
A flexible runtime system for image processing in a distributed computational
environment for an unmanned aerial vehicle

Klas Nordberg, Per-Erik Forss´en, Johan Wiklund
Computer Vision Laboratory, Department of Electrical Engineering

Patrick Doherty
Knowledge Processing Laboratory, Department of Computer Science

Linköping University, Sweden
Per Andersson

Department of Computer Science
Lund University, Sweden

Abstract

A runtime system for implementation of image processing op-
erations is presented. It is designed for working in a flexible
and distributed environment related to the software architec-
ture of a newly developed UAV system. The software architec-
ture is characterized at a coarse scale as a three level system,
with a deliberate layer at the top, a reactive layer in the mid-
dle, and a processing layer at the bottom. At a finer scale
each of the three levels is decomposed into sets of modules
which communicate using CORBA, allowing system develop-
ment and deployment on the UAV to be made in a highly flex-
ible way. The image processing takes place in a dedicated
module located in the process layer, and is the main focus of
the paper. This module has been designed as a runtime system
for data flow graphs, allowing various processing operations
to be created on-line and on demand by the higher levels of
the system. The runtime system is implemented in Java, which
allows development and deployment to be made on a range of
hardware/software configurations. Optimizations for partic-
ular hardware platforms has been made using Java’s native
interface.

1. Introduction
The WITAS1 Unmanned Aerial Vehicle Project2 [2] is an am-
bitious, long-term basic research project whose main objec-
tives are the development of an integrated hardware/software
VTOL platform for fully-autonomous missions and its de-
ployment in applications such as traffic monitoring and sur-
veillance, emergency services assistance, photogrammetry,
and surveying. Basic and applied research in the project in-
cludes a wide range of topics such as the following: devel-
opment of a deliberative/reactive software architecture, a he-
licopter control system with flight modes for stable hovering,
trajectory following and tracking, trajectory- and task-based
planning systems, a chronicle recognition system for identi-
fying complex vehicular patterns on the ground, geographi-

1WITAS (pronouncedvee-tas) is an acronym for the Wallenberg Informa-
tion Technology and Autonomous Systems Laboratory at Link¨oping Univer-
sity, Sweden.

2This work and the project is funded by a grant from the Wallenberg Foun-
dation.

cal information and knowledge databases for on-board use,
multi-modal interfaces (including dialogue) for ground oper-
ator/UAV communication, and an on-board image processing
system (IPM) which will be the focus of this paper. Before de-
scribing the IPM, a brief overview of both the hardware and
software platforms will be provided to set the context for the
image processing system.

The VTOL platform used in the project is a slightly modi-
fied Yamaha RMAX helicopter manufactured by Yamaha Mo-
tor Company and is commercially available in Japan as a
radio-controlled platform for spraying pesticides on crops. It
is approximately 2� 1 meters with a tow weight of 95 kg. In
addition to the RMAX sensors included with the platform, a
Honeywell HMR3000 digital compass, a static pressure sen-
sor, a Boeing digital quartz INS, a temperature sensor for the
PC104, a video link to the ground station, and a differential
GPS have been added. The platform is evolving and addi-
tional sensors may be added in the future.

A PC104 (Pentium P5, 266MHz) board is currently be-
ing used as the heart of the control system which executes
all real-time control tasks for both the helicopter and camera
system and collects all available sensor data. The helicopter is
equipped with a Sony FCB-EX470LP color composite video
camera mounted on a stabilized gimbal with a pan/tilt inter-
face which attenuates vibrations. Figure 1 shows the experi-
mental UAV platform.

In recent flight tests, a number of fully-autonomous flight
modes have been demonstrated successfully. These include
stable hovering, pre-defined trajectory following including
360 degree banked turns, dynamic generation of trajecto-
ries and following those trajectories in flight using a control
technique called proportional navigation, and use of braking
modes at way-points with no overshoot. Acceleration and
braking have been tested at speeds of 55 km/h and coordinated
turns have been tested with a turn rate of 20 degrees/sec.

In order to deal with the complexity of a deliberative/-
reactive (D/R) software architecture with as much functional-
ity as we require for our applications and to insure clean and
flexible interfacing to the hardware platform, we have cho-
sen to design and implement a loosely-coupled distributed ar-
chitecture using Real-Time CORBA [3]3. In short, CORBA

3TAO (The Ace Orb) is an open source implementation of CORBA 2.3.

1



Figure 1: The WITAS UAV Platform

Geographical

Data
Repository

Knowledge

Repository

Dynamic

Object

Repository

Physical

Camera
Controller Image

Controller

IPAPI

IP Module

IPAPI
Runtime

CONTAP Executor
Helicopter

Controller

Comm.
Mediator

Task Planner Path Planner
Chronicle

Recognition
Prediction
Module

Comp. Unit

Controller

-
? -

?6

-

�

�

Figure 2: The D/R Architecture

(Common Object Resource Broker Architecture) is middle-
ware that establishes client/server relationships between ob-
jects or components. Objects can make requests to and re-
ceive replies from other objects located locally in the same
process, in different processes, or in different processors on
the same or separate machines.

Many of the functionalities which are part of the archi-
tecture can be viewed as clients or servers where the com-
munication infra-structure is provided by an ORB (Object
Resource Broker) and other services such as real-time event
channels. This architectural choice provides us with an ideal
development environment and versatile run-time system with
built-in scalability, modularity, software relocatability on var-
ious hardware configurations, performance (real-time event
channels and schedulers), and support for plug-and-play soft-
ware modules. Figure 2 depicts a (incomplete) high-level
schematic of the WITAS software architecture where each
of the components may be viewed as a CORBA server/client
providing or requesting services from each other and receiv-
ing data and events through both real-time and standard event
channels. Some data flow and control links pertaining to the
image processing capabilities are also depicted. Each of these
functionalities have been implemented and are being used and
developed in our applications.

Two different hardware configurations used for executing
the deliberative/reactive components and image-processing
system are being developed and experimented with in the lab.
The first alternative uses two additional PC104s with Linux,
one for the D/R components and the other for the image-
processing components. The second alternative uses an ad-

ditional embedded Pentium for the D/R components and a
G4 PowerPC processor for the image processing components.
Due to the flexibility of the CORBA-based infrastructure, it is
relatively easy to move the various components onto different
processors during development.

In the rest of the paper, focus will be placed on the im-
age processing module and its integration with deliberative
and reactive components in the software architecture. In sec-
tion 2 we begin by describing particular scenarios in some
of the application areas and the requirements they place on
an on-board image-processing module (IPM) and its integra-
tion with the rest of the system. In section 3, we describe
the image processing module in some detail. In section 4, we
consider some specific operations involving the IPM. We then
conclude with a summary and current status of the work.

2 Some Scenarios and Requirements

In the project, we have focused initially on traffic surveil-
lance and emergency services assistance where sensing and
understanding traffic situations is an important functionality.
A typical scenario would be to find, identify and track a ve-
hicle based on information about its signature (color, size,
type, etc), when it was last seen and where. This type of
scenario involves signal-to-symbol conversions from video
streams with real-time constraints and continuous fusion of
this information with other qualitative knowledge about the
scenario. Such knowledge may consist of normative behav-
ior of vehicles stored in the knowledge repository together
with geographic and road data stored in the geographic data
repository. It could also be acquired during the mission via
communication with a ground operator.

It is important to emphasize that tight integration is re-
quired between the low-level image processing capability and
the deliberative or reasoning capabilities of the UAV which
use qualitative models. In addition, there are generally com-
binations of hard and soft real-time constraints involved in any
of these scenarios where dynamic behavior is being tracked or
observed. This implies the need for runtime modification of
the image processing algorithms being used based on the cur-
rent context and task at hand and the ability of the software
architecture to support the monitoring of the success of the
task and the quality of the sensory data being generated while
achieving the task.

Due to the constraints associated with scenarios of the type
described, an important operational requirement of the IPM is
that it is highly flexible and reconfigurable. The idea is that
the UAV should be able to switch between different modes
of operations, where each mode may require a different con-
figuration of the IPM. For example, in one mode the UAV
may hover and observe a particular road section. Triggered
by some event, e.g., it observes a particular vehicle, the UAV
switches to a tracking mode where the observed vehicle is be-
ing followed both by moving the helicopter and the camera.
Additional flexibility is required in terms of using different
implementations of the same type of operation for different
purposes. For example, a relatively simple and fast method
may be used for detecting moving ground objects. How-
ever, to estimate their true velocity, a more complex and time

2



consuming operation has to be used if this feature is vital in
achieving a particular task.

Examples of operations used in the current applications are
“find vehicle” and “track vehicle”. Finding a vehicle can be
done in many different ways, using simple, fast and unreliable
methods such as detecting colored blobs on roads, or com-
plex, computationally demanding and robust methods based
on, e.g., estimation of motion and shape. Also the tracking
can be done using more or less sophisticated methods. De-
pending on the time available for the processing and the re-
quirements for robustness, the deliberative component in the
architecture can choose different algorithms dynamically dur-
ing run-time or actually modify existing algorithms by using
different image-processing operators in existing algorithms.

3 Image Processing Module

It was argued that it was necessary to develop an image pro-
cessing system which could be accessed during runtime and
have its services modified dynamically. In this case the IP
modules services are IP algorithms used for achieving tasks
specified at the mission level. Internally, these IP algorithms
are represented using a data flow graph based model. Nodes
in the graphs represent operations and the arcs represent data
on which the operations are performed. In general, the graphs
may be cyclic, e.g., feed-back loops are required for certain
types of operations.

We call this computational model the Image Processing
Data Flow Graph model (IP-DFG model) [1]. An IP-DFG
is based on ahierarchyof boolean DFGs and new rules for
token consumption. This variant of DFGs allows a high-level
specification of complex image processing algorithms which
can include iteration or tail-recursion and is suitable for the
type of runtime modification required in our architecture. In
addition, one can automatically generate information about
timing constraints between nodes and memory requirements
for internal data buffers used by operations in the graph. This
form of analysis is very useful for optimization purposes and
distributing execution of nodes onto different processors if re-
quired.

Conceptually, the Image Processing Module (IPM) con-
sists of two parts,

� IPAPI - An Image Processing Application Program In-
terface – This is the declarative interface that other com-
ponents in the D/R architecture can use to create, ma-
nipulate, configure and execute various image process-
ing algorithms.

� IPAPI-Runtime - This is the runtime component that
manages the configuration and execution of image pro-
cessing algorithms, dynamically allocates memory for
buffers needed during execution, interfaces to the image
controller and other components in the architecture, and
manages an existing library of pre-defined image pro-
cessing algorithms.

IPAPI-Runtime is implemented in the Java programming
language. The use of Java offers a number of advantages;

rapid prototyping, support on a number of different hard-
ware/software configurations, access to an ever growing num-
ber of APIs for various purposes, e.g., both CORBA support
and a powerful toolkit for building graphical applications is
available. Thanks to the recent JIT technology for Java, it
is also reasonable to implement the actual data processing in
Java, i.e., the execution inside the nodes of the graphs. Only
certain nodes for which the execution time is critical, e.g.,
convolution, have also been implemented at native level us-
ing JNI. In these cases the optimization has been targeted to
use processor specific instruction sets for acceleration of float-
ing point operations, e.g., Altivec for PowerPC or SSE for
Pentium. A result of this work is a growing library of nodes
which implement various image processing operations, some
of them in Java, and some optimized at native level.

In IPAPI, graphs can be defined as new node classes and
instantiated as nodes in other graphs. This implies that rel-
atively complex graphs, containing a large number of nodes,
can be implemented without too much work. Furthermore,
memory management, scheduling of execution and data flow
can be customized for various purposes. This flexibility in
scheduling is lacking in existing systems of similar type such
as AVS, Khoros, etc.

The IPM is responsible for all low-level image processing,
much of which has to be done in real time. This real-time
requirement implies both that the response times from this
module have to be short enough to allow it to be included in
control loops, e.g., for tracking of ground vehicles, and that
sequences at normal video rate have to be managed. It should
be emphasized that the system is not designed to manage the
processing of a continuous video sequence, but instead the
processing of short image bursts at varying rates, e.g., for mo-
tion estimation.

The two modules which the IPM communicates most
closely with are the CONTAP Executor Module (CEM) and
the Dynamic Object Repository (DOR). CEM is part of the re-
active layer of the system, responsible for setting up and mon-
itoring the execution of various low-level sub-tasks, e.g., the
flight of the helicopter, control of the camera, and the process-
ing of images. The DOR is a soft real-time database which
keeps records of information about various objects, both static
and dynamic, that the system needs to know about when
achieving various tasks. This may include sighted ground ve-
hicles during a traffic surveillance scenario, but may also in-
clude information about the helicopter itself and the camera.
Information in the DOR is normally subject to variation over
time, and one of the main tasks of the IPM is to keep the in-
formation about various sensed objects up to date, at least for
the objects rated as interesting by the higher levels of the sys-
tem. The interaction between the CEM and the IPM may be
viewed as a form of higher-level active vision where the con-
text which determines image processing policy is represented
implicitly in the DOR and interpreted by the CEM via the use
of other deliberative services.

The CORBA based solution makes the system very flexible
regarding choice of hardware/software platforms for various
parts of the system, only at the expense of a relative small
overhead in communication latency. For example, for the de-
velopment of the software architecture and even use during
runtime, each of the three modules mentioned here can be run

3



on the same or separate hardware platforms, using CORBA
to manage the interface issues. In the case of hard real-time
constraints, the IPM or DOR could be executed on a proces-
sor with a real-time OS using CORBA real-time channels to
ensure quality of service relative to event arrival and schedul-
ing. Even for communicating images, e.g., from the camera to
the image processing module, the time delays introduced by
CORBA are acceptable for most of the planned applications.
However, this relies on using advanced implementations of
CORBA, e.g., supporting real-time functionality and shared
memory.

4. Examples of operations
As mentioned above, IPAPI has a CORBA interface which
means that any other module of the system potentially can
act as a client, creating and executing data flow graphs corre-
sponding to various image processing operations. In practice,
however, it is the CEM who is the client using these services.

Recall two of the high-level tasks mentioned in section 2,
“find vehicle” and “track vehicle”. Depending on the time
available for the processing and the requirements for robust-
ness, the CEM can choose an appropriate algorithm and im-
plement it in the IPM using the library of predefined nodes
existing in IPAPI or pre-defined DFGs specialized for com-
mon tasks.

A typical result of the “find vehicle” operation is that a set
of potential vehicles are identified. The terminal node of the
corresponding data flow graph then exports the list of objects,
acting as a CORBA client, to the DOR which is implemented
as a CORBA server. At this point, the reasoning layers of the
system examine the “vision objects”, e.g., check if their ve-
locities are consistent with the direction of the road, or if their
positions are on a road, or are consistent with predictions from
earlier positions. If this is the case, a hypothesis can be made
that this is an “on-road object” or a “car object” after addi-
tional reasoning. The chronicle recognition service can then
be called to identify various patterns of interest, i.e., simple
sequences of events such as changing lane, stopping, turning,
vehicle overtaking, etc. One DFG used for identifying a vehi-
cle is shown in figure 34.

Based on this type of processing, the CEM can determine
to start tracking a vehicle. This means that the IPM is re-
configured with a new processing graph implementing a suit-
able tracking method. With sufficient memory and processing
power, multiple vehicles can be tracked simultaneously. The
tracking operation continuously updates the object record in
the DOR corresponding to the vehicle being tracked, while
the CEM monitors the tracking for possible tracking failure.
One DFG used for tracking a vehicle is shown in figure 3.

5. Summary
A runtime system for implementation and execution of im-
age processing operations has been presented. The system is
intended to be used as part of an on-board image processing
system on a UAV flying over complex operational environ-
ments. The paper has emphasized both the requirements on

4GetROIstands forget Region Of Interest. The ROI is chosen dynami-
cally by sending requests to the Image Controller.

GetROI

Classify Label Fill Extract

To DOR

Identify Objects DFG

GetROI

Store2D

Track

Match

Image
Controller

Dynamic
Object

Repository

Track DFG

6

?-

Image

Image

- - - - 6

6

-

?

�

List

6

6

-ROI coords

Image coords

Template

B
est

m
a

tch
im

a
g

e
co

o
rd

s

Grey Image

Label segments
Remove holes

Compute areas

center of gravity,

etc.

Vision Objects

Update template

Classify pixels

Figure 3: Identify and Track DFGs

an image processing system for the intended applications and
a software architecture intended to meet those requirements.
An experimental version of the architecture is implemented
and parts have been tested in the on-board system. The full
architecture with the image processing system has been tested
in simulation and using video streams captured during au-
tonomous flight. Full integration and experimentation with
the IP system on-board is currently one of the major focuses
of the project at the systems level. It is difficult to compare
this work with other approaches since it is quite novel and
many existing IP systems are intended to be used manually
by image processing researchers on the ground rather than au-
tonomously by a deliberative/reactive system in the air (thus
the lack of references to related work!). There is certainly a
great deal of relevant work in the ground robotics area, but lit-
tle that emphasizes runtime reconfiguration and use of an IP
system based on resource and quality constraints. The gap be-
tween the current state of the system and true integration and
robust use of these ideas is currently a main topic of research
for the project.

References

[1] P. Andersson et. al. Integrating a computational model
and a run time system for image processing on a uav. In
Proceedings of the Euro-Micro Conference, 2002.

[2] P. Doherty et. al. The WITAS unmanned aerial vehicle
project. InProc. of the 14th European Conf. of Artificial
Intelligence, 2000.
Project URL:http://www.liu.se/ext/witas.

[3] Object Computing, Inc.TAO Developer’s Guide, Version
1.1a, 2000.

4


