
BluEJAMM: A Bluespec Embedded Java Architecture
with Memory Management

Flavius Gruian
Dept. of Computer Science

Lund University
221 00 Lund, Sweden

flavius.gruian@cs.lth.se

Mark Westmijze
Dept. of Computer Science

University of Twente
Enschede, The Netherlands

m.westmijze@student.utwente.nl

Abstract

This paper presents BLUEJAMM, a prototype architec-
ture suitable for embedded systems based on a Java na-
tive processor. BLUEJEP, the processor, which is a mi-
croprogrammed pipelined stack machine, and its hardware
memory management unit were developed in Bluespec Sys-
temVerilog (BSV). A relatively new high-level of abstrac-
tion hardware description language, BSV proved to be an
excellent choice for rapid prototyping and architecture ex-
ploration. The architecture, which has been implemented
and tested on a Xilinx FPGA, is currently used to evaluate
a number of interesting Java specific techniques, such as
runtime bytecode folding and real-time garbage collection.

1 Introduction

With its attractive features, such as object orienta-
tion, runtime safeness, automatic memory management and
portability, Java is today popular, not only for desktop ap-
plications, but for embedded and even real-time systems.
However, desktop Java environments are highly demand-
ing in terms of resources and performance, making them
less suitable for small embedded systems. Furthermore,
real-time systems require accurate timing and predictability,
which is impossible to achieve with typical Java environ-
ments due to dynamic class loading and garbage collection.

In this context, a number of embedded and real-time so-
lutions based on Java have appeared in the last few years.
Starting from pure software virtual machines [11, 19] and
Java-to-C translation [13,14] to processors with direct byte-
code execution [1, 6, 16, 18, 20], a vast variety of more or
less complete solutions have been presented.

In this paper we describe BLUEJAMM, a Bluespec
based Embedded Java Architecture with Memory Manage-

ment. Our solution has its starting point in the Java Opti-
mized Processor (JOP, [16]), which is a micro-programmed
stack machine. However, BLUEJEP, our processor, has a
somewhat different architecture [9], including a memory
manager, and has been completely written in Bluespec Sys-
temVerilog (BSV [3]). BSV is a rule based, strongly-typed,
declarative hardware specification language making use of
Term Rewriting Systems [10] to describe computation as
atomic state changes. A BSV source can be translated by a
BSV compiler to Verilog code, for synthesis with a regular
tool flow, or to an executable simulation, for test and debug.
Although relatively new, Bluespec seems to have captured
the interest of industry and academia, as shown by the BSV
designs making their appearance (i.e. [4, 5, 21]).

The paper is organized as follows. Section 2 introduces
the BLUEJAMM system architecture and a few possible
configurations. Section 3 briefly presents the BLUEJEP
processor, while section 4 focuses on the memory manage-
ment and garbage collection unit. A few experimental re-
sults and implementation features make the subject of sec-
tion 5. Section 6 presents some of the related work and
finally, section 7 summarizes our work.

2 System Architecture and Configurations

The BLUEJAMM architecture is a typical system-on-
chip, designed for embedded applications, implemented in
our case on a FPGA. The simplest and smallest configura-
tion, shown on the left in Figure 1, contains the BLUEJEP
processor, a RAM (storing the Java application and heap),
a serial port (RS232), a timer, and some general purpose
input/output (LEDs and switches), all connected through
a system bus (OPB). Memory management is carried out
in software in this configuration, using a stop-the-world
garbage collection mechanism.

For those applications that can trade-off device area for
higher performance, the BLUEJAMM architecture offers

On-chip Peripheral Bus (OPB)

BlueJEP
Java

Processor

Timer

RAM

RS232 GPIO

On-chip Peripheral Bus (OPB)

BlueJEP
Java

Processor

Timer

Dual Port
RAM

RS232 GPIO

MMU
(RAM)

On-chip Peripheral Bus (OPB)

BlueJEP
Java

Processor

Timer

 RAM

RS232 GPIO

MMU
(OPB)

Figure 1. Configurations of the BluEJAMM system architecture. Left: software memory management.
Middle: with MMU when dual port memories are available. Right: with MMU using the system bus.

a hardware memory management unit (MMU). The MMU
takes care of allocating new objects and carries out the
garbage collection much more efficiently than the software
counterpart. For this, the MMU needs access to the heap,
which is achieved either through a second port, if dual port
memories are available (see Figure 1, middle) or through the
system bus otherwise (see Figure 1, right). Naturally, the
dual-port solution offers higher performance for two rea-
sons. First, the direct memory access is faster than the ac-
cess through the system bus. In particular for our platform,
data access has 1 clock cycle delay for Xilinx block RAMs
compared to 3 clock cycles delay on the OPB. Secondly,
the MMU does not have to compete with the processor for
the same resource in order to carry out the work. This last
issue can become a problem especially in the case of con-
current garbage collection. Currently, the MMU supports
only stop-the-world garbage collection, but a fully concur-
rent version is under development, following the ideas first
introduced by the authors in [8].

3 BlueJEP, the native Java processor

The processor architecture that we use in system has its
roots in the Java optimized processor (JOP [16]), a pipelined
micro-programmed processor, able to directly execute byte-
codes. The core is a stack machine, in the line with the Java
virtual machine, that can execute simple bytecodes as single
micro-instructions, while the more complex ones are im-
plemented either as micro-programs or even Java methods.
Being designed for embedded and real-time systems, this is
not a general Java environment. For instance, class loading
is carried out and an executable image (still as bytecodes) is
generated offline. Taking a step towards higher-level of ab-
straction specifications, our processor, BLUEJEP was writ-
ten in Bluespec System Verilog, as an alternative to VHDL.

3.1 Pipeline Architecture

Initially, when starting on our BSV design, we de-
cided to use the tools already implemented for JOP (micro-
assembler and executable image generator), we also wanted
to have the same micro-instruction set and micro-code.
Nevertheless, as we became more familiar with BSV, we de-
cided that a longer pipeline would be more interesting, more
flexible and modular, and hopefully faster. Thus BLUEJEP
crystalized into a six stages pipeline (Figure 2), having the
micro-instruction set, micro-code and bytecode executable
image similar to JOP. Besides the actual pipeline, BLUEJEP
features a 256 words stack and a few registers, enumerated
in Table 1. Bytecodes are fed into the pipeline with the help
of a bytecode cache, which currently stores the code for one
method (maximum 1KB), but can be easily modified.

The BLUEJEP processor went through at least three dif-
ferent versions until the solution described in here. Earlier
versions would stall the pipeline any time a data or a con-
trol hazard would occur, which meant more complex con-
trol. The current version only stalls on data hazards, and
uses speculative execution on branches, which means sim-
pler control, higher-performance, but wider pipeline regis-
ters (for context saving). Whenever an unexpected devia-
tion of control occurs the pipeline is flushed and the execu-
tion resumes using the context(JPC, PC, SP) associated with
the instruction that caused the branch.

3.1.1 Stage 1: Fetch Bytecode

The Fetch Bytecode stage fetches bytes from the bytecode
cache and feeds them to the next stage, along with its trans-
lation into micro-address (using the BC2microA table) and
their associated JPC.

2

Fetch
Bytecode

Fetch
micro-I

Decode
& Fetch
Register

Fetch
Stack

Execute Write-
back

micro-
ROM

BC2
microA

jump
table

bypass

forward

BC-
Cache

JPC

StackRegisters

bus interface (OPB)

load cache

SP VP

MD MrAMwA

PC

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

bc
fif

o

de
cfi

fo

fs
fif

o

ex
fif

o

w
bfi

fo

OPD

const
CacheCtl

rollback

MMU access registers

Figure 2. The BlueJEP pipeline architecture

Table 1. BlueJEP registers

Register Function Description
PC micro-program counter Keeps track of micro-instructions.
JPC java program counter Keeps track of bytecodes. Managed by the bytecode cache.
SP stack pointer Keeps track of the top of stack.
VP variable pointer Points to the base of the local variable frame for the current method.

CACHECTL cache control register Writes cause flush and load. Used by method calls and returns.
MWA/MRA external memory address Indicates bus address and type of access.

MD external memory data Data to write or data read from the given bus address.
OPD java operand Operand bytes are fetched in here. Read access on 8/16 bits, signed/unsigned.

3.1.2 Stage 2: Fetch micro-I

The Fetch micro-I stage keeps track of the micro-program
counter (PC), fetching new micro-instructions from the
micro-ROM, and feeds them to the next stage along with
their associated PC. Whenever the micro-code for the cur-
rent bytecode is completed, and the next must be executed,
it dequeues a micro-address from the bcfifo, and updates the
PC accordingly. If the next byte is a java operand rather than
a bytecode, it is shifted in the OPD, a 16-bit register.

3.1.3 Stage 3: Decode

The Decode stage dequeues and decodes the next micro-
instruction from the fsfifo. The decoded micro-instructions
are either data moving instructions (one source and one des-
tination) or an operation (two sources, one operation, one
destination). References (sources and destination) may be
immediate values, registers, or stack addresses referred by

values or registers. Necessary register values are fetched
in this stage, while stack locations are fetched in the next.
Along with references and operations, the context informa-
tion received from the decfifo is passed on, augmented with
the current value of SP. The Decode stage stalls if the con-
tents of a register is required, but about to be changed by an
instruction present in the later stages (RAW hazard).

3.1.4 Stage 4: Fetch stack

Stack contents are fetched in this stage, unless the reference
is supposed to be modified by an instruction present in the
following stages, in which case this stage stalls. Operations
and fetched values are passed to the Execute stage, while
data moving instructions bypass Execute, if idle, and go di-
rectly into wbfifo. In order to accelerate the pipeline execu-
tion, if the required references are about to be modified by
the Write-back stage, the operands are forwarded directly
from the wbfifo.

3

3.1.5 Stage 5: Execute

The Execute stage dequeues two values and an operation
identifier from the fofifo, executes the operation to obtain a
result. Conditional branches are partially handled here, as
the operation is simply discarded if the condition is false or
passed on to the next stage if the condition is true. Thus,
along with the context received from exfifo, a destination
and a single value are enqueued further in the wbfifo.

3.1.6 Stage 6: Write-back

Finally, the values dequeued from wbfifo are written back
to the right destination (register or stack address) in the
Write-back stage. Not all registers are available for read
or write. For example, OPD can only be read while MWA
and MRA may only be written. However the access con-
trol is managed within the Registers module. Furthermore,
this is the stage that may issue a pipeline flush and a con-
text roll-back in the case when PC and JPC are explicitly
changed. In addition, this stage also controls the bytecode
cache, by issuing a cache refill when explicitly requested by
the micro-code (through the CACHECTL register). Having
explicit cache refills on method invokes and returns, makes
the timing analysis easier. This, in turn, contributes to the
predictability of the processor, required in real-time embed-
ded systems.

3.2 Programming Aspects

Embedded Java environments are usually resource and
time constrained systems, unlike desktop environments.
Many embedded Java solution implement only a limited
number of bytecodes and are based on a reduced class li-
brary, sufficient for the target application. BLUEJAMM
specific solutions are described in the following.

3.2.1 Micro-code Generation

Given the varying complexity of the Java bytecodes, it
makes sense to use a micro-programmed processor archi-
tecture instead of trying to implement every bytecode as a
separate instruction. Simpler bytecodes (i.e. operations,
loading constants) would be implemented as one or a few
micro-instruction sequence, while the more complex ones
(i.e. invokes, new) would require longer micro-programs.
Depending on the micro-code, that is, what sequence of
micro-instructions needs to be executed for each bytecode,
there are four tables/ROMs that need to be generated.

The micro-ROM contains the micro-instruction se-
quences for all the implemented bytecodes. The
BC2microA table maps bytecodes to micro-code addresses.
The jump table translates each of the available indexes (up
to 32) into an address offset used in the micro-code jumps

for updating the PC. The initial stack containing constants
used in the micro-code.

Our solution takes advantage of the capability of the
BSV compiler to automatically generate bit encodings for
user defined types. As depicted in Figure 3, our method
uses a generator, bluejasm, which translates the assembler
code into an intermediate BSV file, generator.bsv. This
file, along with the micro-instruction set definition from
types.bsv is compiled as a stand-alone simulator by the BSV
compiler. Finally, this executable (genrom), will output
the .hex memory image files for the aforementioned tables.
The advantage is that if the micro-instruction set encoding
changes, the bluejasm does not require any updates, since
the contents of generator.bsv file are encoding independent.

microcode.asm types.bsv

bluejasm
generator.

bsv
bsv compiler

-sim
genrom

BC2microA Micro-ROM jump table stack

Figure 3. Micro-ROM generation and related
tool flow. Colored boxes complete Figure 2.

3.2.2 Run-time environment

As with most embedded Java systems, the runtime class li-
brary for BLUEJAMM is smaller than in a desktop environ-
ment. The processor, although truly executing bytecodes,
uses a specific memory image which has been obtained of-
fline, through a custom class loader and linker BlueJim.

The BlueJim class loader and linker is an in-house Java
written application and it uses the Byte Code Engineering
Library (BCEL) to parse .class files and generate a proper
BLUEJEP executable. The main task of BlueJim is to trans-
form all generic references into memory addresses associ-
ated with the classes and constants used in the application.
Furthermore, all the unused methods and classes are dis-
carded, virtual tables re-organized if necessary, in order to
minimize the image size. Finally, the image generator also
translates native calls (INVOKESTATICs of methods from
the Native class) into custom bytecodes, which are not used
in the standard JVMs. These custom bytecodes correspond
to BLUEJEP specific operations, such as direct memory ac-
cess, internal register and stack access and some memory
management functions.

4

3.3 Extensions

The architecture described above can be easily extended
with new operations and registers. For example, adding a
multiplication operation would require only adding another
element to the Operations enumeration and handling that
case in the Execute stage, which means one line of code.
Multi-cycle operations can also be added, but are a bit more
complex and require introducing some control registers. For
example, the cache fill is a multi-cycle operation controlled
through the CACHECTL register. As another example, the
MMU operations are carried out through writing and read-
ing specialized control registers, as detailed in Section 4.

Adding new registers is easy, as well. It requires adding
new elements in the Registers enumeration type and han-
dling reading and writing to these new registers in the mod-
ule gathering the register access. These new registers may
be real registers, that hold information, or virtual ones that
only start or complete a specific action (CACHECTL). New
data hazards that may have appeared due to the new register
functionality may be handled by extending the stall func-
tion found in the Decode and fetch registers. For example,
a read from an MMU register stalls if an MMU operation is
about to start (write to the MMU control register).

4 Memory Management

Every respectable Java environment must have an auto-
matic memory management, or one of the advantages of
using Java is lost. BLUEJAMM offers two configurations
for automatic memory management with garbage collection
(GC) - one is the pure software approach, and the other is by
using the specialized hardware memory management unit
(see section 2). Both use the same data structures for ob-
ject instances, handles, class and garbage collection infor-
mation, as depicted in Figure 4. Furthermore, both configu-
rations use the same GC algorithm, of mark-compact kind.
Briefly, a mark-compact garbage collection occurs in two
phases (refer to [8] for more details):

Mark Live objects are marked by checking all the refer-
ences reachable from the stack variables.

Compact The heap is compacted by moving marked ob-
jects towards lower addresses.

As the objects are moving around during the compacting
phase of the GC cycle, the physical address of the objects
changes. This led us to using unique and life-long object
identifiers (handles) instead of object pointers in our system.
Although this adds another level of indirection to the object
access, it makes memory management easier. This is all
transparent to the programmer, the handles being adminis-
tered by the memory manager. These handles are located in

HandleM

Size

Data

Instance
mark
bit

InstancePtr
Handle

NEntries

Refs Skips

Refs Skips

GC info

...

GCInfoPtr

ClassPtr

M
ClassInfo

Figure 4. Handles, Classes, and Objects data
structures in BluEJAMM

a special memory area, at high addresses, that grows auto-
matically if more handles required (see Figure 5). Addition-
ally, using this specialized area makes identifying handles
easier during the marking phase. At the beginning of this
phase, the stack must be scanned for all handles, which are
the roots for all reachable objects in the heap. A purely con-
servative approach could consider all stack words as han-
dles, while an exact approach would make sure that each
stack value is an actual reference. BLUEJAMM adopts a
midway strategy, by considering all stack words within the
handle area to be valid root handles, although some of these
might be values rather than references, leading occasionally
to floating garbage (no impact on functionality).

Application Image
(ClassInfo, GCInfo,...)

Actual Heap
(Object instances)

GC Stack
(grey handles)

Handles
(used and free)

fix
ed

gr
ow

s
gr

ow

Low

High

EoH

BoH

Figure 5. Memory organization in BluEJAMM

The software memory management employs a stop-the-
world (STW) garbage collection strategy, which means that
during a GC cycle no other operations are performed. It is
also allocation driven, meaning that a GC is forced when-
ever there is not enough free heap space for a new object.
Currently, the hardware implementation is also a STW and
allocation driven, but extensions towards fully concurrent
GC are possible and under way (see [8]).

5

The hardware MMU control and access in BLUEJAMM
is carried out through four specific data registers (MMCtl1–
4) and one command register (MMCmd) introduced in the
BLUEJEP registers with the operations given in Table 2.

Table 2. MMU registers in BlueJEP
Register Read Write
MMCtl1 free heap base heap base (init in)
MMCtl2 free heap end heap end (init in)
MMCtl3 handle (new out) object size (new in)
MMCtl4 N/A object type (new in)
MMCmd N/A new or forceGC

As the BLUEJEP processor, the MMU was implemented
in Bluespec System Verilog and takes advantage of the fi-
nite state machine (FSM) modeling support found in there
(StmtFSM). An example of how easy is to implement an
FSM in BSV is given in Listing 1. In more detail, the MMU
is a hierarchy of several FSMs, each implementing a spe-
cific task as detailed in Figure 6. The rootHandles FSM
goes through the stack, marks and pushes possible handles
into the grey handles stack. The Mark FSM pops handles
from the grey handles stack and uses the GCInfo to detect
more references, that are pushed back in to the grey han-
dles stack. The Compact FSM sweeps the heap and moves
marked objects in a contiguous space. More handles can be
created if necessary through the extendHandles FSM. Fi-
nally, the newObjNoCheck initializes the object handle and
contents with necessary pointers. Note that the MMU is
highly integrated with the processor, as it needs access to
the stack and the SP during the root handle marking step.

extendHandles FSM

newObjNoCheck FSM

rootHandles
FSM

Mark FSM

Compact FSM

forceGC FSM
1. call rootHandles
2. call Mark
3. call Compact

newObject FSM
1. if low free heap
 call forceGC
2. if no free handles
 call extendHandles
3. call newObjNoCheck

MMCmd

Figure 6. The FSM hierarchy of the MMU

4.1 Real-Time Aspects

For embedded systems that are not also real-time sys-
tems, the current implementation of memory management
in BLUEJAMM is sufficient. One of the problems that ren-
der typical Java environments improper for real-time sys-
tems is the timing of memory management functions, in

Listing 1. The rootHandles BSV description
1 Reg#(Byte) baseP <- mkConfigReg(‘INITIAL_SP);
2 Reg#(Byte) stackP <- mkConfigReg(‘INITIAL_SP);
3 Reg#(Word) maybeH = temp; // a shared register

5 function Bool isNotHandle(Word w);
6 return (pack(w)[0] == 0) ||
7 (w < zeroExtend(freeHeapEnd)) ||
8 (w > zeroExtend(heapEnd));
9 endfunction

11 Stmt roothandles_stmt = (seq
12 while(baseP != stackP) seq
13 action
14 maybeH <= thestack.sub(stackP);
15 stackP <= stackP - 1;
16 endaction
17 if(!isNotHandle(maybeH))
18 heystack.push(truncate(maybeH));
19 endseq
20 endseq);

22 FSM roothandles_fsm <- mkFSMWithPred(roothandles_stmt,
23 phase == RootHandles);

particular garbage collection. The exact duration of a Stop-
the-world garbage collection is highly dependent on the ob-
ject configuration, making it hard to predict accurately and
with a worst case execution time that is hardly useful. Nev-
ertheless, solutions for real-time garbage collection do exist
([7,8,17]), and they can be implemented on BLUEJAMM.
In particular, using a concurrent hardware MMU seems to
be the choice giving the highest performance. We are cur-
rently extending the MMU to support concurrent garbage
collection, through a locking mechanism as in [8] and bus
snooping designed to guarantee progress.

Note also that virtual memory, as implemented in other
processors, is neither required nor suited for our BLUE-
JAMM environment for several reasons. First, the memory
protection is handled through the Java mechanism of ac-
cessing objects only and bounds checking for arrays. Sec-
ond, the memory fragmentation is taken care of the com-
pacting phase of the garbage collection cycle. Third, real-
time predictability would suffer dramatically with the im-
plementation of a virtual memory mechanism.

5 Implementation and Results

The whole process of developing the BLUEJAMM sys-
tem was rather fast, leading to a flexible and modular sys-
tem due to the BSV based design flow. In particular, the
BLUEJEP processor took about four months to develop, in-
cluding various version, which is half the time needed for
a similar configuration, based on JOP, in VHDL. The fact
that we had almost no knowledge of Bluespec SystemVer-
ilog before starting the development is also worth noticing.
The MMU with garbage collection in BLUEJAMM took
only one week to write and test due to the FSM support

6

in BSV. Granted we did have experience from a previous
VHDL solution (see [8]), the design time is still impressive.

The number of code lines is another indicator of the BSV
based design flow efficiency. Our BLUEJEP processor is
described on about 1300 BSV code lines (2000 Verilog lines
after compilation), while a similar VHDL design based on
JOP (shorter pipeline) takes around 1900 lines. Our MMU
written in BSV takes about 600 code lines, while the a
VHDL written similar version takes 1700 lines. During de-
velopment, more lines were added for testing, debugging
and exploration purposes, not considered above.

The target platform used to implement our hardware ar-
chitecture is an evaluation board based on a Xilinx Virtex-II
(XC2V1000, fg456-4) FPGA. All the results presented in
this paper were obtained using the Xilinx ISE 9.1i tool chain
for the VHDL flow [23]. In addition, we used the 2006.11
version of the Bluespec SystemVerilog compiler in the BSV
design flow. The designs were incorporated in systems built
with Xilinx EDK 9.1. Once the system was running in hard-
ware, we used Xilinx ChipScope [22] to tap various signals,
including the bus and compare the values obtained from the
real hardware against values obtained using the Bluespec
standalone simulation of our design. This step helped to
detect and fix bugs, and to confirm that the implementation
behaves similarly to the high-level specification.

When it comes to device area, using a high-level of ab-
straction language, such as BSV, it is rather expected that
the synthesized designs would be rather large. In fact, the
BLUEJEP processor takes double the area of the aforemen-
tioned JOP VHDL version (3460 vs. 1723 slices). The logic
occupies however almost the same number of slices, the dif-
ference coming from the memory elements. With the hard-
ware MMU, the area of BLUEJEP increases to 4340 slices.
The performance however seems to be within acceptable
range. The synthesis tool reports a maximum clock speed of
85 MHz for BLUEJEP alone, and 64 MHz with MMU. Spe-
cific efforts for decreasing the critical path with the MMU
were not made up to this point, but we are positive that the
performance can be increased over these figures.

Performance is, however, not given just by the clock fre-
quency, but also how fast bytecodes (sequences of micro-
instructions) can be executed. These figures are depen-
dent on the memory access speed, caching strategies, and
micro-program. For similar configuration (2 clock cycle ac-
cess memory), benchmarking reveals that BLUEJEP perfor-
mance is not far from JOP [15], as detailed in Table 3.

As for the performance gain by using the hardware
MMU compared to the software solution, Table 4 shows
profiling data for a simple list handling application. Note
that the hardware GC is around twenty times faster than
the software solution. The number of clock cycles per ex-
ecuted bytecode increases from 6 to 7 because of the stop-
the-world nature of the GC carried out by the MMU now.

Table 3. Execution time in clock cycles for
BLUEJEP and JOP for several bytecodes.

Bytecode(s) JOP BlueJEP
iload iadd 2 3
iinc 11 13
ldc 9 12
if icmplt taken 6 23
if icmplt n/taken 6 8
getfield 23 38
getstatic 15 18
iaload 29 45
invoke 126 166
invoke static 100 111

Table 4. The profile of a simple application on
BLUEJAMM with software GC and with MMU

Profile SoftGC MMU MMU/SoftGC
used bytecodes 24810 10304 42%
clock cycles/byte 6 7 117 %
cache fills 1601 675 42%
mem accesses 9063 3139 34%
GC used clocks 49214 2626 5%
total clock cycles 168977 73981 44%

6 Related Work

Besides JOP [16], which was the starting point for our
processor, several designs for Java embedded processors
were reported in the research community. Some of these
are available as soft-cores or even chips, many designed for
embedded systems and few even for real-time applications.
Memory management is often a very simple, software im-
plementation at best. Relevant approaches are briefly listed
here. A detailed comparison between these processors can
be found in [15].

Sun’s PicoJava-II [18], freely available, is arguably the
most complex Java processor currently, a re-design of an
older solution which was never released. Its architecture
features a stack-based six stages pipelined CISC processor,
implementing 341 different instructions. Folding of up to
four instructions is also implemented.

aJile’s JEMCore, based on Rockwell-Collins’ JEM2 de-
sign, is available both as IP or standalone processor known
as aJ-100 [1], a 0.25µ ASIC operating at 100MHz. The 32-
bit core is a micro-programmed solution, comprising ROM

7

and RAM control stores, an ALU, barrel shifter, and a 24-
element register file. JEMCore implements, besides native
JVM bytecodes, extended bytecodes for I/O and threading
support, along with floating point arithmetic.

DCT’s Lightfoot 32-bit core [6] is a hybrid 8-bit instruc-
tion, 32-bit data path Harvard dual-stack RISC architecture.
The core comprises a three stages pipeline, with an inte-
ger ALU including a barrel shifter and a multiplication unit.
Lightfoot has 128 fixed instructions and 128 reconfigurable,
soft-bytecodes.

Vulcan Machines’ [20] Moon2 is a 32-bit processor core
available as a soft IP for FPGA or ASIC implementation.
The Moon core features an ALU, a 256-element internal
stack, optional code cache, and a micro-program memory
for the operation sequence required by each bytecode.

The Komodo micro-controller [12] includes a mul-
tithreaded Java processor core, which is a micro-
programmed, four stages pipeline. Its remarkable feature
is the four-way instruction fetch unit, with independent pro-
gram counters and flags, for hardware real-time scheduling
of four threads.

FemtoJava is research project focused on developing
low-power Java processors for embedded applications. One
of the versions features a five stages pipelined stack ma-
chine later extended to a VLIW machine [2], synthesized
for an FPGA. Data about the FPGA make, clock speed, and
whether it actually ran on the FPGA are unclear.

7 Conclusion

This paper described BLUEJAMM, a Bluespec embed-
ded Java architecture with memory management. The core
of the architecture is the BLUEJEP processor and its spe-
cial memory management unit, both developed in Blue-
spec SystemVerilog. The processor is a native Java micro-
programmed core, implemented as a six stage pipeline stack
machine. The MMU offers a hardware alternative to soft-
ware memory management and garbage collection, for so-
lutions willing to trade device area for performance. The
architecture described herein is flexible, modular, spec-
ified at a high-level of abstraction and offers a reason-
able performance for prototyping embedded Java systems.
BLUEJAMM has been implemented and tested on a Xil-
inx Virtex-II FPGA in a relatively short time, thanks to the
support offered by the BSV-based design flow.

References

[1] AJile Systems. http://www.ajile.com.
[2] A. C. S. Beck and L. Carro. A VLIW low power Java proces-

sor for embedded applications. In SBCCI ’04: Proceedings
of the 17th symposium on Integrated circuits and system de-
sign, pages 157–162, New York, NY, USA, 2004.

[3] Bluespec, Inc. http://www.bluespec.com, 2007.
[4] N. Dave. Designing a processor in Bluespec. Master’s the-

sis, MIT, Cambridge, MA, January 2005.
[5] N. Dave, M. Pellauer, S. Gerding, and Arvind. 802.11a

transmitter: A case study in microarchitectural exploration.
In International Conference on Formal Methods and Models
for Codesign (MEMOCODE’06), pages 59–68, July 2006.

[6] Digital Communication Technologies. Lightfoot 32-bit Java
processor core. data sheet, September 2001.

[7] S. Gestegard-Robertz and R. Henriksson. Time-triggered
garbage collection. In Proceedings of the ACM SIGPLAN
Langauges, Compilers, and Tools for Embedded Systems,
June 2003.

[8] F. Gruian and Z. Salcic. Designing a concurrent hardware
garbage collector for small embedded systems. In Asia-
Pacific Computer Systems Architecture Conference, pages
281–294, 2005.

[9] F. Gruian and M. Westmijze. BlueJEP: A flexible and high-
performance Java embedded processor. In The 5th Int’l
Workshop on Java Technologies for Real-time and Embed-
ded Systems, JTRES’07, September 26–29 2007. to be pre-
sented.

[10] J. C. Hoe and Arvind. Hardware synthesis from term
rewriting systems. In VLSI ’99: Proceedings of the
IFIP TC10/WG10.5 Tenth International Conference on Very
Large Scale Integration, pages 595–619, Deventer, The
Netherlands, The Netherlands, 2000. Kluwer, B.V.

[11] A. Ive. Towards an embedded real-time Java virtual ma-
chine. Lic.Thesis 20, Dept. of Computer Science, Lund Uni-
versity, June 2003.

[12] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and
T. Ungerer. Real-time event-handling and scheduling on
a multithreaded java microcontroller. Microprocessors and
Microsystems, 27(1):19–31, February 2003.

[13] A. Nilsson. Compiling Java for real-time systems. Licentiate
thesis, Lund Institute of Technology, 2004.

[14] RTJ Computing. Simple real-time-java,
http://www.rtjcom.com/, July 2007.

[15] M. Schoeberl. Evaluation of a Java processor. In Tagungs-
band Austrochip 2005, pages 127–134, Vienna, Austria, Oc-
tober 2005.

[16] M. Schoeberl. JOP: A Java Optimized Processor for Em-
bedded Real-Time Systems. PhD thesis, Vienna University
of Technology, January 2005.

[17] W. Srisa-an, C.-T. D. Lo, and J. M. Chang. Active memory
processor: A hardware garbage collector for real-time java
embedded devices. IEEE Transactions on Mobile Comput-
ing, 2(2):89–101, April–June 2003.

[18] Sun. PicoJava-II microarchitecture guide. Technical Report
960-1160-11, Sun Microsystems, 1999.

[19] Sun Microsystems, Inc. J2ME Building Blocks for Mobile
Devices, May 2000.

[20] Vulcan Machines Ltd. http://www.vulcanmachines.co.uk/,
August 2007.

[21] R. E. Wunderlich and J. C. Hoe. In-system FPGA prototyp-
ing of an Itanium microarchitecture. In International Con-
ference on Computer Design, October 2004.

[22] Xilinx. ChipScope Pro Software and Cores User Guide,
v9.1.01 edition, January 2007.

[23] Xilinx Inc. http://www.xilinx.com/, 2007.

8

