Google
Working on LLVM/Clang for Chrome

EDAN/S5
8 October 2018
hwennborg (at) google.com

Short bio

| was dO4hw@efd.Ith.se

Took this course in 2008
Graduated 2010, joined Google
London 2010-2013

Mountain View 2013-2017
Munich 2018-

Working on Clang/LLVM for Chrome

Google At the programming competition in Lund 2009 ->

mailto:d04hw@efd.lth.se

Plan for this morning

1. How | ended up at Google and what | work on
break

2. How LLVM generates code for switch statements

Google

2008: Optimizing Compilers

“Every academically educated computer scientist must know how a computer
functions, and must understand the ways and methods in which programs are
represented and interpreted. Compilers convert program texts into internal code.
Hence they constitute the bridge between software and hardware. “

Niklaus Wirth

Compiler Construction

Google

2008: Optimizing Compilers

Optimizing Compilers Hall of Fame at LTH

Year Group Programme Cycles
2016 Johan Ju E
2014 Karl Hylén F 40292
2013 Erik Hogeman/Mads Nielsen D 49155
2012 Martin Nitsche Math. Gottingen 33526
2011 Linus Akesson PhD/CS 112805
2010 Joakim Andersson/Jon Steen D 126616
2009 Manfred Dellkrantz/Jesper Oqvist D 950
— 2008 Jonas Paulsson D 18977

2007 Bjorn Carlin/Hans Gylling 7 /D 1047

2009: Master’'s Thesis at ARM in Lund

They do compiler stuff and use LLVM

Probably even more these days

Graduation was getting closer

Considered pursuing PhD but didn't really have any ideas

“You should try interviewing at Google! The interviews are
fun, and you get a free lunch if they bring you on-site.”

Google

2010: Getting hired

Google

22 December 2009: Google phone interview
15 January 2010: Presented thesis

Signed up for ENGAO04

20 January: On-site interview in London

4 February: Google offer of employment

29 March, start date

Terminology

+ Branding

€

Chromium Chrome

Clang

Google

Starter Project

Google

Various bug fixes in Chrome
Implement DeviceOrientation events

Author:

Date:

Changed paths:
Log Message:

hans@chromium.org
Wed Aug 11 14:42:53 2010 UTC (8 years, 1 month ago)
18

Chromium plumbing for Device Orientation.

Add the plumbing needed for communicating with the Device
Orientation code in WebKit.

RenderView provides an implementation of

WebKit: :WebDeviceOrientationClient:
DeviceOrientationDispatcher. This communicates with the
browser-side class device orientation::DispatcherHost.

device orientation::Provider, responsible for providing
the orientation data, is just an empty shell for now.

BUG=44654
TEST=browser_tests --
gtest filter=DeviceOrientationBrowserTest.BasicTest

Review URL: http://codereview.chromium.org/2858049

20% Work: Clang

welcome to chrome

I saw that you worked on LLVM.

I've been (slowly, as a 20% project) trying to get Chrome to build under Clang.

It's mostly been a process of reducing compiler bugs to test cases,
but recently (last week) | got most of the main source tree to
successfully syntax-check!

| hope to use this eventually so | can write static analysis tools for Chrome.
My work in progress patch (it gets larger and smaller as | commit
pieces of it) is here:

hitp://codereview.chromium.org/522020/show

Google

4/9/10

= |
“- v

20% Work: Clang

Clang was very new, we were curious

| was excited to work on something compiler related
Developers were very excited about better diagnostics
It was fast

Designed for hackability

Google

Diagnostics

Google

int £(int) 1

int s =0

for (int 1 = 0; i < x; ++i)
B 4=

return s;

a.cc: In function ’int f(int)’:

a.cc:3:9: error: expected ’,” or ’;’ before ’for’
a.cc:3:25: error: i’ was not declared in this scope
a.cc:3:35: error: expected ’;’ before ’)’ token

Diagnostics

int f(int x) {

int s =0

for (int i = 0; i < x; ++i)
s += 1;

return s;

a.cc:2:18: error: expected ’;’ at end of declaration
int s = 0

~

3

Google

Build Speed

Google

160

120

80

40

Build Time / min (Release)

M gec
M clang

Competition is good

e GCC's diagnostics have improved a lot since then
e Build speed is more similar

Google

Hackability

In file included from a.cc:1:
./a.h:8:3: warning: [chromium-style] Overriding method
must have "virtual" keyword.
void foo();

1 warning generated.

Google

What did we have to do?

Google

Fix many C++ errors in Chromium

Fix many bugs found by Clang’'s warnings
File bugs for Clang

Fix some ourselves

Dec 2009: First Chromium patch mentioning Clang
Sep 2010: Linux and Mac builds work

Results

e Continuous integration with Clang on all platforms (*)
e Many developers use Clang locally
e Chrome 15 for Mac built with Clang (Oct 2011)

* except Windows

Google

g\
1-4 weeks 1 day

1GZ

trunk LLVM clang-247874-1.tgz Chrome Canary

Google

1-4 weeks > ~12 weeks > ‘
TGZ

trunk LLVM clang-247874-1.1gz Chrome

L4

Google

Windows

¥¢ Issue 82385

Starred by 49 users

Status: Fixed

Owner: thakis@chromium.org

Closed: Mar 21

Cc: mbonadei@chromium.org
kcc@chromium.org

Google

Deploy Clang on windows 10f8

Project Member Reported by thakis@chromium.org, May 12 2011 Edit description Back to list

clang's -fms-extensions support has improved dramatically. We should look into how viable
building chrome on windows is with clang.

Showing comments 751 - 850 of 850 Older»

Windows

Lots of good reasons

Chrome’s largest desktop platform

Running into limitations of MS Visual C++ compiler and linker
Want to benefit from our compiler work on all platforms

New tech: AddressSanitizer, CFI, ThinTLO, ...

Crazy ideas: cross compilation, ...

Google

How hard could it be?

Google

Windows Support Requirements

Want to compile Chromium w/ Clang on Windows

Must support compiling MS system headers

Must be binary compatible, able to link against system libraries

Binaries must work with existing debugging, profiling, etc. tools

Build time, binary size and run-time performance must be on par or better
IDE integration

Build system integration

Google

What about MinGW?

Minimalist GNU for Windows (MinGW)

Allows compiling Windows programs with GCC

Not source compatible (has its own headers)

Not binary compatible (can’t link against MSVC-built binaries)

Google

Command-line compatibility

x86 Native Tools Command Prompt for VS 2017 - O X

pptimizing Compiler Ver
ft Corporation. All r

Incremental Linker
Microsoft Corpo

Google

Command-line compatibility

x64 Native Tocls Command Prompt for VS 2017

C:\src\tmp>clang-cl /02 /Tp a.cc

C:\src\tmp>

Command-line compatibility

x64 Native Tocls Command Prompt for VS 2017

C:\src\tmp>clang-cl /02 /Tp a.cc

C:\src\tmp>a.exe
hi

C:\src\tmp>

Command-line compatibility

x64 Native Tocls Command Prompt for VS 2017

C:\src\tmp>clang-cl /?
OVERVIEW: clang LLVM compiler

USAGE: clang-cl.exe [options] <inputs>

CL.EXE COMPATIBILITY OPTIONS:
/? Display available options
/arch:<value> Set architecture for code generation
/Brepro- Emit an object file which cannot be reproduced over time
/Brepro Emit an object file which can be reproduced over time
/C Don't discard comments when preprocessing
/c Compile only
/d1PP Retain macro definitions in /E mode
/direportAllClassLayout Dump record layout information
/diagnostics:caret Enable caret and column diagnostics (on by default)
/diagnostics:classic Disable column and caret diagnostics
/diagnostics:column Disable caret diagnostics but keep column info
/D <macro[=value]> Define macro
/EH<value> Exception handling model
/EP Disable linemarker output and preprocess to stdout
/execution-charset:<value>
Runtime encoding, supports only UTF-8
/E Preprocess to stdout
/fallback Fall back to cl.exe if clang-cl fails to compile
/FA Output assembly code file during compilation
/Fa<file or directory> Output assembly code to this file during compilation (with /FA)
/Fe<file or directory> Set output executable file or directory (ends in / or \)
/FI <value> Include file before parsing
/Fi<file> Set preprocess output file name (with /P)

Source Compatibility: Hyrum’s Law

With a sufficient number of users of an API [or compiler],
it does not matter what you promise in the contract:
all observable behaviors of your system

will be depended on by somebody.

(www.hyrumslaw.com)

Google

Source Compatibility: Preprocessor Quirks

REM This is a comment :-]

Google

Source Compatibility: Preprocessor Quirks

#tdefine REM / ## /

REM This is a comment :-]

Google

Source Compatibility: Two-Phase Lookup

template<int N> int f() { return N + a; }
int a;

void g() { f<4>(); }

See http://blog.livm.org/2009/12/dreaded-two-phase-name-lookup.htm

Google

http://blog.llvm.org/2009/12/dreaded-two-phase-name-lookup.html

Source Compatibility: Two-Phase Lookup

template<typename T, typename S = Foo> class Class;
class Foo {};

template<typename T, typename S> class Class {};

warning: using the undeclared type 'Foo' as a default template argument is a
Microsoft extension [-Wmicrosoft-template]

Google

It's the little differences: Signed enums

enum Color { RED, BLACK };
class Node {
Color color : 1;
¥
Enum variables are signed on Windows
This is extra surprising in bit-fields

Don’t use enum for bitfields

Google

Platform-specific features: dllexport

When building a DLL:

int _ declspec(dllexport) foo() { return 42; }

When linking against a DLL:

int _ declspec(dllimport) foo() { return 42; }

Google

Platform-specific features: dllexport

struct _ declspec(dllexport) Class {

int foo() { return 42; }

s

Google

Platform-specific features: dllexport
template <typename T> Base {

int bar() { return 42; }

}s
struct _ declspec(dllexport) Class : public Base<int> {

int foo() { return 42; }

s

Google

Binary Compatibility

Application Binary Interface (ABI)

Defines how pieces of code interact at the binary level
For non-Windows this is mostly well documented for C++
For Windows it is not.

Google

ABI basics: sizes, etc.

e 1longis always 32 bits on Windows
e 1longis 32 or 64 bits on Mac/Linux on x86/x86_64

Google

ABI: Name Mangling

Symbols are linked together by name

int foo() { return 42; }

In C, this symbol will be called “foo” in the object file. (_foo on Windows)

In C++ it will be “_Z3foov” (Mac/Linux/...) or “?foo@@YAHXZ" (Windows)

Google

ABI: Name Mangling

e Linux, Mac: Itanium C++ ABI section 5.1
e Windows: look at compiler output and figure it out

Google

ABI: Name Mangling, Why?

In C++ many functions can have the same name:
int foo(int);

int foo(double);

namespace ns { int foo(); }

class C { int foo(); };

Google

ABI: Name Mangling, Why?

In C++ many functions can have the same name:

int foo(int); // ?foo@@YAHH@Z

int foo(double); // ?foo@@YAHN@Z

namespace ns { int foo(); } // ?foo@ns@@YAHXZ

class C { int foo(); }; // ?foo@C@@QAEHXZ

Microsoft refers to this as “decoration” rather than “mangling”.

Google

Name Mangling: Static Locals

inline void foo(bool b) {
if (b) {

static int x = use(&b); // ?x@?4??foo@@YAX_ N@Z@4HA

1} else {

static int x

use(&b); // ?x@?6??foo@@YAX_N@Z@4HA

Google

Name Mangling: Static Locals

inline void foo(bool b) {
if (b) {
static int x = use(&b); // ?x@?4??foo@@YAX_ N@Z@4HA
}
static int x = use(&b); // ?X@?4??foo@@YAX_ N@Z@4HA

}

a.obj : fatal error LNK1179: invalid or corrupt file

Fixed in Visual Studio 2015
Google

ABI: Calling Conventions

struct S {
int f(int a) { return x + a; }
int x;
}s
32-bit Linux/Mac: this and a both on the stack, return in %EAX (classic C-style call)
Windows: this in %ECX, a on the stack, return value in EAX (__thiscall)

32-bit Win also has __stdcall, _ fastcall, _ vectorcall

Google

Record Layout

struct S {
char c;

int 1i;

unsigned x :

unsigned y :

s

Google

1;

1;

Windows:
%) struct S
0 char ¢
4 int i
8 unsigned int x
8 unsigned int y

Linux:

%)

%)

8

struct S
char ¢
int i
unsigned int x

unsigned int y

Record Layout: Inheritance

struct A { int a; }; Windows:
struct B { int b; }; @ | struct C
struct C : public A,) struct A (base)
public B { 0 int 3
int c; 4 struct B (base)
b 4| int b
8 int ¢

Google

Linux:

%) struct C

0 struct A (base)
5 int a

4 struct B (base)
4 int b

8 int ¢

Record Layout: Mysterious Padding

struct S { Windows:
virtual void f(); 0 struct S
int i; 0 (S vftable ptr)
double d; 3 int i

b 16 | double d

Google

Linux:

%) struct S

0 (S vtable ptr)
4 int i

8 double d

Virtual Functions

struct S {

virtual void f();
}s5
void foo(S *s) {

s->f();

Google

Windows:
@ | struct S
0 | (S vftable pointer)

VFTable for 'S' (2 entries).

@ | S RTTI

1 | void S::f()

Linux:
@ | strut S
0 | (S vtable pointer)

Vtable for 'S' (3 entries).
0 | offset _to_top (0)

1| S RTTI

-- (S, 9) vtable address --

2 | void S::f()

Pointers to Members

struct S {
void f();
int x;
};
struct T { void g(); };
struct U : public S, public T { };

typedef void (U::*UMemPtr)(void);

UMemPtr pl = &U::f; // = { &f, 0 }

UMemPtr p2 = &U::g; // = { &g, 4 }

Google

Pointers to Virtual Member Functions (Linux)

struct S {
virtual void f();
virtual void g();
}s
typedef void (S::*SMemPtr)(void);

SMemPtr pl = &S::f; //

{1, 0}

SMemPtr p2 = &S::g; // ={ 5, 0 }

Google

Pointers to Virtual Member Functions (Windows)

struct S {
virtual void f();
¥
typedef void (S::*SMemPtr)(void);
SMemPtr pl = &S::f; // = { ??_9S$BAAE, © }
?? 9S$BA@AE:
; Call 1st function in S's vftable.
movl (%ecx), %eax

jmp *(%eax)

Google

And many other issues

e Object file format: ELF (Linux), Mach-O (Mac), COFF (Windows)
e Debug info format: DWARF (Linux, Mac), CodeView (Windows)
e Debug info container format: PDB

Google

Results

February 2018

[About Version X

< C ‘0 | ® Chrome | chrome://version

Google Chrome: 64.0.3282.186 (0fficial Build) (64-bit) (cohort: Stable)
Revision: 2611116ee79c636@2f452e4fae2242a61cf@672d-refs/branch-
heads/3282@{#694}

OS: uindows
JavaScript: vs 6.4.288.46

M—/__fm

Compiler: clang

Google

Results

August 2018

Google

/ [About Version

< C o

Google Chrome:
Revision:

0s:
JavaScript:
Flash:

User Agent:

Executable Path:
Profile Path:

Linker:

X

\

® Chrome | chrome://version

68.0.3440.75 (Official Build) (64-bit) (cohort: 68_75_win)
cf598d63a4f1b9e7cd14f2a8433276b196e3e07d-refs/branch-
heads/3440@{#738}

Windows

V8 6.8.275.24

30.0.0.113 C:\Users\thakis\AppData\Local\Google\Chrome\User
Data\PepperFlash\30.0.0.113\pepflashplayer.dll

Mozilla/5.0 (Windows NT 10.9; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/68.0.3440.75 Safari/537.36

C:\Program Files (x86)\Google\Chrome\Application\chrome.exe
C:\Users\thakis\AppData\Local\Google\Chrome\User
Data\Default

11d-1ink

@ chrome

Google Inc.
Copyright 2018 Google Inc. All
rights reserved.

Results

It's not just us...

a Firefox switching to clang-cl for Windows builds (groups.google.com)

280 points by schkamyung 84 days ago | hide | past | web | favorite | 80 comments

Google

Results

Chrome is now on a completely open-source toolchain
We can fix and improve things ourselves!

A new alternative for the Windows community

Also we learned a lot about C++ internals.

Google

Lessons

Compilers are fun
Practice your programming skills
Participate in the programming competition

Be part of pushing technology forward.

Google

