
Working on LLVM/Clang for Chrome
EDAN75
8 October 2018
hwennborg (at) google.com

Short bio

I was d04hw@efd.lth.se

Took this course in 2008

Graduated 2010, joined Google

London 2010-2013

Mountain View 2013-2017

Munich 2018-

Working on Clang/LLVM for Chrome

At the programming competition in Lund 2009 ->

mailto:d04hw@efd.lth.se

Plan for this morning

1. How I ended up at Google and what I work on

break

2. How LLVM generates code for switch statements

2008: Optimizing Compilers

“Every academically educated computer scientist must know how a computer
functions, and must understand the ways and methods in which programs are
represented and interpreted. Compilers convert program texts into internal code.
Hence they constitute the bridge between software and hardware. “

Niklaus Wirth

Compiler Construction

2008: Optimizing Compilers

2009: Master’s Thesis at ARM in Lund

● They do compiler stuff and use LLVM
● Probably even more these days
● Graduation was getting closer
● Considered pursuing PhD but didn’t really have any ideas

“You should try interviewing at Google! The interviews are
fun, and you get a free lunch if they bring you on-site.”

2010: Getting hired

● 22 December 2009: Google phone interview
● 15 January 2010: Presented thesis
● Signed up for ENGA04
● 20 January: On-site interview in London
● 4 February: Google offer of employment
● 29 March, start date

Terminology

+ Branding =

Chromium Chrome

+ = Clang

Starter Project

● Various bug fixes in Chrome
● Implement DeviceOrientation events

20% Work: Clang

20% Work: Clang

● Clang was very new, we were curious
● I was excited to work on something compiler related
● Developers were very excited about better diagnostics
● It was fast
● Designed for hackability

Diagnostics

Diagnostics

Build Speed

Competition is good

● GCC’s diagnostics have improved a lot since then
● Build speed is more similar

Hackability

What did we have to do?

● Fix many C++ errors in Chromium
● Fix many bugs found by Clang’s warnings
● File bugs for Clang
● Fix some ourselves

● Dec 2009: First Chromium patch mentioning Clang
● Sep 2010: Linux and Mac builds work

Results

● Continuous integration with Clang on all platforms (*)
● Many developers use Clang locally
● Chrome 15 for Mac built with Clang (Oct 2011)

* except Windows

trunk LLVM clang-247874-1.tgz Chrome Canary

1-4 weeks 1 day
Con

tin
uo

us

int
eg

ra
tio

n

trunk LLVM clang-247874-1.tgz Chrome

1-4 weeks ~12 weeks

Windows

Windows

Lots of good reasons

● Chrome’s largest desktop platform
● Running into limitations of MS Visual C++ compiler and linker
● Want to benefit from our compiler work on all platforms
● New tech: AddressSanitizer, CFI, ThinTLO, …
● Crazy ideas: cross compilation, ...

How hard could it be?

Windows Support Requirements

● Want to compile Chromium w/ Clang on Windows
● Must support compiling MS system headers
● Must be binary compatible, able to link against system libraries
● Binaries must work with existing debugging, profiling, etc. tools
● Build time, binary size and run-time performance must be on par or better
● IDE integration
● Build system integration

What about MinGW?

● Minimalist GNU for Windows (MinGW)
● Allows compiling Windows programs with GCC
● Not source compatible (has its own headers)
● Not binary compatible (can’t link against MSVC-built binaries)

Command-line compatibility

Command-line compatibility

Command-line compatibility

Command-line compatibility

Source Compatibility: Hyrum’s Law

With a sufficient number of users of an API [or compiler],

it does not matter what you promise in the contract:

all observable behaviors of your system

will be depended on by somebody.

(www.hyrumslaw.com)

Source Compatibility: Preprocessor Quirks

REM This is a comment :-]

Source Compatibility: Preprocessor Quirks

#define REM / ## /

REM This is a comment :-]

Source Compatibility: Two-Phase Lookup

template<int N> int f() { return N + a; }

int a;

void g() { f<4>(); }

See http://blog.llvm.org/2009/12/dreaded-two-phase-name-lookup.htm

http://blog.llvm.org/2009/12/dreaded-two-phase-name-lookup.html

Source Compatibility: Two-Phase Lookup

template<typename T, typename S = Foo> class Class;

class Foo {};

template<typename T, typename S> class Class {};

warning: using the undeclared type 'Foo' as a default template argument is a
Microsoft extension [-Wmicrosoft-template]

It’s the little differences: Signed enums

enum Color { RED, BLACK };

class Node {

 Color color : 1;

};

Enum variables are signed on Windows

This is extra surprising in bit-fields

Don’t use enum for bitfields

Platform-specific features: dllexport

When building a DLL:

int __declspec(dllexport) foo() { return 42; }

When linking against a DLL:

int __declspec(dllimport) foo() { return 42; }

Platform-specific features: dllexport

struct __declspec(dllexport) Class {

 int foo() { return 42; }

};

Platform-specific features: dllexport

template <typename T> Base {

 int bar() { return 42; }

};

struct __declspec(dllexport) Class : public Base<int> {

 int foo() { return 42; }

};

Binary Compatibility

● Application Binary Interface (ABI)
● Defines how pieces of code interact at the binary level
● For non-Windows this is mostly well documented for C++
● For Windows it is not.

ABI basics: sizes, etc.

● long is always 32 bits on Windows
● long is 32 or 64 bits on Mac/Linux on x86/x86_64
● ...

ABI: Name Mangling

Symbols are linked together by name

int foo() { return 42; }

In C, this symbol will be called “foo” in the object file. (_foo on Windows)

In C++ it will be “_Z3foov” (Mac/Linux/...) or “?foo@@YAHXZ” (Windows)

ABI: Name Mangling

● Linux, Mac: Itanium C++ ABI section 5.1
● Windows: look at compiler output and figure it out

ABI: Name Mangling, Why?

In C++ many functions can have the same name:

int foo(int);

int foo(double);

namespace ns { int foo(); }

class C { int foo(); };

ABI: Name Mangling, Why?

In C++ many functions can have the same name:

int foo(int); // ?foo@@YAHH@Z

int foo(double); // ?foo@@YAHN@Z

namespace ns { int foo(); } // ?foo@ns@@YAHXZ

class C { int foo(); }; // ?foo@C@@QAEHXZ

Microsoft refers to this as “decoration” rather than “mangling”.

Name Mangling: Static Locals

inline void foo(bool b) {

 if (b) {

 static int x = use(&b); // ?x@?4??foo@@YAX_N@Z@4HA

 } else {

 static int x = use(&b); // ?x@?6??foo@@YAX_N@Z@4HA

 }

}

Name Mangling: Static Locals

inline void foo(bool b) {

 if (b) {

 static int x = use(&b); // ?x@?4??foo@@YAX_N@Z@4HA

 }

 static int x = use(&b); // ?x@?4??foo@@YAX_N@Z@4HA

}

a.obj : fatal error LNK1179: invalid or corrupt file
Fixed in Visual Studio 2015

ABI: Calling Conventions

struct S {

 int f(int a) { return x + a; }

 int x;

};

32-bit Linux/Mac: this and a both on the stack, return in %EAX (classic C-style call)

Windows: this in %ECX, a on the stack, return value in %EAX (__thiscall)

32-bit Win also has __stdcall, __fastcall, __vectorcall

Record Layout

struct S {

 char c;

 int i;

 unsigned x : 1;

 unsigned y : 1;

};

Windows:

 0 | struct S

 0 | char c

 4 | int i

 8 | unsigned int x

 8 | unsigned int y

Linux:

 0 | struct S

 0 | char c

 4 | int i

 8 | unsigned int x

 8 | unsigned int y

Record Layout: Inheritance

struct A { int a; };

struct B { int b; };

struct C : public A,

 public B {

 int c;

};

Windows:

 0 | struct C

 0 | struct A (base)

 0 | int a

 4 | struct B (base)

 4 | int b

 8 | int c

Linux:

0 | struct C

0 | struct A (base)

0 | int a

4 | struct B (base)

4 | int b

8 | int c

Record Layout: Mysterious Padding

struct S {

 virtual void f();

 int i;

 double d;

};

Windows:

 0 | struct S

 0 | (S vftable ptr)

 8 | int i

16 | double d

Linux:

0 | struct S

0 | (S vtable ptr)

4 | int i

8 | double d

Virtual Functions

struct S {

 virtual void f();

};

void foo(S *s) {

 s->f();

}

Windows:

0 | struct S

0 | (S vftable pointer)

VFTable for 'S' (2 entries).

0 | S RTTI

1 | void S::f()

Linux:

0 | strut S

0 | (S vtable pointer)

Vtable for 'S' (3 entries).

0 | offset_to_top (0)

1 | S RTTI

-- (S, 0) vtable address --

2 | void S::f()

Pointers to Members
struct S {

 void f();

 int x;

};

struct T { void g(); };

struct U : public S, public T { };

typedef void (U::*UMemPtr)(void);

UMemPtr p1 = &U::f; // = { &f, 0 }

UMemPtr p2 = &U::g; // = { &g, 4 }

Pointers to Virtual Member Functions (Linux)
struct S {

 virtual void f();

 virtual void g();

};

typedef void (S::*SMemPtr)(void);

SMemPtr p1 = &S::f; // = { 1, 0 }

SMemPtr p2 = &S::g; // = { 5, 0 }

Pointers to Virtual Member Functions (Windows)
struct S {

 virtual void f();

};

typedef void (S::*SMemPtr)(void);

SMemPtr p1 = &S::f; // = { ??_9S$BAAE, 0 }

??_9S$BA@AE:

 ; Call 1st function in S's vftable.

 movl (%ecx), %eax

 jmp *(%eax)

And many other issues

● Object file format: ELF (Linux), Mach-O (Mac), COFF (Windows)
● Debug info format: DWARF (Linux, Mac), CodeView (Windows)
● Debug info container format: PDB

Results

February 2018

Results

August 2018

Results

It’s not just us...

Results

● Chrome is now on a completely open-source toolchain
● We can fix and improve things ourselves!
● A new alternative for the Windows community
● Also we learned a lot about C++ internals.

Lessons

● Compilers are fun
● Practice your programming skills
● Participate in the programming competition
● …
● Be part of pushing technology forward.

