merging can be
atomated

Automated merge support WIP
Initial results promising

Copy&Paste

Edit

Merge

http://transparent-abstractions.org

