
Do Fewer,
Do Smarter,
Do Faster
- Mutation testing in practice

Smart Software Engineering Tools
Apr 25, 2019

Markus Borg

@mrksbrg

mrksbrg.com

RISE Research Institutes of Sweden AB (CC Flickr: dalbera)

Who is Markus?

• Development engineer, ABB 2007-2010

– Process automation

– Editor and compiler development

• Senior researcher, RISE 2015-

• PhD student, Lund University 2010-2015

– Requirements engineering and testing

– Traceability, change impact analysis

Non-research Markus

• Adjunct lecturer (20%), Lund University

– Teaching software engineering

• Member of the board, Swedsoft

– Influence decision makers

– Write comment letters

– Facilitate networking

Project Goal

▪ Help software teams to increase the

development speed without sacrificing

quality

▪ Advance the state-of-the-art in test

automation

Contemporary dilemma. Modern software

teams must optimize for both

▪ Few bugs

▪ Ease of change

5

Plan

Design

Develop

Maintain

Execute

Analyze

Take

action

Three years

34 partners

€ 21,752,000

Mutation Testing

Do you

trust your

test cases?

Sten Vercammen

(Staff Sgt. Ryan Callaghan, US Air Force)

Ali Parsai

High Quality Test

Suite

Fewer Bugs

How do you know that your test suite is good?

Go-to solution: Coverage

• Shows how test code exercises

production code

• Does not reveal how well we

tested the production code

– Necessary, but not sufficient

We need to test
our test cases

fault injection!

Test Suite

Software

11

Fault Injection

Mutant

12

SurvivedKilled

13

14

Mutation Operator

a-b a+b

a<<b a>>

a!=b a==b

a<=b a<b

!a a

B::bA::b

a(b,c) a(b)

a|ba&b

Competent programmer hypothesis

• Developers are skilled at programming

• Source code is almost correct

• Most software faults are due to small

syntactic errors

Coupling effect

• Simple faults cascade to form other

emergent faults

• Tests that detect small syntactic errors

also detect complex issues

Mutation score

Number of killed mutants

Total number of mutants

Computationally very expensive!

• One compilation per mutant

• Rerun test cases for each mutant

Do Fewer,
Do Smarter,
Do Faster

Three key strategies to make it feasible

• Do fewer - reducing the number of mutants to execute

• Do smarter – run mutation testing in less naïve setups

• Do faster – optimize execution of mutation testing steps

20

Do fewer

21

Change-based mutation testing

• Run mutation testing for

individual pull requests

Fewer mutants generated

Fewer results to analyze

Do fewer

Change-based mutation testing

Ali Parsai

• Little Darwin (OSS)

– https://littledarwin.parsai.net/

• C# mutation testing tool

– By Mille Boström, not yet OSS

https://littledarwin.parsai.net/

Do smarter

Focal methods = foci of test cases

• Run only test cases that actually test the code where you

introduced the mutant

Sten Vercammen

Tests Product

faster kills

Do smarter

Toward mutation testing in the cloud

• Parallelize the work in DiMuTesTas tool (OSS)

– https://github.com/Sten-Vercammen/DiMuTesTas

• Investigate speed-up and bottlenecks

Sten Vercammen

Do smarter

Lessons learned

• Time to compile time vs. time to test varies greatly

Speed-ups of 12x-13x with 16 workers

Sten Vercammen

Do faster

26

Mutant schemata

26

Generate mutants

Compile for

each mutant

Do faster

Mutant schemata
Compile one

big meta-

mutant
Insert mutants

BuildGenerate mutants

Do faster

Mutant schemata

• Big meta-mutants replace numerous seperate mutants

– Add extra parameters to selectively activate mutants

a + b > c arithOp(a, b, X) > c

int arithOp(int op1, int op2, int location) {

switch(variant(location)) {

case aoADD: return op1 + op2;

case aoSUB: return op1 - op2;

case aoMULT: return op1 * op2;

…

}

}
Reduced compilation time

Do faster

Mutant schemata

• Ongoing work with SAAB and University of Antwerp

• DexTool (OSS)

– https://github.com/joakim-brannstrom/dextool

Sten Vercammen

Christoffer Nylén

Wrap-up

Do fewer,

Do smarter,

Do faster,

Combined approaches => tech transfer!

Do Smarter

Test 1

Test 2

Test 3

M

Test prioritization /

Focal methods

Distribution

+

Do Fewer

Change-

based

mutations

Prune equivalent,

invalid, unreachable

CI server

Affected

mutants +

Do Faster

Mutant schemata

Our offer: Tools, support

• Little Darwin, DiMuTesTas (Java)

• DexTool (C/C++)

• Change-based Mutation (C#)

Our offer: Tools, support… and Sten!

• Little Darwin, DiMuTesTas (Java)

• DexTool (C/C++)

• Change-based Mutation (C#)

• Sten Vercammen

– Joint PhD program Antwerp+Lund

– 6 months in Sweden (2020 or later)

Markus Borg

@mrksbrg

mrksbrg.com

RISE Research Institutes of Sweden AB (CC Flickr: dalbera)
© Musée des arts et métiers-CNAM

• Little Darwin, DiMuTesTas (Java)

• DexTool (C/C++)

• Change-based Mutation (C#)

• Sten Vercammen

Our offer:

