
Contents

Uses of the Java virtual machine
The HotSpot just-in-time optimizer
Limitations of JIT

Jonas Skeppstedt Optimizing Compilers 2023 1 / 10



Uses of the Java Virtual Machine

The Java byte code is also used for several languages other than Java:
Scala
Ruby
Python
Lisp
Scheme

Jonas Skeppstedt Optimizing Compilers 2023 2 / 10



HotSpot

The HotSpot virtual machine originates from the Strongtalk virtual
machine for the Smalltalk language.
It was used for research at Sun Microsystems for the Self language.
The first release as a Java virtual machine was in 1999.
It is the default virtual machine from Sun/Oracle since Java 1.3.
Hotspot is written in C++ and some assembler, and consist of about
250,000 lines.
Due to HotSpot is partly written in assembler it has triggered the
IcedTea project based on HotSpot but without assembler code.
IcedTea supports e.g. Power and ARM.

Jonas Skeppstedt Optimizing Compilers 2023 3 / 10



The Java Byte Code Machine Model

The JVM is a stack machine.
This means a byte code instruction pops operands from a stack and
pushes the result back to the stack.
At about the same time as the JVM was designed Bell Labs also
designed a virtual machine (for their Inferno operating system) which
instead is a register-based virtual machine.
Register-based virtual machines are easier to produce faster code for,
and therefore HotSpot translates the byte code to that.

Jonas Skeppstedt Optimizing Compilers 2023 4 / 10



HotSpot JVM Execution

Execution of a method starts by interpreting the byte code and after
the execution count of the method has reached a limit, optimization is
used.
The whole method is optimized.
Different optimization levels are used depending on whether the JVM
is for clients (e.g. desktops) or servers.
Servers are expected to run for longer time so more time-consuming
optimizations are used.
In addition to the method invocation counter, there are loop iteration
counters which also can trigger optimization.

Jonas Skeppstedt Optimizing Compilers 2023 5 / 10



Deoptimization

The optimization can make guesses and perform better optimizations
as long as the guesses are correct.
For this, runtime checks are inserted to validate the guesses.
If a guess was wrong, the method is deoptimized and interpreted
again, but can be optimized later.
Deoptimization can also be needed after a new class has been loaded.

Jonas Skeppstedt Optimizing Compilers 2023 6 / 10



Client Optimization

First the control flow graph of a method is constructed by inspecting
the byte codes.
Then the instructions of a basic block are created by simulating the
the JVM execution stack.
The stack-based execution model of the JVM is replaced with SSA
form.
This is called the HIR representation, or the high-level intermediate
representation.
Client JVM optimizations on SSA form include

Constant folding
Value numbering
Inlining

Jonas Skeppstedt Optimizing Compilers 2023 7 / 10



Low-level intermediate representation

Not SSA form
Essentially symbolic assembler code, as in Bell Labs’ Inferno
Unlimited number of machine registers before register allocation

Jonas Skeppstedt Optimizing Compilers 2023 8 / 10



Server HotSpot JVM Execution

The server JVM also uses SSA form.
In addition to the control flow graph, control and data dependencies
are analyzed.
Additional optimizations include:

Constant propagation
Dead code elimination
Instruction scheduling
Graph coloring register allocation
Loop unrolling
Loop invariant code motion

Jonas Skeppstedt Optimizing Compilers 2023 9 / 10



The Graal Virtual Machine

From Oracle Labs, see graalvm.org

Built on OpenJDK and can translate Java byte code to executable files
The advantages of this include:

Shorter start time for Java applications: up to 50 times
Smaller binaries: up to 5 times

Simplifies writing multi-language applications using the Polyglot
framework and supports many languages, including

C
Python
Java
Ruby

Jonas Skeppstedt Optimizing Compilers 2023 10 / 10


