
Designing a Concurrent Hardware Garbage
Collector for Small Embedded Systems

Flavius Gruian and Zoran Salcic

Department of Electrical and Computer Engineering
The University of Auckland

Private Bag 92019, Auckland, New Zealand
{f.gruian, z.salcic}@auckland.ac.nz

Abstract. Today more and more functionality is packed into all kinds
of embedded systems, making high-level languages, such as Java, increas-
ingly attractive as implementation languages. However, certain aspects,
essential to high-level languages are much harder to address in a low per-
formance, small embedded system than on a desktop computer. One of
these aspects is memory management with garbage collection. This pa-
per describes the design process behind a concurrent, garbage collector
unit (GCU), a coprocessor to the Java Optimised Processor. The GCU,
targeting small embedded real-time applications, implements a mark-
compact algorithm, extended with concurrency support, and tuned for
improved performance.

1 Introduction

Java, as a development language and run-time solution, seems to become in-
creasingly attractive recently, even for embedded systems, given the plethora of
Java-powered embedded processors [1–4]. Nevertheless, few of these embedded
platforms offer a true Java environment, including memory management with
garbage collection. When present, garbage collection is in principle a software,
stop-the-world approach, leading to poor performance systems. Although for
high performance and desktop systems, both real-time and hardware supported
garbage collection have been addressed by various research groups, there are few
results for embedded systems with limited resources. In this paper, a concurrent
garbage collection unit for the Java Optimised Processor (JOP, [5]) is described.

The paper is organised as follows. Section 2 mentions some of the relevant
related work. The design methodology including goals and the design steps is
given in Sect. 3. The used garbage collection algorithm is briefly described in
Sect. 4, followed by the choices that remained unchanged throughout the design
process in Sect. 5. The actual design iterations are detailed in Sect. 6. Section 7
discusses the implications of our solution, while Sect. 8 gathers our conclusions.

2 Related Work

Improving the performance of garbage collectors by using parallelism or concur-
rency came under the attention of researchers long before Java was born [6, 7].



In the context of garbage collection, we use parallelism to describe collection
work done by several processors at the same time, while concurrency refers to
running the application (mutator) at the same time with the collector.

Many of the concurrent GC algorithms have their roots in the famous Baker’s
algorithm [8], which is however unsuitable for embedded systems we are inter-
ested in, due to its high demands on the memory size. Non-copying concurrent
garbage collection algorithms, with lower demands on the memory are described
in [9] and [10]. We decided to implement an incremental version of a mark-
compact algorithm (see [11]), which avoids the fragmentation issues that may
arise in a non-copying algorithm.

Although hardware accelerated GC was used in early LISP and Smalltalk
machines, one of the first to address it from a real-time perspective is [12].
That paper proposed a garbage collected memory module (GCMM), employing
Baker ’s semi-space algorithm. [13] proposes the Active Memory Processor, a
hardware GC for real-time embedded devices. That approach uses hardware
reference counting and a mark-sweep algorithm, requiring extra memory that
scales with the heap. In contrast, our solution is independent of the heap size.

3 Design Methodology

3.1 Goals

The work described in this paper started from the need of implementing a
garbage collector for a Java Optimised Processor (JOP) system. Our JOP version
is a three stage pipeline, stack oriented architecture. The first fetches bytecodes
from a method cache and translates them to addresses in the micro-program
memory. The method cache is updated on invokes and returns from an exter-
nal memory. The second stage fetches the right micro-instruction and executes
micro-code branches. The third decodes micro-instructions, fetches operands
from the internal stack, and executes operations. Due to its organisation, JOP
can execute certain Java bytecodes as single micro-instructions, while more the
complex ones as sequences of micro-instructions or Java methods.

The goal evolved from implementing a software solution towards designing
a hardware garbage collection unit, that can operate concurrently with the ap-
plication. In addition, we wanted to achieve a modular and scalable solution,
independent of the main memory (heap) size. Overall, we wanted an architec-
ture suitable for resource-limited embedded, and possibly real-time, systems.

3.2 Approach

Adding a hardware garbage collection unit into an existing Java system that
had none at all initially, involves a number of changes and additions that have
to fall into place. The class run-time images have to be augmented with GC
information, which means modifying the application image generator. Certain
bytecodes need to be modified to use the GC structures. The GC algorithm, the



hardware GC unit that implements it, and concurrency support have to be all
correct. Errors would be hard to identify and debug in such a system. Therefore
we adopted a step-by-step approach for developing the GC unit. We started
by implementing a pure software mark-compact, stop-the-world GC algorithm
(see Sect. 6.1). In the next step, we wrote the hardware GC unit, simulated,
synthesised, and tested it in an artificial environment, were we could generate
and control the memory contents at word level (see Sect. 6.2). In the final step,
we optimised the GCU and customised the JOP core in order to integrate the
hardware GC solution with the Java platform in an efficient way (see Sect. 6.3).
The first phase was thus dedicated to check the correctness of the class level GC
information. The second phase focused on designing, implementing and partially
evaluating the GC unit. The final phase addressed the integration of the GC unit
with the JOP-based system, involving changes both in the processor and GCU,
as well as in their communication mechanisms.

4 The GC Algorithm

At the base of our implementation resides a typical mark-compact algorithm
(see [11] for a brief description). Our software implementation uses a stop-the-
world collector, which preempts the mutator when a new requests more memory
than the available contiguous free space. For the hardware unit, we adopted
an incremental version of the aforementioned algorithm (see [11] for details on
incremental GC). Using the tricolor marking abstraction [7], in the marking
phase, grey objects are maintained into a specific GC stack. Every write access
to an object will cause the mutator to push its handle onto the GC stack, as it
might have been altered and needs to be re-scanned. Concurrently, the collector
extracts grey objects (handles) from the stack, marks them, scans them for
references and pushes all the unmarked handles it encounters into the stack.
The marking phase finishes when the stack becomes empty.

In the compacting phase, the heap is scanned with two pointers, ScanPtr is
used to examine successively all the objects in the heap, while CopyPtr, trailing
behind, identifies the end of already compacted objects. As soon as a marked
object is found by the ScanPtr, it is copied at the CopyPtr, its handle updated,
and both ScanPtr and CopyPtr are advanced. If non-marked objects are en-
countered, their handle is recycled and only ScanPtr is advanced.

In this phase, the interaction between the mutator and collector becomes a
bit more complex. The situations that we want to avoid by proper synchroni-
sation are those in which either a write access is made on a partially copied
object or a read access is made on an object about to be overwritten. The
first situation appears because the write access might modify an already copied
word, that would need to be recopied to maintain coherency. For the second
situation consider the following scenario. The mutator translates a handle to
an instance pointer, meanwhile the collector moves the object and updates the
instance pointer, and furthermore moves more objects until it overwrites the old
copy of the first object. At this point the mutator holds a pointer to an invalid



location. To avoid such situations we introduced read/write barriers in the form
of object-level locks, as follows.

Whenever the mutator performs a read access on a certain object, it must set
a read lock on that object’s address, and reset the lock (unlock) when the access is
completed. If the collector is about to overwrite the read-locked address, it stalls
until the lock is reset. The write lock mechanism is rather similar. Whenever the
mutator intends to do a write on a certain object, it must set a write lock on
that object’s handle, and unlock it when the access is completed. If the collector
is copying or about to copy the object in question, it stalls its execution until
the lock is reset. At this point, however, all the progress is reset, and copying
resumes from the beginning of that object. Note that in principle we could have
chosen instead to make the mutator wait for the object to be completely copied,
if the write access occurs as the object is being copied. However, in that case
the interference with the mutator would have been too significant, and decided
to rather have the collector do more work than having the mutator wait. The
drawback of this solution is though the fact that GC progress is not always
guaranteed, as detailed in Sect. 7.

It is also important to notice that locking and unlocking are intended to
occur at bytecode level, such that mutator threads cannot be preempted by
other mutator threads while holding a lock. In fact this can be easily achieved in
a JOP-based system, as it requires modifying the bytecodes for object accesses
to also set and reset locks. This also means that only one lock can be set at any
one time, observation that simplified the hardware architecture of the GCU.

5 Implementation Invariants

5.1 Data Structures

In a compacting GC algorithm, every time an object moves, all the pointers to
that object would need to be updated. To overcome this we use handles, instance
identifiers that are unique and constant throughout the object lifetime (see Fig.
1(a)). All accesses must first read the content of the object handle to find out
the actual location of an instance.

Each instance header includes the size, the associated handle, and a mark bit.
As instances are aligned to words, two extra bits are available in each pointer to
an object – and we use one of them as a marked flag. Each handle is a pair of
pointers, back to the instance and to the class structure, containing the necessary
garbage collector information, GCInfo. The GCInfo structure is an array of pairs
of half word values, the first containing the number of consecutive words that are
references, and the second holding the number of consecutive words that are not
references in the instance. A similar method of encoding information about the
location of the references is used in [14]. The unused handles are maintained as
a linked list, where the instance pointer is in fact the next free handle. Handles
recycled through GC are added at the tail of the list, while handles for new
instances are acquired from the head of the list.



HandleM
Size

Data

Instance
mark
bit

NEntries
Refs Skips

Refs Skips

GC info

...

ClassStructPtr
InstancePtr

Handle

M GCInfoPtr

Class Struct

(a) Object structure

Application Image
(GCInfo,...)

Actual Heap
(Instances)

GC Stack
(Grey Handles)

Handles

fix
ed

Low

EoH

High

(b) Address space

Fig. 1. Implementation choices

5.2 Address Space Organisation

The memory in the GC-enabled system is organised basically in two parts, the
application image and the heap (see Fig. 1(b)). The application image contains
the class information, methods bytecode, static members, and constants, includ-
ing GCInfo (see Fig. 1(a)). The heap is divided in three contiguous regions. The
first contains the instances, and is in fact the actual heap. The second, situated
at the end of the address space, holds the object handles. Whenever the appli-
cation runs out of handles, meaning that the free handles list becomes empty, a
new batch of handles is built toward lower addresses, shrinking the actual heap
space. This space is never returned to the heap, but will be used as handles for
the rest of the application life time. Finally, the third region, the GCStack, is
only temporary. This extends between the handle space and grows downwards
over the actual heap when the GC algorithm is in its marking phase. GCStack
is in fact a handle stack used by the breadth-first traversal and marking of the
live objects (see Sect. 4).

6 Design Iterations

Going from a system without any GC support to a concurrent hardware GC
involves a significant number of additions and modifications. The GC information
for each class has to be added in the application image, which means modifying
the image generator. Locking mechanisms have to be added for the bytecodes
accessing objects, which for JOP meant changes in the microcode. The GC unit
had to be built and tested properly, if possible on a rather realistic setup, before
adding it into the JOP-based system. Finally, the system needed to be optimised
and adapted together with the GCU, which involves changes both in the GCU,
the main processor (JOP), and communication structure. All these steps were
gradually taken, in order to detect and tackle problems more efficiently.



6.1 Software, Stop-The-World on the Target Platform

At first, we implemented the GC in software on a system containing a custom
version of the Java Optimised Processor (JOP, [5]). In this version, a GC cycle
is performed in a stop-the-world manner, whenever a new cannot be performed
because of the lack of free memory. Whenever this happens, the following steps
are taken. The JOP stack is scanned for handles (root references), which are
pushed into the GC stack. The Mark phase starts at this point. Live objects
are traversed in a breadth-first manner, using the GC stack to store detected but
not scanned handles. Once the GC stack is emptied, the Compact phase starts.
Marked objects are compacted at the beginning of the heap and the marked
flag cleared. The cycle terminates once all the heap objects are scanned. At this
point new resumes its normal operation, by allocating the required heap space.
Handles are also managed inside the new operation. Besides writing the actual
GC code, a number of issues must be addressed.

Identifying Handles Initially, faithful to the JVM specification, JOP could
not distinguish between handles and values on the stack. However, this is a
must in order to register root references. The problem of identifying references
is addressed for example in [15]. One solution is to use two separate stacks, one
for references and one for values [14]. Another solution would be to tag each
stack word with an extra bit, signifying reference. However, to avoid altering the
JOP data path and the micro-instruction, we adopted the following, conservative
method. As the handles are usually stored in a dedicated area, one can assume
that any stack word is a reference if and only if points inside the handle area.

Bytecode Modifications Bytecodes in JOP are implemented either as micro-
programs and/or as Java functions. To support our garbage collection solution,
bytecodes accessing objects were modified to translate handles into references.

Application Image Impact Finally, the application image was extended with
GC functionality (two classes) and augmented with the information necessary
during the garbage collection cycle (GC info in Fig. 1(a)). The images increase
in size by about 350 words (14%) including the GC required class structures and
methods. This increase is marginally dependent on the number of objects, as each
class is extended with 3-5 words of GC information. Certainly, the application
image generator can be further improved to reduce these images even more.

Experimental Evaluation All of the systems used for evaluation in this paper
were synthesised and run at 25MHz on a Xilinx Spartan2e (XC2S600e) FPGA.
At this point we were mainly interested in the correctness of the GC implemen-
tation rather than in its performance. Nevertheless, measurements on similar
benchmarks as the ones used later on in Sect. 6.2 revealed that a GC cycle takes
in the range of tens of milliseconds, which is expected, considering the low CPU
performance. This is yet another reason for exploring a hardware GC.



6.2 Hardware, Concurrent on a Test Platform

A concurrent collector should be able to both carry out the garbage collection
and handle commands from the application at the same time. Let us name these
tasks the Background, performing normal GC operations and the Reactive, han-
dling commands. The Reactive would be required at points to access the GC
stack, in order to store root pointers or grey references. The Background would
also need to access the GC stack to push and pop handles as it marks live ob-
jects. Furthermore, stack operations should be atomic. It becomes apparent that
a common resource, a Stack Monitor, used by both processes, is the solution.
Additionally, the two processes and the stack monitor would in fact access the
system memory. The architecture we decided to implement is depicted in Fig.
2(a). To make the design easier to port, we decided to use a single, common,
memory interface (Memory IF ) for all the accesses to the system memory. This
can be easily rewritten to support all kinds of memory access protocols. Similarly,
the interface through which GCU receives commands (Cmd IF ) can be adapted
to support various kinds of processor interfaces. All accesses to common resources
are handled by arbiters using fixed priorities. The Reactive process has the high-
est priority, stack operations have medium priority, while the Background process
has the lowest priority. In fact all modules from Fig. 2(a), except the arbiters,
are synchronous (FSMs) exchanging values through hand-shaking. Most of the
time the Reactive and Background processes synchronise and communicate indi-
rectly through stack and memory accesses. However, for some commands (such
as read/write lock, unlock, and new) the two processes communicate directly
through hand-shaking, as the Reactive process must acknowledge the execution
of these commands to the main processor. The modularity of the design, al-
though very easily adaptable to various memory systems and processors, is also
its downfall, as detailed in Sect. 6.3.

GCU
Background
(GC tasks)

Reactive
(Cmd Handler)

Arbiter

Stack 
MonitorMemory IF Cmd IF

Arbiter

to RAM to CPU

(a) Internal architecture

Bus (OPB)

Dual 
port 
RAM GCU

CPU
(MicroBlaze,

JOP)

cmd-ifmem-if

(b) Placement in the system

Fig. 2. Hardware garbage collection unit

System Overview The placement of the GCU inside the complete system was
chosen to minimise the interference with the CPU, taking advantage of the multi-
port memory normally available on FPGAs. The generic solution is depicted in



Fig. 2(b). GCU is directly connected to the CPU (cmd-if ), and to a second port
of the memory architecture (mem-if ). This way of integrating the GCU into the
system will remain unchanged throughout our design process. Furthermore, most
components around the GCU also remain fixed, as our CPU uses the On-chip
Peripheral Bus (OPB) as system bus.

In order to evaluate our solution in a realistic but highly controllable envi-
ronment, we connected the GCU into a MicroBlaze-based system. As command
interface we used a dual Fast Simplex Link (duplex FSL), while the memory
interface connects directly through a Block RAM port. Thus, we had a finer
grain control over the memory structures used by the GC, as we used C written
code to emulate, construct and verify object images. We could also use tested
components and interfaces around the GCU, taking advantage of the better de-
velopment tool support for MicroBlaze. Finally, we also wanted to achieve a
rather processor independent design, portable to other systems.

Runtime Perspective The commands implemented initially by the GCU are
gathered in Table 1. From the programmer’s point of view, the concurrency-
related commands are rdlock, wrlock, unlock, and waitidle. The first three are
used to ensure the correct access to objects, while the last is used to join the GC
process with the main application. Some of these commands are synchronous,
causing the GCU to send an acknowledgement (GCU Ack column), while others
can be just issued without expecting a reply from the GCU.

Table 1. Initial GCU Commands

Command Words GCU Action GCU Ack

[rd,wr]lock h 1 Locks object with handle h. obj address

unlock 1 Unlocks a previously locked object. yes, any

waitidle 1 Waits until GCU is idle. end of heap

stackinit a 2 Sets GC stack base at a. Starts Mark phase. none

rootref h 2 Registers h as root reference. none

docmpct h 2 Starts Compact. Freed handles appended to h. none

new h, s 2 Creates an object of size s and handle h. end of heap

A GC cycle is triggered by the CPU, by issuing a stackinit command to
the GCU (see Fig. 3.a), which goes from Idle to Mark phases. The CPU
registers root pointers by pushing them in the GC stack via rootref commands.
Concurrently, as soon as the GC stack contains handles, the GCU starts marking
objects. Once all the root references have been pushed into the GC stack, the
CPU issues a docmpct command, allowing the GCU to start the Compact phase.
Next, the CPU can start executing application code, using rdlock, wrlock, unlock,
and new as in Fig. 3.b. As soon as all the live objects have been marked (the
GC stack becomes empty), the GCU begins the Compact phase. The CPU can
wait for the GCU to finish by issuing a waitidle, update the end of heap received
from the GCU, and maybe start a new GC cycle.



Inside the application code, every time a new object is created, the CPU
must issue a new to the GCU and wait for an acknowledgement (see Fig. 3.b).
Note that acquiring a new handle and determining the object size is the respon-
sibility of the software new object function or micro-code. Accesses to objects
data (get/putfield, *aload, *astore, . . . ) must be preceded by rd/wrlock
on the object handle. The CPU must wait for an acknowledgement of the lock
from the GCU before translating the handle into a real address and accessing
the object. The CPU must call unlock as soon as the access is completed.

GCU CPU

stackinit

rootref

rootref

docmpct

waitidle

Id
le

M
ar

k
Co

m
pa

ct
Id

le

Ap
pl

ica
tio

n

a)

new

lock

use the address
returned by lock

unlock

CPU GCU

Ne
w

G
et

fie
ld

b)

Fig. 3. GCU-CPU synchronisation: a) A GC cycle, b) New and the lock mechanism.

Experimental Evaluation We initially compared the performance our hard-
ware approach to a software version of the same algorithm, both used in a
stop-the-world manner. The software version was coded in C and compiled with
gcc using the highest optimisation level. The mutator was a simple application
that creates alternatively elements from two linked lists, and keeping both, one
or neither of the lists alive followed by a GC cycle. The three situations reflect
three different memory configurations, when no objects are moved, half of the
objects are moved and finally when all objects are discarded. The GC cycles
were timed using an opb timer core. The results for lists of ten, thirty, and
fifty elements are depicted in Fig. 4. Note that the GCU performs consistently
around four times faster than the software version. Some of the speed-up is due
to using a memory port directly instead of the opb, as in the software version.
However, the GCU used in this experiment is not optimised as a stop-the-world
version, but instead implements all the features required for concurrent GC.

Looking at the overhead introduced by synchronisation into the object access
latency, one lock/unlock pair takes about 19 clock cycles altogether. This is a
much larger overhead than we initially intended. The reason behind this large
overhead lay in the architecture of the GCU which was constrained by the ca-
pabilities of the MicroBlaze core. In particular, for the lock-related commands,
they need to propagate through the fsl, are decoded in the Reactive process,



and finally reach the Background process. Furthermore, an acknowledgement
follows the same lengthy path back to the processor. Using a dedicated channel
only for the locked address or handle, directly from the processor to the GCU,
the latency would reduce considerably. This would imply modifying the proces-
sor core, which is impossible for proprietary IP such as MicroBlaze. However,
for the GCU version intended for JOP (an open core) this is not a problem.

two linked lists

3576

1012

3863

973 1211
375

10536

2932

11403

2833
3451

1055

17496

4852

18943

4693

5691

1735

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

soft gc gcu soft gc gcu soft gc gcu

both live both live one live one live none live none live

c
lk

s

10

30

50

Fig. 4. Stop-the-world GC latency of the GCU vs. a software, C version (soft-gc) for
an application using two linked lists with 10, 30, and 50 elements alternatively created.

6.3 Improved Hardware, Target Platform Specific

Integrating the GCU with the target platform, centred around JOP, imposed and
at the same time allowed for a number of changes in the CGU command and
memory interface. In this iteration the system used a standard Local Memory
Bus (LMB) for memory interface, and a custom command interface (called Fast
Command Access – FCA), while the rest of the architecture remained basically
the same (see Fig. 2(b)). Micro-architectural changes in JOP and also GCU had
to be implemented in order to employ the specialised FCA. Compared to the pure
software approach, there has been migration of the software functionality into
hardware, which affected both the application image and the device utilisation.

CPUGCU
Background
(GC tasks)

Reactive
(Cmd Handler)

Locked Handle
(FCR)bb

JOP Stack
ToS

CmdHi

CmdAck

CmdLo

Stall

00 - rdlock 01 - wrlock
11 - unlock 10 - other

Fig. 5. Fast Command Access interface: a deeper integration of the GCU and CPU.



Fast Command Access Interface. The FCA was designed as an alternative
to the FSL, in order to reduce the lock and unlock overhead. The JOP core
was extended as follows. First, a fast command register (FCR) was introduced
inside the processor, register directly seen by the GCU (CmdHi in Fig. 5). This
register holds the currently locked handle, value that needs to be persistent while
the lock is in effect. To allow extended commands (double word) to reach the
GCU, the top of the stack from JOP is also made visible to the GCU (CmdLo in
Fig. 5). The GCU can also send back to JOP words through a CmdAck signal.
Furthermore, the GCU can stall JOP, if needed, through a Stall line. The JOP
micro-instruction set was extended with two new ones: stfc pops the stack and
stores the value into the FRC, and ldfc pushes CmdAck into the stack.

The GCU uses the FCA interface as follows. Read, write locks, and unlocks
require one word (CmdHi) for identification. The Background process can readily
use handles stored in CmdHi to determine lock situations. At the same time, the
Reactive process decodes both Cmd lines and drives the CmdAck when necessary.
In particular, read/write lock latency is reduced to one memory access, needed
by the Reactive process to translate the object handle into an address.

Application Image Impact. The software GC functionality is now obsolete,
being implemented by the GCU. The application image has been reduced by
approximately 100 words compared to the pure software implementation.

Device Utilisation Impact. Adding the GCU doubles the area used for the
JOP system (see Table 2), which includes along with JOP itself an OPB bus
connecting a Block RAM, a UART, a timer, and some general purpose I/O cores.
The synthesis tool reports the GCU clock frequency at 78MHz on the XC2S600e.

Table 2. GCU, JOP, and systems device utilisation (on a Xilinx Spartan2e, XC2S600e)

Unit GCU JOP Full system JOP, JOP, GCU
resources only only resources RAM, IPs RAM, IPs

Slice FF 900 400 Slices 1543 (22%) 3053 (44%)

4LUT 2966 1783 BRAMs 71 (98%) 71 (98%)

Experimental Evaluation. Using a JOP-based system, we evaluated the per-
formance of the GCU as a stop-the-world garbage collector, with the same appli-
cation from Sect. 6.2. As expected, the figures were similar to the ones reported
for the MicroBlaze test system (see Fig. 4, gcu), as only the interface to the
GCU changed. Compared to the pure Java GC, the speed-up achieved by using
the GCU is impressive, a GC cycle being almost a hundred times shorter.

Next, using ModelSim, we examined the overhead introduced in JOP by the
synchronisation required for some of the GCU commands, namely (rd/wr)lock,



unlock, and new. The locking mechanism is employed to make sure that an object
does not move during an access, while new is needed for allocating new objects.
The overhead varies between 2 and 7 clock cycles for lock related operations and
15 clock cycles for new. Note that these figures reveal a lower overhead for lock-
ing and unlocking objects compared to the MicroBlaze-tested solution (Section
6.2), due to its improved GCU-CPU communication. However, it makes more
sense to look at this overhead in the context of bytecodes, as all those using ref-
erences need to employ the locking mechanism. In particular, the micro-program
associated with bytecodes reading(writing) object contents needs to be extended
with read (write) locks on the object handle before the access and conclude with
an unlock. As each bytecode is implemented as a sequence of micro-instructions,
the actual overhead of the locking mechanism is even smaller at this level. For
bytecodes implemented as Java methods by JOP (new, newarray, anewar-
ray), the overhead becomes negligible (see Table 3). The most strongly affected
is putfield, that increases its execution time by 50%. Nevertheless, the impact
these have on the applications overall, depends highly on the specific application.

Table 3. Maximal synchronisation overhead in clock cycles, per bytecode class.

read access bytecodes write access bytecodes

class latency (clock cycles) class latency (clock cycles)
before after change before after change

gefield 28 31 11% putfield 30 45 50%
*aload 41 44 7% *astore 45 60 33%

arraylength 15 18 20% new, Java
invoke* > 100 +3 < 3% *newarray methods < 1%

7 Discussion

Ensuring GC Progress One of the goals we set for our GC solution is very low
interference with the application, which translates into low latency for accessing
objects. In other words, lock/unlock and new must be as fast as possible. Fur-
thermore, deterministic times for these operations are also desired for real-time
applications. Although these goals have been achieved, there is a price to pay
on the GC side. In particular, write locks/unlocks in the middle of an object
move force a rollback of the progress to the beginning of that object. For large
objects, frequently written, it could happen that the GC will never be able to
finish moving the object in question. This can happen if the time between two
write accesses of an object is shorter than the time needed to move the whole
object. Nevertheless, there are several ways of ensuring progress in such cases.
Offline analysis can reveal the maximum size of an object for which the GC
still makes progress. One can then either rewrite the application code or split



the objects into smaller objects. Another possibility would be a time-out behav-
iour, delaying the application when the GC makes no progress for a certain time
interval.

Another Processor as GCU For more flexibility, one can imagine using a
second processor instead of a hardware GCU. The initial tendency is to imple-
ment the Reactive process (see Sect. 6.2) as an interrupt handler, leaving the
Background process as the normal operation mode. However, the interrupt han-
dling latency for a general purpose processor is at least in the range of tens of
clock cycles, making the lock/unlock latency too large to be useful. Nevertheless,
with the advent of reactive processors, such as ReMIC [16], the possibility of a
processor-based GCU appears feasible and exciting.

Real-Time Considerations Standard garbage collectors are allocation trig-
gered, meaning that whenever the free memory decreases under a certain limit,
a GC cycle is started. The GCU we presented in this paper may very well be
employed in that manner. However, our GCU is more suited for a time-triggered
garbage collection (TTGC) approach, offering better real-time performance [17].
As GC in our approach is truly concurrent, it makes more sense to view a GC
cycle as a task, rather than as small increments packed into allocation steps.
This task is then treated no differently than the rest of the tasks in a real-time
system, as long as it can be performed often enough to provide the necessary
free memory. Theorem 1 in [17] provides an upper bound for the GC cycle time
that guarantees that there will always be enough memory for allocation. In our
case, this is the period our GCU must be initialised and allowed to run a full
GC cycle. However, having the CPU and GCU synchronise now and then via
locks introduces additional delays.

Another way to employ the GCU would be to run it constantly, staring a new
cycle as soon as the current one finishes. However, depending on the application,
this may lead to a large amount of wasted work and energy.

8 Conclusion

The current paper presented a hardware garbage collection unit, designed to
work concurrently with the CPU in Java-based embedded system. Given the
complexity of adding a concurrent GC into a system without any GC support
at all, a gradual design approach was taken, to identify and fix problems easier.

To satisfy the requirements of minimal interference GC, our solution involves
not only an efficient GC unit, but also specialised support in the processor, neces-
sary for fast CPU-GCU interaction. The dedicated hardware GCU itself consists
of two processes, one dedicated for handling commands and synchronising with
the CPU, and the other implementing a mark-compact GC algorithm.

As a stop-the-world garbage collector, our GCU is four times faster than a
highly optimised C solution, and orders of magnitude faster than a Java solution.



As a concurrent solution, the locking mechanism introduced to keep memory
consistency introduces a small overhead in the system, bringing the benefit of
running in parallel with the application. Finally, our solution seems to be suitable
for real-time applications, when time-triggered garbage collection is employed.

References

1. Sun: PicoJava-II microarchitecture guide. Technical Report 960-1160-11, Sun
Microsystems (1999)

2. Hardin, D.S.: aJile systems: Low-power direct-execution Java microprocessors for
realtime and networked embedded applications. (aJile Systems Inc.)

3. : Moon2- 32 bit native Java technology-based processor. (Vulcan Machines Ltd.)
4. : Lightfoot 32-bit Java processor core. (Digital Communication Technologies)
5. Schoeberl, M.: JOP: A java optimized processor. In: Workshop on Java Technolo-

gies for Real-Time and Embedded Systems. (2003)
6. Steele, G.L.: Multiprocessing compactifying garbage collection. Communications

of the ACM 18 (1975) 495–508
7. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-

the-fly garbage collection: An exercise in cooperation. Communications of the
ACM 21 (1978) 966–975

8. Baker, H.G.: List processing in real-time on a serial computer. Communications
of the ACM 21 (1978) 280–294

9. Boehm, H.J., Demers, A.J., Shenker, S.: Mostly parallel garbage collection. In:
Proceedings of the ACM SIGPLAN’91 Conference on Programming Language De-
sign and Implementation. (1991) 157–164

10. Printezis, T., Detlefs, D.: A generational mostly-concurrent garbage collector. In:
Proceedings of the ACM SIGPLAN International Symposium on Memory Man-
agement. (2000) 143–154

11. Wilson, P.R.: Uniprocessor garbage collection techniques. In: Proc. Int. Workshop
on Memory Management, Springer-Verlag (1992)

12. Schmidt, W.J., Nilsen, K.D.: Performance of a hardware-assisted real-time garbage
collector. In: Proceedings of the Sixth Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems. (1994) 76–85

13. Srisa-an, W., Lo, C.T.D., Chang, J.M.: Active memory processor: A hardware
garbage collector for real-time java embedded devices. IEEE Transactions on Mo-
bile Computing 2 (2003) 89–101

14. Ive, A.: Towards an embedded real-time Java virtual machine. Lic.Thesis 20, Dept.
of Computer Science, Lund University (2003)

15. Agesen, O., Detlefs, D.: Finding references in java stacks. In: OOPSLA’97 Work-
shop on Garbage Collection and Memory Management. (1997)

16. Salcic, Z., Hui, D., Roop, P., Biglari-Abhari, M.: ReMic - design of a reactive
embedded microprocessor core. In: Proceedings of Asia-South Pacific Design Au-
tomation Conference. (2005)

17. Gestegard-Robertz, S., Henriksson, R.: Time-triggered garbage collection. In: Pro-
ceedings of the ACM SIGPLAN Langauges, Compilers, and Tools for Embedded
Systems. (2003)


