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Outline

Motivation

Nonlinear Observer Design for Robust Autonomous Navigation
= Attitude representations and global stability on SO(3)
= Nonlinear attitude observers

= Core Algorithm for Nonlinear Strapdown INS:
Feedback interconnection of the attitude and translational motion (TMO) observers

» The eXogenous Kalman fiter (XKF) for optimal handling of noise when using nonlinear
observers

Applications
Unmanned Aerial Vehicles (UAVs)

= Strapdown INS aided by GNSS and camera measurements (optical flow)
=  Autonomous landing onboard ships

Concluding Remarks




Motivation

Inertial Navigation Systems (INS) and Global Navigation Satellite Systems (GNSS) are used
in manned and unmanned vehicles. Robust navigation is very important when designing
automatic/autonomous systems.

Why not buy an integrated INS and GNSS system?

* High-quality systems are expensive

* You cannot modify the SW (proprietary code). Non-trivial to add SW for failure
detection, fault tolerance etc. which is necessary for robust navigation and tight
integration with the autopilot.

* Sensor fusion with other sensors is difficult (no access to Kalman filter source code)

Why use nonlinear observes instead of the well-proven extended Kalman filter (EKF)?

* A small computational footprint is important in embedded systems with limited power.
The EKF uses hundreds of Riccati equations, which can be avoided.

* Explicit stability requirements for semiglobal or global exponential stability (not
available when using the EKF). This gives robustness guarantees and tuning rules for
the convergence rate of the estimates.




What is an Inertial Navigation System?

An instrument (electronic + sensors) which is using its initial state (position) and
internal motion sensors (gyroscopes + accelerometers) to measure and calculate
its subsequent positions in space with high accuracy, stability and update rate.
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Inertial Navigation Systems — History

e 1944 German V2 combined two gyroscopes and a lateral accelerometer with a analog

computer to adjust the azimuth for the rocket in flight J— ity motor v
~ N
e 1950’s Atlas ICBM — LXE
. \2
e 1958 USS Nautilus to North Pole ‘ ] ’\ o

e 1960 The “Kalman Filter” is invented
e 1961 Apollo program
e 1969 Commercial Navigation Boeing 747 e Mounting frame

Today gimbaled systems are replaced by strapdown INS

e 1980’s Practical ring laser gyro systems and strapdown INS using fast computers
(Strapdown INS runs at 2 000 Hz)

e 1985 Development of fiber optic gyros (FOGs) starts

e 1990s Low-cost MEMS gyros and accelerometers

e 2006 The Mahoney, Hamel and Pflimlin nonlinear attitude observer can replace the
extended Kalman filter (EKF) and stability is proven

e 2012-2016 A nonlinear observer framework for strapdown INS (attitude and
translational motion) is developed at NTNU. Tailor-made for embedded computers and
autonomous vehicles with limited computational capacity.

e 2017 The eXogenous Kalman filter (XKF) adds optimality and covariance estimates for
nonlinear observers.




State Estimator (Observer) — Inverse Problem

The ultimate goal of a state estimator or an observer is to reconstruct the unmeasured
state vector x from the measurements u and y of a dynamical system given by ordinary
differential equations (ODEs). This only works if the system is observable.

System described
Measured input u | by differential egs. | Measured outputy

> X = Ax + Bu >
y = Hx

Kalman filter or Estimated states x
> observer >

N

Some observations:
It is possible to estimate linear velocity and acceleration from a position sensor:
- Signal-based approach (no input u). This is equivalent to differentiating the measured position y
- Acceleration as input u and a double-integrator model improves the performance
- Alternatively the vehicle model can be used to compute acceleration.
Drawback: model parameters must be known




Why should we use alternatives to the well-
celebrated Kalman Filter?

Since 1960 the Kalman filter, and nonlinear extensions thereof,
has been used to provide integrated navigation solutions based
on different types of measurements.

The Kalman filter is used in millions of applications and it
is the core algorithm of all modern navigation systems.

However,

* Nonlinear observers provide explicit stability and
robustness guarantees that are typically not available
for nonlinear Kalman filter implementations.

 The number of C-code lines can be significantly
reduced. This simplifies documentation and
maintenance.

* Tuning and commissioning are less time consuming.

« MEMS technology and faster computers make it
possible to replace gimbaled mechanical solutions
with strapdown navigation differential equations 50" anniversary of the Kalman filter in 2010
running at 100-2000 Hz.

Kalman, R. E. (1960). "Contributions to the theory of optimal control". Bol. Soc. Mat. Mexicana.
Kalman, R.E. (1960). "A new approach to linear filtering and prediction problems" (PDF). Journal of Basic Engineering. 82 (1): 35-45
Kalman, R.E.; Bucy, R.S. (1961). "New Results in Linear Filtering and Prediction Theory". Journal of Basic Engineering. March 1961.




Nonlinear Attitude Estimation

The key component of strapdown INS




Attitude Representations

Coordinate systems for local navigation:

BODY — body-fixed frame

NED — North-East-Down frame is approximated as
the inertial frame by neglecting the Earth rotation
and movement of the Earth in the solar system

Attitude can be described by a
3 x 3 matrix (9-elements) relating
a vector in BODY to a vector in NED

Consequently, a NED vector v is
related to a BODY vector v’ by
the rotation matrix according to

v"=Rv” where R on SO(3)

O(3) is the group of all orthogonal
matrices, i.e. RR”=1;and RT=R"!

SO(3) special orthogonal group.
The subgroup of the O(3) satisfying:
det(R) =1




Attitude from Reference Vectors

The main challenge in many navigation problems is the estimation of attitude, represented as
the rotation of a body-fixed coordinate frame with respect to some reference frame.

* The attitude can be estimated by comparing a set of vectors measured in the BODY frame
using accelerometers, magnetometers or sun sensors with a set of reference vectors in a
second reference frame usually NED.

Micro-electro-mechanical system (MEMS) accelerometer technology
capable of tracking vibrations in industrial equipment at frequencies as
high as 22 kHz. Analog Devices (2008)

* Algorithms such as QUEST and TRIAD (Shuster and Oh, 1981) can be used to determine the
attitude algebraically from vector measurements if at least two pairs of nonparallel vectors
are available.

* However, vector measurements are typically affected by noise. This
suggests that an observer based on a dynamic model and rate
gyroscopes should be used to obtain accurate attitude information
at high frequencies for accelerated vehicles.

* Gyro measurements are subject to bias, which must be estimated along with the attitude.

M. D. Shuster and S. D. Oh (1981). Three-axis attitude determination from vector observations, Journal of
Guidance, Control and Dynamics, vol. 4, no. 1, pp. 70-77.




Parameterizations on SO(3)

3-parameter representation (Euler Angles)

cycl —syco + cysfsg  sysd + cychsh .
0 = gcos¢ — rsing

2 Ou) = | swch cwed + sgsOsy  —cyse + sOsycd _
0 0 0 . sing oY) 0 = £90°
| s cOs¢ clco ) V=950t eos0> \0*

- This representation is singular for 90 degrees pitch
- Only local exponential or asymptotically stable observers can be designed

¢ = p + gsingtand + rcos ¢ tand

4-parameter representation (Quaternions)
n= —%(3119 +&2q + €37)

1-2(e5+¢€3) 2(e1e2—&3m) 2(£183 +£2m) £ = %(np—83q+821’)
Q) =| 2(e1e2+e3m) 1-2(e2+¢&3) 2(e263—€11m)

& = %(83}7 +1q —&1r)
2(e165 —€21) 2(e2e3+&1m) 1 -2(e2 +&3) i

&3 = %(—ezp + €19 + nr)

- Avoids the singularity by using one extra parameter

- Two equilibrium points correspondingto n=1or n=-1
, - " : 2re2+e5+e3=1

- Almost-global or semiglobal exponential stability can be achieved n 1 27T e3

Kinematic constraint:

It is impossible to obtain global attitude for Euler angles.
Quaternions can be globally stabilized using discontinuous feedback.




Topological Obstructions

Attitude is usually represented by:

* Euler angles
e Quaternions on the unit sphere
e Rotation matrix on SO(3) v

down

Topological obstructions prevent global asymptotic stability results, unless discontinuities are
introduced in the dynamics (Bhat and Bernstein, 2000). Results such as semiglobal or almost-
global stability are therefore common, with a vanishing convergence rate in the vicinity of
estimation errors representing a 180° rotation.

S. P. Bhat and D. S. Bernstein (2000). A topological obstruction to continuous global stabilization of rotational motion and
the unwinding phenomenon, Systems and Control Letter, vol. 39, pp. 63-70.

The topological obstructions to global stability can be avoided if one does not restrict the
estimated attitude to the unit sphere or SO(3), for instance by estimating a 3x3 matrix with
9 elements that converges to a rotation matrix on SO(3).




The “Attitude Observer’ and
“Translation Motion Observer’ (TMO)

X, —The attitude observer typically runs at 100-1000 Hz and it uses accelerometers and
magnetometers to compute one of the following:

* Unit quaternions
* Roll, pitch and yaw angles
* Rotation matrix

X, — The translational motion observer (TMO) estimates position, linear velocity and linear
acceleration (specific force). Typical update rate is 1-10 HZ for GNSS-aided systems.

p
GNSS
>1 l s
Pe . -
Compass » Attitude A X TranSla-tlona]
Observer a; .o Motion )
E b " Observer o
4 F" |

Feedback interconnection of the attitude and TMO observers.




Nonlinear Attitude Estimation

PosRef I p

21 Z2
| Ye Translationall 2"
Compass Attitude . —
| n & Motion
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|

7 ]

Feedback interconnection where the specific force f" is
estimated. Important for highly accelerated vehicles.

f* = R(VP 4+ wP x vP) — g®
v =R(VP +wP x vP)

Reference vectors (BODY): 2 « Euler angles
* Magnetic field: m" * Quaternions on the unit sphere
* Acceleration/specific force: f? _ * Rotation matrix on SO(3)
* Optical flow: v* — Attitude —
Observer
Reference vectors (NED):

* Magnetic field: m" ]
. Acceleration/specific force: fr = -g" Static approximation for non-accelerated vehicles

* GNSS speed: v"




Nonlinear Attitude Observer

Quaternion representation Rotation matrix representation
X . AN b b ~ A ~ b A A
s ay =T(qs )(wb/n,IMU — b, +0) R = RS(®wy, —b)+0oKpJ(t,R),
1 - 2 n A A . .
b® = Proj(b®, —kr5) b = Proj(b, —ki vex(Pa(R\KpJ (1,R))))
Injection term: Convert estimates to be on SO(3)
& = kic” X R(@p)Tc" + ka fivu X R(@3)Tf R(R) = [Fl 3) S(FI)FZ] ,
Injection term based on compass and specific force 71 = 71/ max{||#||,p },
measurements, alternatively other reference vectors. _ o ' — o\~
Py = (I3 —717y) 2/ max{||(I3 — 7177 )72, pe }

Quaternions give a semiglobal result, while estimation of the 9 elements in the rotation matrix gives GES.

* Mahoney, R., Hamel , T. and Pflimlin, J.M. (2008). Nonlinear complementary filters on the special orthogonal group.
IEEE Trans. Automatic Control 53(5), 1203-2018

* Grip, T.H., Fossen, T.l, Johansen, T.A. and Saberi, A.(2012). Attitude estimation using biased gyro and vector
measurements with time-varying reference vectors. IEEE Trans. Automatic Control 57(5), 1332-1338

* Grip, H.F., T. . Fossen, T. A. Johansen and A. Saberi (2015). Globally Exponentially Stable Attitude and Gyro Bias
Estimation with Application to GNSS/INS Integration. Automatica. Volume 51, Pages 158—-166.

* Grip, T.H., Fossen, T.l, Johansen, T.A. and Saberi, A.(2013). Nonlinear Observer for GNSS-Aided Inertial Navigation with
Quaternion-Based Attitude Estimation. In Proc. of the American Control Conference, 272-279




The Attitude Estimation Problem:
Remarks on Global Stability on SO(3)

Euler angle representation

* Itisimpossible to obtain global results when using Euler angles due to the representation
singularity.

Unit Quaternion representation

* The quaternion attitude observer results in semiglobal stability
(it is not global due to several equilibria).

However, it is possible to achieve global results through introduction of discontinuities
to avoid the topological obstruction and thus get one equilibrium point.

Rotation matrix representation

* When estimating the 9 elements of the matrix R (over-parameterized estimation problem)
the origin is GES on R3%,

The SO(3) property cannot be forced on the system — structural limitation of SO(3) — since this
kill the observer7convergence properties. Hence, the estimates are on R332 and not on SO(3).

BUT, the estimate of R on R332 converge to SO(3) asymptotically. Even better, we can convert the
estimates to SO(3) at each time sample to improve transient behavior.




Core Algorithm for Nonlinear
Strapdown INS




Integrated Navigation

When integrating acceleration and angular rates the
solutions will drift due to measurement noise and bias
terms. An integrated navigation system is a navigation
system, which is aided by one or more position
reference (PosRef) systems such as:

e  GNSS (GPS, Glonass, Galileo, BeiDou)

e  Hydro-acoustic positioning reference (HPR) systems
e  Machine vision (optical camera)

bias
)L position
accelero- H\
W >
meters
bias
angle
gyros @, H
Inertial measurement
unit (IMU)

The resulting system is a feedback interconnection of two observers for attitude and translational motions

n

PosRef p
21 E2
Ye Translational
Compass Attitude .
Motion
Observer
5 b Observer
IMU wivus Fimu

Dead reckoning is referred to as the case when the PosRef systems fail and position and linear velocity are

predicted using the observers without PosRef updates.




GES Attitude and TMO Observers —
Rotation Matrix Representation

GNSS n l
aibmu 4 v
A — pr
0-DOF | ™ > . Translational——>
: I;AU e » Attitude |z g Motion pr
T observer b, | Observer an
Accelerometer = — B
bias estimator T A
an
Attitude Observer Translational Motion Observer (NED)
R=RS(w2 —b)+cKpJ(t,R), P" =" +Kpp(p" — P") + Kp (Vi — V"),

" =a"+g" +K,,(p" — P") + Ky, (08, — C,0"),
& = —0KpJa® +Ke,(p" — p") + Ke, (v, — CY")
@ =Ra® +E&,

b = Proj(b, —k; vex(P.(R.KpJ(t,R))))

Nonlinear Injection Term

J(a®.a".m°. m".R) = A,Al — RALAL. _ .
(@, m7, 7, K) = Andly > b R(R) = [fl 3) S(fl)fz],

F1 = F1/max{||7|,; },
P2 = (I3 — 717y P2/ max{||(Iz — 717} )72, ;. }

Ap = [m® mPxa® mPx (mPxaP)]

Ap=[m" m"xa" m"x(m"xa")]

Grip, H. F,, T. I. Fossen, T. A. Johansen and A. Saberi. Attitude Estimation Using Biased Gyro and Vector Measurements
with Time-Varying Reference Vector. I[EEE Transactions on Automatic Control, Vol. 57, No. 5, pp. 1332-1338, May 2012
Grip, H. F., T. . Fossen, T. A. Johansen and A. Saberi. A Nonlinear Observer for Integration of GNSS and IMU
Measurements with Gyro Bias Estimation, Proc. of the ACC’12, Montreal, Canada, 24-27 March 2012.




Semiglobal Exponential Stable Attitude and TMO
Observers — Unit Quaternion Representation

Translational Motion Observer (ECEF)

P° =+ 0Kpp(Pinss — P°) +Kpv (Vonss — CoPF).
0° = —2S(0f)° + /*+°(P°)
+ 607K,y (Pnss — P°) + 0K (Vngs — Co ),
& = —R(4})S(6) fluw
+ 63I<§P(peGNSS - ﬁe) + ezKé"(veGNSS . C\’ﬁe),
7€ =R(G}) fiuu +&.

Attitude Observer

Nonlinear Injection Term

& 1= kymiyyy % R(G3)'m® +ka flyy X R(G5) satyr, (7°)

Grip, H. F., T. I. Fossen, T. A. Johansen and A. Saberi. Globally Exponentially Stable Attitude and Gyro Bias Estimation
with Application to GNSS/INS Integration. Automatica. Volume 51, January 2015, Pages 158-166.

Grip, H. F., T. I. Fossen, T. A. Johansen and A. Saberi. Nonlinear Observer for GNSS-Aided Inertial Navigation with
Quaternion-Based Attitude Estimation. Proc. of ACC’13, Washington DC, 17-19 June.




The eXogenous Kalman Filter (XKF)

The XKF is a nonlinear observer bridging the gap to the “Kalman filter’ by:

- Improved filtering and optimality of noisy signals (performance improvement)
- Compute a covariance matrix (fault handling etc.)

Johansen, T. A. and T. I. Fossen. The eXogenous Kalman Filter (XKF).
International Journal of Control, Vol. 90 , Issue 2, 2017. pp. 161-167.




The Extended Kalman Filter (EKF)

Similar nonlinear filter
approximations (e.g.
UKEF) suffers from the

Local
approximation
(linearization)

of nonlinear same potential

model instability mechanism

Linearized model

Kalman-filter

Measurements based on Estimate

approximate
local linearized
LTV model

Using the state estimate for linearization creates a feedback loop that can
destabilize the EKF if the state estimate is not sufficiently accurate.




The eXogenous Kalman Filter (XKF)

e The time-varying Kalman Filter (KF) is GES and optimal in the sense of
minimum variance under some conditions.

e Nonlinear approximations such as the EKF linearizes the system about the
estimated state trajectories, leading in general to loss of both global stability
and optimality.

e Nonlinear observers tend to have strong, often global, stability properties.
They are, however, often designed without optimality objectives considering
the presence of unknown measurement errors and process disturbances.

e The XKF is a two-stage estimator combining a global nonlinear observer with
a linearized KF in cascade. The estimate from the nonlinear observer is an
exogenous signal only used for generating a linearized model to the KF. The
XKF inherits the global stability property of the nonlinear observer, and
simulations indicate that local optimality properties similar to a perfectly
linearized KF can be achieved.

Johansen, T. A. and T. I. Fossen. The eXogenous Kalman Filter (XKF).
International Journal of Control, Vol. 90 , Issue 2, 2017. pp. 161-167.




The eXogenous Kalman Filter (XKF)

This involves a
but not an EKF:

There is no feedback loop that
can cause instability!

Globally
convergent,
Auxilliary sub-optimal Local.linea?r
state estimate approximation
estimator " (linearization) of
nonlinear model Globally
, , convergent,
Linearized model | more
Kalman-filter accurate
Measurements based on estimate
approximate ”
local linearized
LTV model




Main Result

The XKF inherits the nominal stability properties of the auxilliary state
estimator (e.g. Nonlinear Observer) since it is a cascade structure.

Globally
convergent,
Auxilliary sub-optimal LocaI.IineaTr
‘ state estimate approximation
- estimator "l (linearization) of
nonlinear model Globally
. . convergent,
Linearized model more
Kalman-filter accurate
Measurements based on estimate
" approximate ~
local linearized
LTV model

Johansen, T. A. and T. I. Fossen. The eXogenous Kalman Filter (XKF).
International Journal of Control, Vol. 90 , Issue 2, 2017. pp. 161-167.




Analysis of Stability

xX(1) = f(x(2),1) +G(r)w(r) (1)

y(1) = h(x(r),r) +e(t) (2)
Linearization point given by the X is the exogenous signal from a nonlinear observer
1st-stage auxilliary state estimator x(t) = x(t) — x(t) is the error dynamics

\' A Taylor series expansion of (1) about
the trajectory gives

xX(r) = fx@),1)+F(x(r),0)x(7)
+G()w(r) +q(x(2),x(2),1) (3)
(1) = h(x(r),0) +H(x(t),0)x()
+r(x(r),%(1),1) +e(t) (4)
where ¢(-) and r(-) are higher-order terms, and
F(5 1) = gf( 0, H(%1) = %(x,r)

11g()]] < kgllx()II%, |Ir@®)]] < ke J1X(0)]]?




Linearized Kalman Filter

Use the truncated (linearized) model for design of a standard
LTV Kalman Filter:




Theorem 1: Suppose there are no noises, i.e. w =0 and
e = 0, and assume

Al. The LTV system (F(x(¢),t),G(t),H(x(¢),t)) is uni-
formly completely observable and controllable.
A2. The nominal error dynamics X, of the auxiliary state

estimator 1s Uniformly Globally Asymptotically Stable
(UGAS), Semi-Globally Exponentially Stable (SGES),

or Globally Exponentially Stable (GES).
A3. The LKF tuning parameters P(0),Q,R are symmetric

and positive definite.
Then the origin X = X = 0 of the nominal error dynamics

cascade X — X (see Figure 2) inherits the stability properties

of 2.
X X
2o 2 s
. . . . [8] B. D. O. Anderson, “Stability properties of Kalman-Bucy filters,” J.
Auxiliary state estimator Linearized KF Franklin Institute, vol. 291, pp. 137-144, 1971.
. . [9] A. Loria and E. Panteley, “Cascaded nonlinear time-varying systems:
Wlth UGAS/G ES/SG ES GES error dyna miIcs analysis and design,” in Advanced Topics in Control Systems Theory,
. F. Lamnabhi-Lagarrigue, A. Loria, and E. Panteley, Eds.  Springer-
error dyna mics Verlag, London, 2004, ch. 2.

Fig. 2. Cascaded nominal error dynamics (no noise).




Example 1

First-order linear dynamics with nonlinear measurement functions

|
o

|
[S—

Y1
2

xX+2




A nonlinear observer can be designed for this system using the following nonlinear transform of the
measurements

2=y (1)
=" Hdx+d— (¥ —2x+1) (12)
=6x+3 (13)

which leads to the nonlinear observer
f=u+L(y;—yi—68—3) (14)
with error dynamics X = x — X given by the linear system
Y, ¥ =—6LX (15)

Clearly, X; is GES for any constant L > 0 which should be chosen to achieve desired filtering bandwidth
or pole locations. For completeness, the discrete-time implementation is given by the Euler discretization
method

T(k+1) = #(k) + Tu(k) + TL (y3(k) — yi (k) — 65(k) — 3) (16)




The control input u is a
unit square wave signal
with period 21r.

The EKF does not
converge while all other
estimators converge due
to their GES property.

In particular LKF* has a
very accurate initial
linearization that is
exploited to make an
accurate correction
already at time k = 0.

LKF* is a perfect LKF linearized about the true
(unknown) trajectory (perfect reference signal).

—true

time

Figure 3. Simulation results, first example.




Example 2

First-order nonlinear dynamics with linear measurement function:

X = —2x+x|x| +u
y=4X
We note that this system is only locally stable. For this system an NLO can be desiged as

X = =2X+X|y|+u+L(y—x) (23)

The error dynamics X = x — X 1s given by the system
S R= (24 |y —L)¥ (24)

Choosing L = |y| + Lo leads to x = —(2 + Lo)x which is GES for any constant Ly > —2 which should be
chosen to achieve desired filtering performance. Discretization and design of EKF and XKF are similar
to the previous example.




—true

. — EKF
0 ; NLO |
| ; — XKF
4L : : i
_6_. -
-8 4
-10- i
-12 i i i i I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time

(a) Initial condition £(0) = n(0) = —3.

—true
| ——EKF

o ——XKF L
— LKF*

NLO

time

(b) Initial condition £(0) =n(0) =0.

Figure 4. Simulation results, second example. Note that the curves
of the NLO and LKF* are almost indistinguishable in (a), while in
(b) is curves of the EKF, XKF and LKF* are almost indistinguishable
from the true state. (a) Initial condition X(0) = n(0) = —3.(b) Ini-

tial condition x(0) = n(0) = 0.
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Low-Cost Integrated Navigation
Systems - Applications

=  Unmanned Aerial Vehicles (UAVs)
= Surface Ships
= Autonomous Underwater Vehicles (AUVs)




Fleet of the NTNU Unmanned Aerial
Laboratory (UAV-Lab)

Procurement and operation license from Norwegian CAA (Civil Aviation Authority)
for VLOS/BLOS operations since 2014

- Penguin B fixed-wing
(VLOS/EVLOS/BLOS)

- 3D Robotics hexa-copters (VLOS)

- Microdrone quadro-copter .- X
(VLOS)

- X8 fixed-wing (VLOS)




NTNU Airfield at Agdenes

Located 94 km North-West of Trondheim We also use the airports at
Eggemoen and @rland
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Unmanned Aerial Vehicle (UAVs)

Strapdown INS aided by:

=  GNSS measurements

= Time-delayed GNSS measurements

=  GNSS and camera measurements (optical flow)
Estimation of wind: angle-of-attack and sideslip angle

Penguin B X8 Skywalker




Nonlinear Observers for INS aided by GNSS

Development of low-cost integrated strapdown navigation systems
(nonlinear observers) using inertial and pseudo-range/carrier-
phase measurements.

e Nonlinear observers for tight integration of INS aided by GNSSS
e Nonlinear observers for GNSS time-delayed aided INS

e Nonlinear observers for aided INS using pseudo-range and
carrier-phase measurements (RTK)

T. A. Johansen, T. |. Fossen and J. M. Hansen (2017).
Nonlinear Observer for Tightly Integrated Inertial Navigation
Aided by Pseudo-Range Measurements.

Journal of Dynamic Systems, Measurement and Control,
Vol. 139(1), January 2017.

J. M. Hansen, T. I. Fossen and T. A. Johansen (2017).
Nonlinear Observer Design for GNSS-Aided Inertial
Navigation Systems with Time-Delayed GNSS Measurements.
Control Engineering Practice, Vol. 60, March 2017, pp. 39-50.




Validation of INS/GNSS Nonlinear Observer
against EKF ——

EKF: Extended Kalman filter
implementation

NLO-Mag: magnetometer is used as
attitude reference vector

NLO-Vel: assumes that heading and course
to coincide (avoid compass) when
computing the velocity reference vectors

Table 3. Observer performance comparison (NED position in m, attitude in deg and speed in m/s)
EKF NLO-Mag NLO-Vel

POSRMS: 343 271 262 337 262 250 337 263 250
POS STD: 260 244 246 248 241 244 248 242 244

S ATTRMS: 1.83 259 550 202 269 5.46 1.93 3.01 6.88
~§ ATTSTD: 1.67 1.81 542 1.84 190 5.28 1.90 192 6.15
A  SPERMS: 0.60 0.67 0.69

SPE STD: 0.59 0.66 0.69

POSRMS: 4.43 440 343 3.38 5.00 3.63 3.37 500 3.63
~ POSSTD: 253 435 286 246 420 2.82 246 420 2.82
D ATTRMS: 176 1.87 6.39 209 1.87 7.85 1.56 194 6.36
§ ATTSTD: 170 1.66 6.34 173 1.67 6.28 146 1.59 6.36
A  SPE RMS: 0.86 1.06 1.05

SPE STD: 0.83 1.02 1.02

Hansen, J. M., J. Rohac, M. Sipos, T. A. Johansen and T. I. Fossen (2016). Validation and Experimental Testing of
Observers for Robust GNSS-Aided Inertial Navigation. In "Recent Advances in Robotic Systems. (G. Wang, Ed.),
InTech, Vienna. <Open Access: http://intechweb.org/>. ISBN 978-953-51-4767-1




Validation of INS/GNSS Nonlinear
Observer against EKF
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Figure 15. Attitude error (Dataset 1): EKF (red), NLO-Mag (blue dashed), NLO-Vel (green)
Figure 16. Position estimation error (Dataset 1): EKF (red), NLO-Mag (blue dashed), NLO-Vel (green)

Hansen, J. M., J. Rohac, M. Sipos, T. A. Johansen and T. I. Fossen (2016). Validation and Experimental Testing of
Observers for Robust GNSS-Aided Inertial Navigation. In "Recent Advances in Robotic Systems. (G. Wang, Ed.), InTech,
Vienna. <Open Access: http://intechweb.org/>. ISBN 978-953-51-4767-1




Validation of INS/GNSS Nonlinear
Observer against EKF
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Figure 16. Position estimation error (Dataset 1): EKF (red), NLO-Mag (blue dashed), NLO-Vel (green)
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Observers for Robust GNSS-Aided Inertial Navigation. In "Recent Advances in Robotic Systems. (G. Wang, Ed.), InTech,
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Nonlinear Observers for INS aided by GNSS

GNSS time-delay: Where?

There is a delay arising at the GNSS-receiver due to
computational time and an internal transport delay.
The delay is defined as the time from input to output
of the receiver.

(méj

GNSS Delay

Receiver [ L,

Time-delay: Determination

The GNSS-receiver has a Pulse-Per-Second (PPS) signal timed (rising edge) with
GPS time. The time-delay is measured as the time between the PPS signal and the

end of a data package. The data frequency is 1-10 Hz leaving multiple packages
per PPS signal.

PPS [ S S I I
DATA . WWA___ MWW WL W

71 2 ls

h

Hansen, J. M., T. 1. Fossen and T. A. Johansen (2017). Nonlinear Observer Design for GNSS-Aided Inertial Navigation
Systems with Time-Delayed GNSS Measurements. Control Engineering Practice, Vol. 60, March 2017, Pages 39-50.




Nonlinear Observers for INS aided by GNSS —
Time-Delay Modification

The observer is being altered to take the time-delay into account by adapting the
acceleration delayed approach, and delaying the IMU and magnetometer data.

R;(©en) Tpe(t — )
GNSS H e 7s
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| ] \D—:
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ql‘?(t - T) }l\)b t—71
( ) N . P (t|t — 1)
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2| from ¢t — 7 to ¢t on(t]t —7

A fast simulator (predictor) is used to predict the current position and velocity.




NTNU UAV equipped with INS for Data
logging

Auto-pilot Altimeter Mounting box Synchronization board

Payload area STIM 300 Magnetometer ADIS 16488

Penguin navigation payload: Two IMUs, optical camera, infrared
camera, RTK GPS and embedded controller for data logging




Nonlinear Observers for INS aided by GNSS —
Time-Delay Modification

250
Time-Delay: Experimental Results 200
The GNSS-receiver time delay is approx. 154 ms, ‘?50’
which for the Penguin UAV at max speed results ~ © [
in a position error of 5.5 m. 7l

0
100 120 140 160 180 200 220 240
Time-delay {ms)

Hansen, J. M., T. I. Fossen and T. A. Johansen (2015). Nonlinear Observer for INS Aided by Time-Delayed GNSS
Measurements - Implementation and UAV Experiments. Proc. of the 2015 International Conference on Unmanned Aircraft

Systems (ICUAS'15), Denver, Colorado.
Hansen, J. M., T. I. Fossen and T. A. Johansen (2017). Nonlinear Observer Design for GNSS-Aided Inertial Navigation

Systems with Time-Delayed GNSS Measurements. Control Engineering Practice, Vol. 60, March 2017, Pages 39-50.




Nonlinear Observers for INS aided by GNSS —
Time-Delay Modification

Experiments were carried out at Eggemoen airport in 2014/2015.
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The Skywalker X8 with Pixhawk Autopilot

18 m/s cruise speed
Catapult launch
Belly or net landing
Electric, <1 hr
endurance

Large payload bay
>1 kg payload
capacity
Inexpensive
Flexible avionics and
payload system
integration with
Pixkhawk open
source autopilot
Currently telemetry
on 433 MHz or 5.8
GHz radio for VLOS
Can be set up for
BLOS with GPRS and
VHF radio links




Autonomous Launch and Recovery
C, Systems for Maritime and Offshore Operations




R. Skulstad, C. K. Syversen, M. Merz, N. Sokolova, T. I. Fossen, T. A. Johansen, Autonomous Net Recovery of Fixed-Wing
UAV with Single-Frequency Carrier-Phase Differential GNSS, /EEE Aerospace and Electronic Systems Magazine, 2015




Automatic Net Landing onboard a Research
Vessel outside the Azores in Portugal in 2016




Safety-Critical Offshore Operations

< Accurate landing on ships and offshore structures with fixed-wing UAVs is a safety-
critical operations since the aircraft can hit an object with causes fire/explosions even
if the best technology is used.

< An obvious solution is to land the fixed-wing UAYV in a safe distance from the ship
and catch the UAV with a second UAV. Boeing and NTNU have one approach each:

= Insitu FLARES (Boeing owns Insitu and the IPR)
= NTNU AMOS fixed-wing net-recovery approach (Patent filed April 12,2017)

-
\
[N

Kristian Klausen (PhD defense is scheduled for 23 June 2017)
“Coordinated Control of Multirotors for Suspended Load
Transportation and Fixed-Wing Net Recovery’.

Supervisors: Professors Thor I. Fossen and Tor Arne Johansen, NTNU

52 K. Klausen, J. B. Moe, J. C. van den Hoorn, A. Gomola, T. |. Fossen and T. A. Johansen (2016), Coordinated Control
Concept for Recovery of a Fixed-Wing UAV on a Ship using a Net Carried by Multirotor UAVs, ICUAS’16, Arlington, USA




Insitu FLARES

Since 2014 Insitu has developed the Flying Launch and Recovery System (FLARES),
a system designed to launch and recover the ScanEagle without the need to transport
and assemble the launch catapult and recovery crane.

It consists of second, quadrotor UAV that carries the ScanEagle vertically and

releases it into forward flight. For recovery, the quadrotor hovers trailing a cable that it
captures, as it would the cable from the SkyHook crane.

\

The ScanEagle fixed-wing UAV




The NTNU AMOS Ship-Landing Concept

Cooperative Control: A suspended net is transported away from the ship to a safe
distance by using two or more multicopters, which cooperates. They UAVSs are
intelligent and share positions in order to control the tension of the net.

Coordinated Control: Master-Slave Principle:
The fixed-wing aircraft acts like an master, while the
cooperative multicopters is the slave following the master.

in an optimal manner vertically and horizontally to
improve landing accuracy and reduce impact s
speed. -

= | ~>
c{7<\>
Virtually-Moving Airfield: The airfield/net is moved / %E@i | 2P

Along virtual
runway

Cross-track plane

K. Klausen, J. B. Moe, J. C. van den Hoorn, A. Gomola, T. |l. Fossen and T. A. Johansen. Coordinated Control
Concept for Recovery of a Fixed-Wing UAV on a Ship using a Net Carried by Multirotor UAVs. Proc. of the 2016

International Conference on Unmanned Aircraft Systems (ICUAS'16), Arlington, VA,

7-10 June, 2016.




Robust UAV Attitude and Navigation System
using Nonlinear Observers and Camera
Measurements

PhD Candidate: Lorenzo Fusini

Sensor fusion of low-cost inertial sensors, magnetometers, sensors
for altitude/depth/speed, GNSS and cameras using nonlinear
observer theory.

e C(lassification of problems for robust navigation and autonomy
e Design a fault-tolerant robust navigation system for UAVs




Pinhole Camera Model (M-Matrix)

Mapping from Optical Flow (OF) to BODY velocities
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Figure 3.1: The pinhole camera model maps a perceived point in the camera-fixed frame
to the image plane.




(c)

Fig. 2. a) Image captured at time tp. b) Image captured at time tp + &t. c)
Optical flow vectors between image a) and b), generated by SIFT (red) and
Template Matching (green).




INS aided by Optical Flow: Ground Truth
Optical Flow (GTOF) Observer

. R— RS(wt, — 0% + oK pJ A GES nonlinear observer has been
1 2 A ~ ~ i i
b = Proj(8b, —kyvex(Po(RT K pJ))) developed using o.ptlcal flow as a reference
, vector together with magnetometer and
PP pv acceleration in the attitude observer

0
E < . A AT AT ;- 1 r-
*Vé=—0KpJa® + Kep(p"—p") + Kep(v"—0")  J(a’, @, vf, 0", R) := A, A} — RAAT

velocity reference .. T
T, S b
vector ' W

" = Ra® + ¢ Ap = [ab, a’ x vh, a® x (a® x vh ]
A, = [a", a" x 9", a" x (a" x ™)
Ab .
OF{ P Nt [ i ]
Wp S .Un ]
o, 0 b IMU b GNSS
mn
Altimeter | “ lwfn l lp", "
ﬁn
—¢ l‘b Y j I’;) —
Optical flow is used to - ‘ "
P P Camera > M™ J > 3 Yo —>
compute a body-fixed T _¢ . ~n

Fusini, L. T. l. Fossen and T. A. Johansen. Nonlinear Camera-Based INS for Fixed-Wing UAV using the eXogenous Kalman
Filter. Ch. 2 in "Sensing and Control for Autonomous Vehicles: Applications to Land, Water and Air Vehicles” (T. I. Fossen, K. Y.
Pettersen and H. Nijmeijer, Eds.). Springer, 2017.




Stability of GTOF Observer: Feedback
Interconnection

" |
0,0 5 IMU —; GNSS
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r.s 1 ) T an
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The origin of the feedback interconnection % ,—%, (feedback from estimated NED acceleration a") is
GES if the roll and pitch angles in the M-matrix are auxiliary signals typically obtained by:

1.  Mapping the BODY accelerations to roll and pitch angles (static solution)
2. Inclinometers for auxiliary roll and pitch measurements (sensitive to large accelerations)

If we feed the roll and pitch angles estimates from the rotation matrix attitude observer X, back to the
M-matrix this introduces a hard nonlinearity. For this case, we have shown that the resulting origin of
>, is ULES and %, is GES.

Fusini, L. T. . Fossen and T. A. Johansen. Nonlinear Camera-Based INS for Fixed-Wing UAV using the eXogenous Kalman
Filter. Ch. 2 in "Sensing and Control for Autonomous Vehicles: Applications to Land, Water and Air Vehicles” (T. I. Fossen, K. Y.
Pettersen and H. Nijmeijer, Eds.). Springer, 2017.




Experimental Results

Test performed at Eggemoen on
6 February 2015




Experimental Results: Comparison of
Attitude Estimator Methods
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Fig. 5. Position on the N-E plane and altitude, as output by the EKF, used
as reference. The blue and red stars indicate the start and end of the data set, Fig. 6. A comparison of the attitude error from the three methods.

respectively.

Fusini, L. T. l. Fossen and T. A. Johansen. Nonlinear Camera-Based INS for Fixed-Wing UAV using the eXogenous Kalman Filter. Ch. 2
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Nijmeijer, Eds.). Springer, 2017.




o] Experimental Results: Validation of
w4 Nonlinear Observer against Autopilot EKF
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green, respectively) calculated via machine vision.

Fig. 5. [Estimated (blue, solid) and EKF (red, dashed) attitude.

L. Fusini, J. Hosen, H. H. Helgesen, T. A. Johansen, T. I. Fossen (2015). Experimental Validation of a Uniformly Semi-
globally Exponentially Stable Nonlinear Observer for GNSS- and Camera-aided Inertial Navigation, International Conference
on Unmanned Aircraft Systems (ICUAS’15), 9-12 June 2015, Denver, CO.




Continuous Epipolar Optical Flow
(CEOF) Observer

The origin of =,~%, is GES as long as the gyro bias is known IMU GNSS
b
w5
l "Ilamu wlbmu' fl?‘nu ngS ’ ngS
ty _ bgyro
<f b v J N v ﬁ;}/n
Vev R;}
CAM > cV 3, .3, —

A A ~ =N
T fgl/:‘ ) /n

Do not need roll angle ¢ and pitch angle 6 nor attitude h to compute the
transformation matrix CV  sn

Epipolar geometry is the geometry of {c}
stereo vision. When two cameras view &‘}
a 3-D scene from two distinct positions,

there are a number of geometric
relations between the 3-D points and (n}
their projections onto the 2-D images yn 2
that lead to constraints between the | ; l“-’”
image points.

Figure 3.10: With epipolar geometry it is possible to find a dimensionless translation ¢
and the relative rotation, R, from time tx to tr+1 without any prior information about
the structure.

Hosen, J., H. H. Helgesen, L. Fusini, T. l. Fossen and T. A. Johansen. Vision-aided Nonlinear Observer for Fixed-wing
Unmanned Aerial Vehicle Navigation. Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8 (2016), pp. 1777-1789




Continuous Epipolar Optical Flow
(CEOF) Observer

- j(vgv: ﬁb/-n,a filinus fl?/na ﬁg) = AHA’{ - I%ZAbA’IIJ‘
~ . ~ b Ab ~
2 < Rg - RgS(wlmu N bger) + GKPJ Ab = [fit;nuﬂ il;nu X v:vs iI;nu X (fil;nu X vf:)v)]
1
| Bhyro = Pr0j(bhyro, —krvex(Po(RT K p.J))) An 3= spme Tojn X Bjms Sojn X gy X 0iyn)]

’

‘n rn n n ~7 n A vs/n = e[l (A+b)T]T
Uyin = Jom +9 +KUP(pGNSS_pb/n) + K””(”GNSS_Ub/n) [ ]
22 { Cy,l1 Cz
£ = —0KpJ f, + Kep(Pnss—Ph/n) + Keo(vinss—0h/n) A=
Fim = R fls + € R
\ Cxr1
( ,
'vgv — Sign(-vx)”—zﬁ, Up # 0 b= —
CV /4 Ve = [1’ (A+b)T]T | Cz,N |

. . 1T — ,,¢c s cT b _hb c
k[Cﬂ?a.?’c!h]’cys]] - uj X (uj + [wimu bgyro] % uj

Hosen, J., H. H. Helgesen, L. Fusini, T. |. Fossen and T. A. Johansen. Vision-aided Nonlinear Observer for Fixed-wing
Unmanned Aerial Vehicle Navigation. Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8 (2016), pp. 1777-1789




Experimental Testing

Hosen, J., H. Helgesen, L. Fusini, T. |. Fossen and T. A. Johansen. A Vision-aided Nonlinear Observer for Fixed-wing
UAV Navigation. Proceedings of the AIAA SciTech'16 San Diego, California, USA, 4-8 Jan 2016




Experimental Results

Ref = Extended Kalman filter

NoCV = Nonlinear observer without computer vision
GTOF = Ground Truth Optical Observer

CEOF = Continuous Epipolar Optical Flow Observer

Crab and Flight Path Angle
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Experimental Results

Attitude Estimates
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Concluding Remarks

A nonlinear observer framework has been developed for strapdown INS, which can
replace the EKF without performance degradation. New observer tool: XKF

Explicit stability requirements for semiglobal and global exponential stability (GES)
have been derived (not available when using the EKF). This gives robustness
guarantees and tuning rules for the convergence rate of the estimates.

Compensation of delayed GNSS measurements for high-speed applications such as
UAVSs.

The nonlinear observer has a significant smaller computational footprint than the EKF.
It is tailor made for low-cost embedded systems using MEMS sensors.

A discrete-time version, which can can handle sensors with different measurement
frequencies, has been developed.

Bryne, T. H., R.H. Rogne, J.M. Hansen, N. Sokolova, T. A. Johansen and T. I. Fossen. Nonlinear Observers
for Integrated INS/GNSS Navigation — Implementation Aspects. IEEE Control Systems Magazine, 2017

We are currently developing a Matlab toolbox and C++ library for effective implementation.
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