
Contents

Compiling LLVM
Using opt and llc

Some LLVM history
LLVM files and data structures

Jonas Skeppstedt Lecture 13 2023 1 / 37

Downloading and compiling LLVM

v=10.0.1 &&
sudo mkdir -p /opt/llvm/$v &&
sudo chown -Rv $USER:$USER /opt/llvm/$v &&
rm -rf llvm/$v &&
mkdir -p llvm/$v &&
cd llvm/$v &&
a=https://github.com/llvm/llvm-project/releases/download/llvmorg-$v &&
wget $a/llvm-$v.src.tar.xz \

$a/clang-$v.src.tar.xz \
$a/compiler-rt-$v.src.tar.xz &&

ls *.xz | xargs -n1 tar xf &&
mv llvm-$v.src src &&
mv clang-$v.src src/tools/clang &&
mv compiler-rt-$v.src src/projects/compiler-rt &&
mkdir build &&
cd build &&
cmake ../src -DCMAKE_BUILD_TYPE=Release \

-DLLVM_ENABLE_ASSERTIONS=OFF \
-DLLVM_TARGETS_TO_BUILD=PowerPC \
-DCMAKE_INSTALL_PREFIX=/opt/llvm/$v &&

make &&
make install &&
echo ok

This can be found in the tresor for the course

Jonas Skeppstedt Lecture 13 2023 2 / 37

Using LLVM

To produce LLVM IR instead of assembler or machine code when
compiling a file a.c, use either:
$ clang a.c -emit-llvm -S

to produce textual IR, or
$ clang a.c -emit-llvm -c

to produce binary IR. The textual file has suffix ll and the binary bc.

Jonas Skeppstedt Lecture 13 2023 3 / 37

Using opt

Assume you are in the build directory
We can then use bin/opt to perform machine-independet
optimizations on a file, again using -S to output a textual file.
$ bin/opt a.ll -S -O3 -o b.ll

We get almost identical output with
$ bin/opt a.bc -S -O3 -o c.ll

with the only difference between b.ll and c.ll being the module id.
We can specify individual optimizations to perform such as:
$ bin/opt a.bc -S -inline -o c.ll

Use -help to list all parameters of opt.

Jonas Skeppstedt Lecture 13 2023 4 / 37

The EDAN75 LLVM project

You will produce a shared library: build/lib/EDAN75.so
$ bin/opt -load lib/EDAN75.so -S -o b.ll a.ll -EDAN75

A new optimization pass is registered with a string that can be used as
a switch to opt

Jonas Skeppstedt Lecture 13 2023 5 / 37

Using llc

Code generation is performed with llc which can produce an
assembler file with suffix s with the command
$ llc c.ll -o c.s

or an object file with suffix o with the command
$ llc c.ll -filetype=obj -o c.o

and the latter file can be disassembled with a standard UNIX command
$ objdump -d c.o

Jonas Skeppstedt Lecture 13 2023 6 / 37

LLVM history

Chris Lattner created LLVM for his MSc thesis at University of Illinois
at Urbana-Champain published in 2002
LLVM 1.0 was released in 2003
The initial purpose was to make a virtual machine which could
optimize programs before, during, and after they are executed
Now the focus is more on being a more normal compiler which also
supports just-in-time compilation
LLVM no longer stands for ”low-level virtual machine”
Google, Apple and others support LLVM to a large extent

Jonas Skeppstedt Lecture 13 2023 7 / 37

LLVM version 1.0

Used C/C++ front-end from GCC
Supported X86 and SPARC
SSA Form
Examples of implemented optimizations:

Function inlining
Dead code elimination
Constant propagation
Scalar replacement of aggregates
Loop-invariant code motion
Common subexpression elimination
Register allocation

Jonas Skeppstedt Lecture 13 2023 8 / 37

More development

LLVM 1.2 supported feedback-directed optimization
Focus on the Clang C/C++ front-end to replace the GCC front-end
In 2010 Clang could recompile itself
In 2012 some demanding open-source projects switched to Clang,
including FreeBSD
In 2013 the Polly optimizer for parallelism became an official LLVM
project in LLVM 3.1
Polly is lead by Tobias Grosser who studied compilers for Christian
Lengauer in Passau
In LLVM 3.2 and 3.3 SIMD vectorization was added
New release naming from LLVM 4 (two major releases per year)
Most new work has been on better optimizations and supporting more
CPU architectures

Jonas Skeppstedt Lecture 13 2023 9 / 37

LLVM front-ends

C/C++ with OpenMP extensions in Clang
Scala
Rust
Haskell
Julia
Fortran (in development by Nvidia)

Jonas Skeppstedt Lecture 13 2023 10 / 37

Source code structure

Two main directories:
include
lib

They typically exist in a src directory but the name ”src” does not
matter
include has two subdirectories: one for each of C++ and C
lib contains e.g.

Analysis
CodeGen
IR
MC
Support
Target
Transform

Jonas Skeppstedt Lecture 13 2023 11 / 37

clang

Several tools, including clang, is in src/tools.
Many tools share various libraries.
This is an advancement compared to many other compilers which
often are designed for only one purpose, which makes it more
complicated to reuse its parts, in case that would be desired.
This design has been important to make LLVM popular in many
commercial and academic projects.

Jonas Skeppstedt Lecture 13 2023 12 / 37

The lib directory

Libraries are located in lib

Header files in include/llvm.
Most files are C++
Machine specifications are implemented in a specialized language.
Only the POWER specifications are more than 20,000 lines.

Jonas Skeppstedt Lecture 13 2023 13 / 37

llvm source size of llvm 6.0

Directory du -ks Files Description
include/llvm 14 MB 1066 Common declarations and some

algorithms in templates such as
Lengauer-Tarjan

lib/Analysis 3 MB 85 CFG, loops, inlining cost and more
lib/CodeGen 9 MB 221 Code generation
lib/IR 2 MB 51 Intermediate representation
lib/MC 1 MB 68 Machine code
lib/Support 2 MB 145 Data structures
lib/Target 39 MB > 1000 Architecture specific code
lib/Transform 8 MB 203 Code optimization algorithms

Jonas Skeppstedt Lecture 13 2023 14 / 37

The intermediate representation: IR

The input to an LLVM optimizer is a program representation using
LLVM IR
Types in the IR library.
The IR can be stored in three ways:

in memory,
in binary format on disk as bitcode, and
in textual form.

Jonas Skeppstedt Lecture 13 2023 15 / 37

Optimization algorithms

Machine-independent optimization use the Analysis and Transform
libraries
Machine-dependent optimization use the CodeGen and Target
libraries:

instruction selection
instruction scheduling, and
register allocation

Jonas Skeppstedt Lecture 13 2023 16 / 37

Object files

The MC library is used to operate on machine instructions to, for
instance, create object files
On Linux: ELF
On macOS: Mach-O

Jonas Skeppstedt Lecture 13 2023 17 / 37

LLVM types

Types declared in directory: include/IR in the namespace llvm.
There usually is a file corresponding to the type name.
For instance, the Instruction class is declared in the file
include/IR/Instruction.h.

Jonas Skeppstedt Lecture 13 2023 18 / 37

LLVM context

The type LLVMContext stores the global state of LLVM.
Each thread needs its own context
A context contains tables of types and constants, and pointers to zero
or more modules.

Jonas Skeppstedt Lecture 13 2023 19 / 37

Module

A Module normally corresponds to a translation unit.
It has doubly linked lists of global variables, functions, aliases, certain
meta data, and more, and provides iterators for simple access to them.
Functions to lookup and install symbols are also provided.
During link-time optimization multiple translation-units become one
module.

Jonas Skeppstedt Lecture 13 2023 20 / 37

Function

Some attributes

a pointer to arguments and the number of arguments

a symbol table,

the control flow graph

does it take a variable number of arguments?

does it access memory? if so only reads memory?

can it not return?

has it side-effects?

does it recurse (directly or indirectly)?

does it return a structure?

has it had its address taken?

may it call the C function setjmp?

the number of times the function was called if known.

should it be optimized for size?

Jonas Skeppstedt Lecture 13 2023 21 / 37

BasicBlock 1/2

A BasicBlock contains pointer to its parent function, and a list of
instructions.
Any ϕ-functions must be first
The last must have type TerminatorInst.
For convenience, there are iterator types for the instruction list, and a
function getFirstNonPhi which returns the first Instruction in the
list which is not a ϕ-function.

Jonas Skeppstedt Lecture 13 2023 22 / 37

BasicBlock 2/2

It is possible to move a basic block from its parent function to another
function.
It is possible to split a basic block in two parts.
The operands of an instruction have the type Value.
Since basic blocks are operands of branch instructions they are also
values
Therefore the BasicBlock type inherits from the Value type, which
we will explain after introducing the Instruction and Type classes.

Jonas Skeppstedt Lecture 13 2023 23 / 37

Instruction

The base Instruction class in the IR library contains a parent basic
block pointer and is a User (explained below).
There are numerous functions for manipulating the list of instructions
of a basic block.
Different kinds of instructions are declared in InstrTypes.h: e.g.
TerminatorInst, unary, binary, and comparison instructions.
Concrete instructions are declared in the file Instructions.h, e.g.
AllocaInst to allocate stack space, LoadInst, StoreInst,
FenceInst, FCmpInst, CallInst, PHINode, ReturnInst, and many
more.

Jonas Skeppstedt Lecture 13 2023 24 / 37

Type

Type is the base class defined in Type.h and is used for primitive types
such as C float, double, void, and integer types of different sizes.
DerivedTypes.h has derived classes with which for example arrays
and structs can be represented.
To determine whether two type objects are equal, it is sufficient to
check for pointer equality, as only one instance of each type object is
ever created.

Jonas Skeppstedt Lecture 13 2023 25 / 37

Value

A Value represents what is computed
Both instructions and functions are values.
A value has a type and a list of users of it.
The users of a value are also values, such as when one instruction has
an operand which is the result of another instruction.
It is possible to iterate through all users of a value and for this the
type Use is used.

Jonas Skeppstedt Lecture 13 2023 26 / 37

User

A User is an entity which can use values as operands
A user is also itself a value.
An example of a user is an instruction. The function getOperand
returns a pointer to the ith operand, i.e. a pointer to a value.

Jonas Skeppstedt Lecture 13 2023 27 / 37

Use

A Use represents the use of a value, e.g. the fact that a particular
instruction uses a certain value as an operand.
The type Use is used for connecting values with their users in LLVM.
Due to it is one of, if not the most, memory intensive object in LLVM,
it is implemented with saving memory in mind, while also being very
flexible.
A use has an explicit pointer to the value being used, while the pointer
to the user, is not stored explicitly, but can still be found efficiently.

Jonas Skeppstedt Lecture 13 2023 28 / 37

Useful functions

get iterators to first and last basic blocks: f.begin() and f.end()
where f is parameter to bool runOnFunction(Function& f)
and the iterator should be declared e.g. as: auto u = f.begin()

runOnFunction should return true if the function was modified
get iterators to first and last instructions: u->begin() and u->end()
where u is a basic block iterator
check if two instructions are identical: i->isIdenticalTo(j)
See src/lib/IR/instruction.cpp

The call i->replaceAllUsesWith(j) does exactly what it says
See src/lib/IR/Value.cpp

The call i->eraseFromParent() erases an instruction from a basic
block and returns an iterator pointing to the next instruction
In general, to advance an iterator i one step, you can use i++

Jonas Skeppstedt Lecture 13 2023 29 / 37

LLVM Passes

Optimizations are performed in LLVM as passes which operate on the
IR at a certain level:

module,
call graph,
function,
region of a function,
loop, or
basic block.

Jonas Skeppstedt Lecture 13 2023 30 / 37

LLVM Passes

The base type Pass is declared in include/llvm/Pass.h which also
contains declarations for

ModulePass,
FunctionPass, and
BasicBlockPass.

The other pass levels are declared in files, with corresponding names,
in the directory include/llvm/Analysis:

CallGraphSCCPass,
RegionPass, and
LoopPass.

Jonas Skeppstedt Lecture 13 2023 31 / 37

LLVM optimization

An LLVM optimization is implemented as a derived type of a pass at a
suitable level. For example, constant propagation is implemented by
the type
struct ConstantPropagation : public FunctionPass {

/* ... */
};

In general, an optimization is separated in an analysis part and a
transformation part. An example of an analysis part is computing the
dominator tree.
A PassManager is a template class instantiated with a type
corresonding to the appropriate level, such as function, i.e.
PassManager<Function>, and in llvm/IR/PassManager.h there are
corresponding type alias declarations of ModulePassManager and
FunctionPassManager.

Jonas Skeppstedt Lecture 13 2023 32 / 37

Pass manager

A pass manager contains a queue of optimization passes to perform in
order.
The pass object is owned by the pass manager which hence also
deletes it when it itself is deleted.
It is the responsibility of the pass manager to perform the required
analyses before an optimization pass is run. In a pass type, a virtual
function getAnalysisUsage can be defined, and be used to
communicate with the pass manager. For instance,
ConstantPropagation defines it as:
void getAnalysisUsage(AnalysisUsage &AU) const override {

AU.setPreservesCFG();
AU.addRequired<TargetLibraryInfoWrapperPass>();

}

Jonas Skeppstedt Lecture 13 2023 33 / 37

Code generation

After machine-independent optimizations, code generation is
performed by translating the LLVM IR to a representation which is
closer to the CPU architecture of the target.
Code generation consists of three parts:

instruction selection,
instruction scheduling, and
register allocation.

Jonas Skeppstedt Lecture 13 2023 34 / 37

Instruction selection

Instruction selection is performed per basic block.
The LLVM IR instructions, with their data dependences, are translated
to a directed acyclic graph, called the selection DAG
Then a matching of the nodes of the DAG to instructions of the CPU
is performed.
The type declarations for code generation are in files in the
include/CodeGen directory.
The selection DAG is declared in SelectionDAG.h and the nodes in
SelectionDAGNodes.h.
In addition files from the specific CPU architecture are used, which are
located in one of the lib/Target subdirectories, such as PowerPC.

Jonas Skeppstedt Lecture 13 2023 35 / 37

Instruction scheduling

Instruction scheduling is performed both before and after register
allocation.
The main CPU implementations, each have a file with a description of
the CPU pipeline.
Instruction scheduling is performed on nodes from the selection DAGs.
Scheduling before register allocation can use several different
schedulers, and a suitable default scheduler is specified for each CPU
architecture.
List scheduling is used after register allocation with operations in a
priority queue, and if the operation with highest priority is valid to
schedule, it is scheduled.

Jonas Skeppstedt Lecture 13 2023 36 / 37

Register allocation in LLVM

Before LLVM 3.0 linear scan: scan basic blocks one at a time and note
which registers are used and take suitable action at CFG edges
Remarks copied from talk by Jakob Stoklund Olesen about LLVM 3.0:

Need to tidy the infrastructure
Linear scan is not, in fact, linear
Major bookkeeping nightmare

LLVM has four official alternative register allocators:
fast — operates at a basic block level.
basic — small live ranges tend to be allocated before large
greedy — assigns to large live ranges first but is more flexible
PBQP — partitioned boolean quadratic programming for irregular
architectures

In addition, many academic research projects have evaluated others.
The focus of the course is on Chaitin and the iterated register
coalescing algorithm

Jonas Skeppstedt Lecture 13 2023 37 / 37

