
Abstract

This paper presents a new approach for modeling and
synthesis of distributed embedded. These systems are repre-
sented as task graphs and modeled using finite domain
constraints. The synthesis of such models into a distributed
architecture consisting of microprocessors, ASICs and com-
munication devices, is then defined as an optimization
problem and it is solved using constraint solving tech-
niques. The presented approach offers a powerful modeling
technique of advanced features, such as conditional sub-
tasks and functional pipelining. The experimental results
prove the feasibility of this approach and runtimes which
are of several orders of magnitude faster than the runtimes
of respective MILP formulations.

1. Introduction

Current trends in embedded system design are toward
distributed systems which are built of heterogeneous com-
ponents, such as CPUs, DSPs, ASIPs, specialized hardware
devices (ASICs) and memories. The integration of these
components on a single chip leads to a system-on-chip
(SoC) concept. The specification of SoCs, implementing
usually complex functionality, is provided in a form of com-
municating tasks where each task is specified as a
sequential program. During system design, decisions on
system partitioning, allocation of basic components, assign-
ment of tasks to allocated components, scheduling of tasks
as well as interface synthesis has to be made. Different com-
ponents with various performance and cost characteristics
can be selected to implement the same program. The num-
ber of possible partitionings, component allocations and
assignments as well as scheduling opportunities is also very
large. Thus the design of embedded heterogeneous systems
is a difficult design space exploration problem [8].

In this paper, we assume that a distributed embedded
system is represented as a task data-flow graph which spec-

ifies data dependencies between subtasks. The DSP, image
processing or multimedia applications, for example, are
well suited for the approach based on the task data-flow
graphs.The subtasks of the task data-flow graph are exe-
cuted iteratively. When the last subtasks finish their
execution the first subtasks are started again. Each subtask
has specified execution times on selected system
components.

The goal of the synthesis is to find an assignment of sub-
tasks to processors and ASICs, and communication
subtasks to communication devices (e.g., buses or links) as
well as their related static schedule. The schedule, in this
case, is given as an assignment of starting times to every
subtask and communication activity. Different heuristic and
Mixed Integer Linear Programing (MILP) formulations
have been presented for this problem [7, 21, 4, 17, 18, 19].
Recently, Constraint Logic Programing (CLP) formulation
has been suggested by the author [14].

This paper proposes to use finite domain constraints to
model heterogeneous designs in one consistent and elegant
formalism. The finite domain constraints are used to model
both task data-flow graphs and the features of distributed
heterogeneous architectures. An extension which allows to
specify control dependencies between subtasks as well as
functional pipelining is also introduced. Based on this
model, a constraint solving technique and a number of opti-
mization methods are proposed. Together they provide a
solution to the synthesis problem of distributed embedded
systems.

Constraint logic programming and finite domain con-
straints have already been used in hardware design
automation area. In [1, 10] the problem of timing verifica-
tion using constraint logic programing has been studied. In
[5], ECLiPSe system has been used for a retargetable self-
test program generation.

The rest of the paper is organized as follows. Section 2
introduces the system model based on the finite domain
constraints. Modeling of advanced features, such as pipelin-
ing and conditional tasks execution is discussed in section
3. System synthesis methods, which include both optimal
and heuristic methods, are presented in section 4. Finally,

Supported by the Wallenberg Foundation project “Information Techno-
logy for Autonomous Aircraft”

Synthesis of Distributed Embedded Systems

Krzysztof Kuchcinski
Dept. of Computer and Information Science

versity, Sweden
e-mail: kku@ida.liu.se

the experimental results are presented in section 5 and the
conclusions in section 6.

2. Finite Domain Constraints System Model

Finite domain constraints are used in our approach to
specify different properties and restrictions imposed on the
specified system. We first briefly introduce the concept of
finite domain constraints and then present our formulation
of the system in terms of these constraints [16].

A Constraints Satisfaction Problem (CSP) is a 3-tuple
P=(I, D, C) where

I = {x0, x1, ..., xn-1} is a finite set of variables,
D = {D0, D1, ..., Dn-1} is a finite set of domains, and
C is a set of constraints.

The variable xi takes the values from the domain Di.
A constraint c(x0, x1, ..., xn-1) C between variables of

I is a subset of the Cartesian product D0 D1 ... Dn-1 which
specifies which values of the variables are compatible with
each other. In practice, equations, inequalities, global con-
straints or programs define the constraints. In our
formulation, we will use this convenient method to define
constraints.

A solution s to a CSP P is an assignment to all variables
that satisfies all the constraints. In most design problems,
we are interested to find an optimal solution, i.e., a solution
that minimizes or maximizes a cost function. The optimal
solution to a CSP P is a solution that minimizes or maxi-
mizes a value a assigned to a selected domain variable xi.

We assume that a distributed embedded system is
defined by a task data-flow graph (e.g., [4, 14, 18, 19]). The
task data-flow graph is an acyclic graph with nodes denot-
ing subtasks and arcs data precedence relations between
them. During the synthesis of the task data-flow graph com-
ponents are selected, task and communications are assigned
to these components and the whole graph is scheduled. In
particular, subtasks, represented as nodes in the task data-
flow graph, are assigned to selected processors and ASICs.
Communications, represented as arcs, can be assigned to
interconnection components, such as buses and point-to-
pint links. Both subtasks and communications are then
scheduled on the assigned components. In a special case
when two subtasks are assigned to the same resource the
related communication between these subtasks is handled
locally using a memory and neither the communication
assignment nor its scheduling is required.

The subtask of a task data-flow graph is modeled as a 3-
tuple of finite domain variables:

T=(, ,) (1)

where denotes the start time of the subtask, its duration
and the resource number which is assigned for its execu-

tion. The data flow precedence relation, represented as an
arc in the task data-flow graph, is expressed as an inequality
relation. For example, if the subtask Ti precedes subtask Tj,
the following inequality constraint is imposed:

i+ i j (2)

This constraint is imposed on all pairs of subtasks which are
in the precedence relation. The presented formulation
assumes the communication between subtasks at the end of
the execution of the subtask Ti and beginning of the execu-
tion of the subtask Tj. This very restrictive formulation can
be made weaker if we allow starting another subtask at dif-
ferent phases of the execution of the subtask Ti. For
example, an execution of a subtasks Ti can be followed by
the execution of two subtasks Tj and Tk, where the subtask
Tj can start after ij execution time of the subtask Ti and the
subtask Tk after ik execution time of the subtask Ti. It is
specified as the following conjunction of two inequalities:

i+ ij j, i+ ik k. (3)

To synthesize the previously specified task data-flow
graph, it is necessary to introduce additional constraints on
resources sharing. These constraints forbid the simulta-
neous use of shared resources, such as processors and buses.
They can be specified using disjunctive constraints defined:
as follows

i+ i j j+ j i i j (4)

The constraint imposes a requirement on two subtasks Ti
and Tj that they can not be assigned to the same resource if
at least a part of their executions overlaps.

In the prototype system, defined in CHIP 5 constrained
logic programming system, we make use of a global con-
straint diffn/1 [6] to represent these constraints. The
diffn/1 makes use of a rectangle interpretation of a sub-
task. It takes as an argument a list of n-dimensional
rectangles and assures that for each pair of i, j (i j) of n-
dimensional rectangles, there exist at least one dimension k
where i is after j or j is after i. The n-dimensional rectangle
is defined by a tuple [O1, ..., On, L1, ..., Ln], where Oi and Li
are respectively called the origin and the length of the n-
dimensional rectangle in i-th dimension.

The rectangle based resource constraint assures that the
2-dimensional rectangles Ri=[i, i, i, 1] and Rj=[j, j, j, 1]
representing the subtasks Ti and Tj do not overlap which is
defined using the following diffn/1 constraint:

diffn([[i, i, i, 1], [j, j, j, 1]]), (5)

The graphical representation of this constraint is depicted in
Figure 1.

Subtasks connected by an arc in a task data-flow graph
communicate by sending messages. This communication
uses a communication device and is modeled as another

communication subtask which is assigned to a communica-
tion resource. The related precedence relation (2) and the
resource constraint (5) are extended accordingly. The exten-
sion of the resource constraint is only required for shared
communication resources, such as buses.

The local communication between subtasks assigned to
the same resource has to be handled carefully because
diffn/1 constraint does not allow rectangles with the
length zero. This situation is modeled using three dimen-
sional diffn/1 and conditional constraints. The
communication subtasks get the value zero in the third
dimension when they use communication resources. Local
communications get values greater then zero and therefore
they do not interfere with the communications assigned to
buses.

A subtask execution time depends on a selected
resource, such as microprocessors or ASICs. The finite
domain constraints make it possible to define this time as a
domain variable capturing several possible execution times.
The mapping which binds a given execution time to a given
resource is defined by element/3 constraint. This con-
straint enforces a finite relation between the first and the
third variable. The finite relation is given by the vector of
values passed as the second argument. For example, the
subtask Ti will have an execution time, i, either 3, 7 or 8
depending on the selected resource, i, taking values 1, 2 or
3. The constraint is defined as follows:

element(i, [3, 7, 8], i). (5)

It can be noted that the element/3 constraint works in
both directions and thus any constraints on the execution
time will constraint its resources and constraints on
resources will constraint its execution time. This feature is
very useful in pruning the search space during synthesis.

The finite domain model of the task data-flow graph pre-
sented above fully describes the system and can be directly
used for synthesis. However, redundant constraints can be
used in the problem formulation to improve the constraint
propagation. The most important redundant constraint used
in this research is cumulative/8.

The cumulative/8 constraint has been defined in
CHIP and other constraint programming systems [6, 16] to

specify requirements on the tasks which need to be sched-
uled on a limited number of resources. It expresses the fact
that, at any time instant, the corresponding total of the
resources for the subtasks does not exceed a given limit. The
following four parameters are used: a list of the start times
of tasks Oi, a list of durations Di of tasks, a list of the amount
of resources Ri required by the task and the upper limit of
the amount of resources UL. All parameters can be either
domain variables or integers. Formally, cumulative/8

enforces the following constraint:

where n is the number of tasks, while min and max are the
minimum and maximum values in the domain of the vari-
able respectively.

The cumulative constraint can be used to describe two
types of constraints. In the first formulation Oi is replaced
by i, Di by i and finally Ri by 1. This models the task allo-
cation and scheduling on the limited number of resources
represented by UL. The second constraint represents the bin
packing problem: Oi is replaced by i, Di is always 1 and
finally Ri is replaced by i. The variable UL is constrained
to the value lower or equal the execution time of the graph.
The presented constraints are able to offer different types of
propagation since the first formulation uses only i and i
while the second one only i and i.

3. Modeling of Advanced Features

A number of useful extensions to the previously defined
model, such as pipelining and conditional task execution,
can be defined. They will be discusses in this section. Other
extensions can be found in [14, 15].

Pipelining a task data-flow graph is an efficient way of
accelerating a design [2, 14]. It introduces, in fact, new con-
straints on location of rectangles. This is a method well
known from computer architecture, where two dimensional
reservation tables are used for pipeline analysis [13]. This
approach is compatible with our methodology. Introducing
an n stage pipeline of the initiation rate of k time units is
equivalent to a placement of n copies of existing rectangles,
starting at positions k, 2 k, 3 k, etc. This prevents to place
subtasks in forbidden locations, which are to be used by
subsequent pipeline computations. Since the subtask
parameters are defined by domain variables, the copies of
the current rectangles do not define final subtask positions
but these positions will be adjusted during an assignment of
values to domain variables.

The following constraint defines, for example, two stage
pipeline for the two subtasks Ti and Tj, depicted in Figure 1,
with initiation rate k:

Figure 1. A graphical representation of the rectangle constraint.

time

i j

Ti

Tj

i

j

i

j

1

resource

i O j()
1 j n

min O j D j+()
1 j n

max, Rk UL
k Ok i Ok Dk+<:

:

diffn([[i, i, i, 1], [j, j, j, 1],
[i+k, i, i, 1], [j+k, j, j, 1]]),

The rectangle based resource constraints can be easily
extended to handle conditional subtasks. The formulation
of the resource constraints, introduced in this paper, uses 2-
dimensional rectangles in the time/resource space. Two
subtasks can not use the same resource at the same time in
this formulation. However, the conditional subtasks are
never executed simultaneously since their execution is con-
trolled by a value of an assigned condition. The main idea
of representing conditional subtasks is to use n-dimensional
rectangles instead of 2-dimensional. Additional dimensions
are used to represent the values of conditions. For example,
the Figure 2 represents three subtasks Ti, Tj and Tk. The sub-
tasks Ti and Tj are conditional. They are executed depending
on the value of the condition C (either 0 or 1) and can use
the same resource at the same time. The subtask Tk can not
be executed with these tasks and therefore has the height 2
in the dimension of the condition C.

4. System Synthesis

System synthesis is defined, in our approach, as a pro-
cess of finding an assignment to all domain variables which
satisfies all constraints and minimizes a given cost function
defined as a domain variable. The cost function can be
defined, for example, as a maximum value among all i+ i.
Minimizing this domain variable yields the fastest imple-
mentation satisfying all constraints.

The solution to the optimization problem defined above
can be found using different methods. In this paper, we use
methods which can guarantee optimal solutions as well as
heuristic optimization methods.

4. 1. Optimal Solutions

The optimal solutions can be obtained using branch-and-
bound algorithm (B&B). This algorithm searches for possi-
ble solutions by organizing the search space as a search tree.

In every node of this tree a value is assigned to a domain
variable and a decision whether the node will be extended or
the search will be cut in this node is made. The search is cut
if the assignment to the selected domain variable does not
fulfill constraints or the estimated value of the cost function
is worse than already achieved. Since assignment of a value
to a domain variable triggers the constraint propagation and
possible adjustment of the domain variable representing the
cost function the decision can easily be made to continue or
to cut the search at this node of the search tree.

CLP systems offer minimization and enumeration
(labeling) procedures. In the CHIP system, there are
min_max/2 and labeling/4 procedures. The first one
offers B&B algorithm implementation while the second one
defines basic procedure for assigning values to domain vari-
ables. In our case, several specialized labeling methods have
been implemented and tested. The simplest one assigns, at
each node of the search tree, new values to the pair of
domain variables, (i, i). Our criteria for selecting the pair
of domain variables (i, i) is based on the first variable i.
We usually select the most constrained variable to support
better constraint propagation at the beginning of the search.
In some cases, the input order of variables is used. The
ordering forces the subtasks to be assigned before
communications.

Other labeling methods are based on a strategy which
first assigns an interval of possible values to a domain vari-
able instead of a final value. In many cases, this assignment
starts constraint propagation and makes it possible to select
the most promising intervals for further examination. The
domain splitting strategy [16], for example, repeatedly
splits the domains of variables in half until they are single-
tons. More advanced domain splitting divides a domain of
possible start times for each subtask into a number of inter-
vals qi. It is based on the formula qi*duration + rest

= i, where duration is a constant (for example, the long-
est duration of the task i), rest::0..duration-1,
qi::0..max and i is defined as before. The related label-
ing strategy assigns first values to the pairs (qi, i) and than
to variables i.

4. 2. Heuristics Methods

The above described methods are supposed to examine
the whole search space and find the optimal solution as well
as prove, by examining the remaining assignments, that it is
optimal. In practice, we need very often a good solution
which can be found quickly. The big advantage of CLP is
possibility to use heuristic search algorithms. In this paper,
we have examined two meta-heuristics, limited discrepancy
search (LDS) [12] and credit search [3], which can be used
together with B&B algorithm.

LDS is based on a simple intuition that a first solution or

condition C
resources

time

0

1

Ti

Tj

Tk

Figure 2. A graphical representation of the conditional subtasks.

failure obtained with an assignment of values to all domain
variables in a selected order can be improved if the assign-
ment will be changed in a limited number of decision points,
called discrepancies. For example, Figure 3 presents a sim-
ple binary search tree and visited nodes with LDS heuristic
with one possible discrepancy. The edges in the tree repre-
sented by solid lines indicate visited parts of the search tree.

Credit search combines credit based exhaustive search at
the beginning of the tree with the local search in the rest of
the tree. The search is controlled by three parameters: num-
ber of credits, credit distribution and number of backtracks
during local search. In the Figure 4 there is an example of
the credit search tree [3]. The search has initially 8 credits
and the distribution is specified by part(1,2) indicating
that half of the credits are distributed to the selected choice.
Number of possible backtracks is three. The first part of the
search is based on the credits and makes it possible to inves-
tigate many possible assignments to domain variables while
the other part is supposed to lead to a solution. Since we
control the search it is possible to partially explore the
whole tree and avoid situations when the search is stuck at
one part of the tree which is a common problem of B&B
algorithm when depth first search strategy is used.

5. Experimental Results

For experiments we have used random task graphs [9]
and selected examples from [18, 19, 4]. The experiments
have been carried out using a prototype implementation of
the synthesis system implemented in CHIP 5, the con-
strained logic programming system [6], on the Pentium

200MHz computer. If not explicitly indicated, the runtimes
presented in this paper are the total optimization execution
times for finding a solution and proving that it is the optimal
one. In practice, the solution is usually found much faster
but the branch-and-bound algorithm needs to visit addi-
tional nodes of the search tree to prove that the better
solution does not exist.

We have used 125 random task graphs divided into 5
groups of 25 task graphs. Each group had at least 20, 40, 75,
130 and 200 subtasks and communication subtasks (usually
this number is ~10% higher since the graphs have been orig-
inally generated for fixed architectures and some
communication subtasks were not counted when communi-
cating subtasks have been assigned to the same processor). In
each group there are 15 task graphs with uniform distribution
and 10 with exponential distribution of the subtask execution
time. The implementation architecture consists of a number
of processors interconnected by buses. The actual number of
processors and buses is presented in the tables. The assign-
ment of subtasks to processors and communication subtasks
to buses and their scheduling is done in a single optimization
step. To evaluate the quality of the results we have also used
a conservative lower bound (LB) calculation for the length of
the schedule for a task graph given by the following formula:

Table 1 presents results obtained with optimal methods
with the execution time-out of 10 minutes. All three methods
are able to produce good results but in same cases the search
will not provide results for large graphs. The found solutions
are either optimal or several percent worse than the lower
bound. The method based on domain intervals is very robust
and always generates solutions but it has problem to gener-
ate optimal solutions. A simple B&B algorithm with input
order variable selection in one case can not generate a solu-
tion but it is able to compute optimal solutions in many

Figure 3. Limited discrepancy search example.

solution

credit search

local search

4
initial credit = 8

1
2

2

1

1 1

credit(T, 8, ..., 3, part(1,2))

Figure 4. Credit search example.

LB
i

i

NumberOfProcessors
--=

Table 1: Synthesis results for random task graphs using
algorithms providing optimal solutions.

tasks/processors/buses

20/3/1 40/4/2 75/4/2 130/6/3 200/6/3

Input
order

optimal/solutions 25/25 25/22 25/12 24/8 25/11

worse than LB - 17.74% 2.80% 3.44% 2.80%

Runtime (s) 8.91 21.14 15.11 17.25 37.78

Domain
split

optimal/solutions 25/25 23/21 25/12 23/7 24/11

worse than LB - 4.38% 2.86% 3.54% 2.12%

Runtime (s) 7.79 5.50 49.89 14.93 31.20

Domain
intervals

optimal/solutions 25/25 25/19 25/6 25/4 25/4

worse than LB - 4.83% 4.03% 6.51% 2.79%

Runtime (s) 0.57 17.43 1.78 26.95 9.13

Summary
optimal/solutions 25/25 25/24 25/15 25/9 25/13

worse than LB - 4.00% 2.96% 3.16% 1.84%

Runtime (s) 0.38 11.23 39.78 11.19 23.4

cases.
In Table 2, we present results obtained with heuristic

optimization algorithms (LDS, credit search and a simple
heuristic) and compare them with the best obtained results
presented in the summary of Table 1. The credit search heu-
ristic has been tried with the credit which is equal the half
of the number of all subtasks (L/2) and with the credit value
equal to the square root of this number (sqrt(L)). All heuris-
tics always produced solutions with a good quality which is,
for larger graphs below 3%. In many cases the heuristics
were able to improve obtained results. Even with a very
simple greedy heuristic which assigns starting times and
processors/buses for the subtasks one after the other we are
able to get reasonably good results very quickly (less than 3
s).

The other part of experiments is based on the system syn-
thesis examples presented in [18, 19]. They are based on the
task data-flow graph containing nine subtasks which can be
implemented on 3 different kinds of processors having differ-
ent cost and execution characteristics [18]. The original
results have been obtained using MILP formulation and
solved using commercial tools. The results for the examples
presented in [18] has also been presented in [21, 7]. These
results are very similar to the original ones but they can not
be proved to be optimal since the heuristic algorithms have
been used. Our results are presented in the columns labeled
CLP (Constrained Logic Programming) while the results
reported in [18, 19] are presented in columns labeled MILP.
The execution time is the total time for obtaining the results
and proving that it is the optimal one.

Table 3 presents synthesis results for this specification
using bus and point-to-point communication. The generated
designs have the same cost and performance as those pre-
sented in [18] since the B&B algorithm assures that the
optimal solution is generated.

Table 4 presents synthesis results of the same task data-
flow graph but with the cost function extended with the
local memory cost as defined in [19]. Our approach can han-
dle different heterogeneous constraints, such as subtask
execution times on different processors, communication

times constraints and finally local memory cost, and still
provide optimal solutions in a reasonable time.

The last example is the video coding algorithm H.261
derived from [4]. The task graph contains 12 subtasks and 14
interconnections between them. We have made three exper-
iments. The first one is the non-pipeline implementation
which is the same as presented in the original paper. The
pipelined designs are different. The design which uses 3
stage pipeline and two buses has the stage latency 1154 and
the total execution time of 3373 while the results reported in
[4] obtained 1320 latency time and 3027 total execution
time. The difference in the results comes from the additional
constraint introduced in [4]. They do not allow to start a new
computation on a given resource before all previous compu-
tations did not finish their executions. Our approach does not
need this simplifying assumption and thus can produce bet-
ter results. Finally, we have generated the pipelined designs
with one and three buses instead of two. All pipeline designs
improve the performance.

Table 2: Synthesis results for random task graphs using heuristic
optimization algorithms.

tasks/processors/buses

20/3/1 40/4/2 75/4/2 130/6/3 200/6/3

LDS from best 6.36% 3.09% -0.60% -1.33% 0.18%

Runtime (s) 0.49 2.03 8.10 50.65 142.77

Credit
(L/2)

 from best 6.49% 2.74% -0.80% -2.66% 1.23%

Runtime (s) 0.63 1.29 6.92 37.23 204.62

Credit
(sqrt(L))

 from best 6.59% 3.23% 1.27% 2.31% 1.94%

Runtime (s) 0.57 1.13 3.64 12.62 43.06

Simple
heuristic

 from best 11.18% 12.59% 6.70% 7.75% 4.65%

Runtime (s) 0.05 0.13 0.42 1.31 2.90

Table 3: Synthesis results for the nine subtask system.

D
es

ig
n

st
yl

e

Cost

Pe
rf

or
m

an
ce

(t
im

e
un

its
) Performance optimization

runtime
Cost optimization

runtime

MILP
(s)

CLP
(s)

B&B
Nodes

CLP
(s)

B&B
Nodes

bu
s

10 6 6438.00 0.43 84 0.55 92

6 7 5371.80 0.53 114 0.68 144

5 15 3691.20 0.43 68 0.70 103

po
in

t-
to

-p
oi

nt
lin

k

15 5 3732.00 0.43 20 1.67 125

12 6 26710.20 1.42 98 2.18 169

8 7 32320.20 1.00 58 2.59 198

7 8 4510.80 1.64 75 2.02 119

5 15 385012.20 1.50 32 1.48 77

Table 4: Synthesis results for the nine subtask system with local
memory.

D
es

ig
n

st
yl

e

Cost

Pe
rf

or
m

an
ce

(t
im

e
un

its
) Performance optimization runtime

Cost optimization
runtime

MILP
(s)

CLP
(s)

B&B
Nodes

CLP
(s)

B&B
Nodes

bu
s

28 6 6592.20 0.61 76 2.58 252

23 7 5371.80 1.07 193 1.94 266

22 8 123252.60 0.95 124 14.85 856

21 10 316860.60 114.92 4 534 119.55 8 799

18 11 236724.00 88.23 7 015 2.37 477

17 12 138004.20 0.93 268 10.39 3 076

14 15 3581.40 0.54 22 9.89 1 896

po
in

t-
to

-p
oi

nt
 li

nk

38 5 — 0.56 24 2.08 107

30 6 — 0.99 59 3.75 155

25 7 — 1.60 79 5.58 314

23 8 — 1.82 57 3.21 184

22 10 — 4.50 84 59.25 855

19 11 — 27.34 794 101.03 2 851

18 12 — 97.72 2 686 8.66 1047

14 15 — 1.18 14 4.95 328

6. Conclusions

In this paper, we have presented a new approach to mod-
eling and synthesis of distributed heterogeneous embedded
systems using finite domain constraints and constraints solv-
ing techniques. The synthesis has been defined as an
optimization of a given cost function while fulfilling speci-
fied constraints. The presented methods are based on the
B&B algorithm and provide ways to obtain optimal as well
as sub-optimal solutions. An advantage of this approach is
that for the same problem specification it is possible to use
heuristic methods, such as used LDS or credit search.

Optimization using the B&B algorithm is feasible, in our
case, because of possible mixture of constraint propagation
techniques which have polynomial complexity and branch-
and-bound algorithm which, in the worst case, performs an
exhaustive search with exponential complexity.

The experimental results indicate that the presented
method can be used for synthesis of distributed heteroge-
neous systems having various constraints which is usually
difficult to capture in a single design framework. The perfor-
mance of this method is superior in comparison with MILP
formulations [18, 19]. In all experiments, the runtime of the
B&B algorithm was several orders of magnitude faster than
the respective MILP runtime. Moreover the same model can
be used by heuristics methods to build specialized design
environments.

The method presented in this paper makes it possible to
include many heterogeneous constraints in a single model
and therefore perform synthesis in presence of realistic
requirements. The inclusion of power consumption as well
as memory constraints has been, for example, studied in [11,
20].

References

[1] T. Amon and G. Boriello, An Approach to Symbolic Timing
Verification, In Proc. 29th ACM/IEEE Design Automation
Conference, pp. 410-413, 1992.

[2] S. Bakshi and D. D. Gajski, A Scheduling and Pipelining for
Hardware/Software Systems, In Proc. of the 10th
International Symposium on System Synthesis, Sept. 17-19,
1997, Antwerp, Belgium.

[3] N. Beldiceanu, E. Bourreau, H. Simonis and P. Chan, Partial
search strategy in CHIP, Presented at 2nd Metaheuristic

International Conference MIC97, Sophia Antipolis, France,
21-24 July 1997.

[4] A. Bender, Design an Optimal Loosely Coupled
Heterogeneous Multiprocessor System, In Proc. of the
European Design and Test Conference, March 11-14, 1996,
Paris, France, pp. 275-281.

[5] U. Bierker and P. Marwedel, Retargetable Self-Test Program
Generation Using Constraint Logic Programming, In Proc.
32nd ACM/IEEE Design Automation Conference, 1995.

[6] CHIP, System Documentation, COSYTEC, 1996.
[7] B. P. Dave, G. Lakshminarayana and N. K. Jha, COSYN:

Hardware-Software Co-Synthesis of Embedded Systems, In
Proc. Design Automation Conference, 1997.

[8] P. Eles, K. Kuchcinski and Z. Peng, System Synthesis with
VHDL, Kluwer Academic Publisher, 1997.

[9] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli and P. Pop,
Scheduling of Conditional Process Graphs for the Synthesis
of Embedded Systems, Proc. Design, Automation and Test in
Europe Conference, Feb. 23-26, 1998, Paris.

[10] P. Girodias and E. Cerny, Interface Timing Verification with
Delay Correlation Using Constraint Logic Programming, In
Proc. European Design and Test Conference, March 17-20,
1997, Paris, France.

[11] F. Gruian and K. Kuchcinski, Low-Energy Architecture
Selection and Task Scheduling for System-Level Design, In
Proc. 25th Euromicro Conference, Milan, Italy, September
8-10, 1999.

[12] W. D. Harvey and M. L. Ginsberg, Limited Discrepancy
Search, Proc. IJCAI 1995.

[13] K. Hwang, Advanced Computer Architecture: Parallelism,
Scalability, Programmability, McGraw-Hill, Inc., 1993.

[14] K. Kuchcinski, Embedded System Synthesis by Timing
Constraints Solving, In Proc. of the 10th International
Symposium on System Synthesis, Sep. 17-19, 1997, Antwerp,
Belgium.

[15] Kuchcinski, K., An Approach to High-Level Synthesis Using
Constraint Logic Programming, Proc. 24th Euromicro
Conference, Workshop on Digital System Design,
Sweden, August 25-27, 1998.

[16] K. Mariot and P. J. Stuckey, Programming with Constraints:
An Introduction, The MIT Press 1998.

[17] R. Niemann and P. Marwedel, Hardware/Software
Partitioning using Integer Programming, In Proc. of the
European Design and Test Conference, 1996.

[18] S. Prakash and A. Parker, SOS: Synthesis of Application-
Specific Heterogeneous Multiprocessor Systems, Journal of
Parallel and Distributed Computing, vol. 16, 1992.

[19] S. Prakash and A. Parker, Synthesis of Application-Specific
Multiprocessor Systems Including Memory Components,
Journal of VLSI Signal processing, vol. 8, 1994.

[20] R. Szymanek and K. Kuchcinski, Design Space Exploration
in System Level Synthesis under Memory Constraints, In
Proc. 25th Euromicro Conference, Milan, Italy, September
8-10, 1999.

[21] T.-Y. Yen and W. Wolf, Communication Synthesis for
Distributed Embedded Systems, In Proc. Int. Conference on
Computer-Aided Design, Nov. 1995.

Table 5: Synthesis results for H.261 example.

Design
Performance
(time units)

Stage latency
(time units)

Runtime
(s)

B&B
nodes

non-pipeline, 2 buses 2963 — 0.3 26

3 stage pipeline, 1 bus 3996 2351 19.34 27

3 stage pipeline, 2 buses 3373 1154 12.07 261

3 stage pipeline, 3 buses 3329 1110 5.91 261

