
Contents of Lecture 12

Instruction Scheduling Basics

List Scheduling

Modulo Scheduling

Jonas Skeppstedt Lecture 12 2023 1 / 22



Instruction Scheduling Example

The purpose of instruction scheduling is to improve performance by
reducing the number of pipeline stalls suffered during execution.
The following example illustrates the concept, where the right column
is the scheduled code.
Due to instructions only are scheduled within one basic block, only a
limited improvement is achieved — the fsub and stf are not helped
at all.

ldf t2,a,t1
ldf t3,b,t1
fadd t4,t2,t3
ldf t5,c,t1
ldf t6,d,t1
fmul t7,t5,t6
fsub t8,t3,t7
stf t8,e,t1

ldf t2,a,t1
ldf t3,b,t1
ldf t5,c,t1
ldf t6,d,t1
fadd t4,t2,t3
fmul t7,t5,t6
fsub t8,t3,t7
stf t8,e,t1

Jonas Skeppstedt Lecture 12 2023 2 / 22



Instruction Scheduling vs. Register Allocation

The goal of instruction scheduling is to reduce pipeline stall and this
is achieved by separating the producer and consumer.

This separation makes it more difficult to perform register allocation.

Question: Which of instruction scheduling and register allocation
should be performed first?
Answer: Instruction scheduling because register allocation would
create unnecessary constraints for the scheduler, and advanced
instruction scheduling would be seriously limited with already assigned
registers.

If register allocation results in spill code, the instruction scheduler is
usually run a second time in order to separate the load instructions
from the uses of the loaded register.

Jonas Skeppstedt Lecture 12 2023 3 / 22



Register Pressure of Different Schedules

The left schedule needs three floating point registers and the right four.

ldf f2,ra,ri
ldf f3,rb,ri
fadd f2,f2,f3
ldf f3,rc,ri
ldf f4,rd,ri
fmul f3,f3,f4
fsub f2,f2,f3
stf f2,re,ri

ldf f2,ra,ri
ldf f3,rb,ri
ldf f4,rc,ri
ldf f5,rd,ri
fadd f2,f2,f3
fmul f4,f4,f5
fsub f2,f2,f4
stf f2,re,ri

Jonas Skeppstedt Lecture 12 2023 4 / 22



Rewriting Expressions for Increased Parallelism

Consider the expression a + b + c + d.

How it must be evaluated depends on the data type and source
language.

In C (and other languages) addition is left-associative which means
the expression should be evaluated as ((a + b) + c) + d.

Due to the sequential execution it takes at least three clock cycles
(and more for floating point).

If the compiler knows that it can ignore the effects of overflow (either
due to the type is unsigned or two’s complement representation is
used), it can rewrite it as (a + b) + (c + d).

On a superscalar processor the two additions can be performed
concurrently.

Programmers are not ignore overflow other than for unsigned integers
(if the computation still makes sense with the overflow, that is).

Jonas Skeppstedt Lecture 12 2023 5 / 22



Data Dependencies

Data dependencies constrain how instructions can be scheduled.

Instruction scheduling is performed after translation from SSA Form
and on low level code which is close to the final machine code.

In addition to the data dependence graph, dependencies due to scalar
variables and accesses to memory through unknown addresses are
used.

Jonas Skeppstedt Lecture 12 2023 6 / 22



List Scheduling

The most fundamental instruction scheduling technique is called list
scheduling and schedules one basic block at a time.

First an instruction level data dependence graph is built.

Vertices are instructions and directed arcs constrain the scheduling.

The source vertex must execute before the target vertex.

List scheduling uses topological sorting.

Once the graph has been constructed the list scheduler maintains a
set of candidate instructions.

Candidate instructions have no predecessor in the graph.

Jonas Skeppstedt Lecture 12 2023 7 / 22



List Scheduler Goal

The goal of the list scheduler is to minimize the number of clock
cycles required to execute the basic block.

As this problem is NP-complete, an approximation is found as follows:
each vertex is assigned a priority in some way, and the highest priority
vertex i of the candidates is scheduled next.

Then any successor vertex s of i with no predecessor that has not yet
been scheduled is moved to the set of candidates.

This procedure is repeated until the set of candidates is empty.

The interesting problem is to select the priority function using clever
heuristics.

Changing heuristics can change the execution time by several percent.

In one version of the IBM C/C++/FORTRAN compiler each block
was scheduled three times with different heuristics and the best
schedule was used.

Jonas Skeppstedt Lecture 12 2023 8 / 22



Storage Resources

The instruction scheduler builds a graph based on the definitions and
uses of storage resources, e.g. variables, registers, or all of memory.

Attribute Description
def (r) The instruction which most recently modified r while

scanning backwards, or null (denoted ⊥).
uses(r) The set of instructions which use the current value of r .

Jonas Skeppstedt Lecture 12 2023 9 / 22



Instruction s defines resource r

procedure define resource (r , s)

if (def (r) ̸= ⊥) {
add edge (s, def (r), OUTPUT)
delete def (r) from candidates

}

def (r)← s

for each u ∈ uses (r) do {
add edge (s, u, TRUE)
delete u from candidates

}
uses (r)← ∅

end

Jonas Skeppstedt Lecture 12 2023 10 / 22



Instruction s uses resource r

procedure use resource (r , s)
add s to uses (r)
if (def (r) ̸= ⊥ and def (r) ̸= s)

delete def (r) from candidates
add edge (s, def (r), ANTI)

end

Jonas Skeppstedt Lecture 12 2023 11 / 22



Collecting Candidate Instructions

procedure collect candidates (v)

/* v is a basic block. */

for each resource r do {
uses (r)← ∅
def (r)← ⊥

}
candidates← ∅
for each instruction s in v in reverse order do {

for each resource r defined by s do
define resource (r , s)

for each resource r used by s do
use resource (r , s)

add s to candidates
}

end

Jonas Skeppstedt Lecture 12 2023 12 / 22



List Scheduling

procedure list sched
for each vertex v in G do

collect candidates (v)
cycle← 0
while (candidates ̸= ∅) do

for each s ∈ candidates do
update earliest (s)
compute delay (s)

max delay cand← ∅
earliest cand← ∅
for each s ∈ candidates do

if (delay (s) = max delay)
add S to max delay cand
if (earliest (s) ≤ cycle)

add S to earliest cand
if (earliest cand ̸= ∅)

take s from earliest cand using heuristics
else

take s from max delay cand using heuristics
delete s from candidates
schedule s as next statement in v
cycle← cycle + 1

end

Incrementing the cycle after each scheduled instruction assumes a
single-issue pipeline.

Jonas Skeppstedt Lecture 12 2023 13 / 22



Modulo Scheduling

Consider the following loop and assume there are true dependencies
from A to B and from B to C .

void h()

{

int i;

for (i = 0; i < 100; ++i) {

A;

B;

C;

}

}

Due to list scheduling only works with one basic block, it cannot
improve this loop.

Such loops are of course quite common.

Jonas Skeppstedt Lecture 12 2023 14 / 22



Modulo Scheduling the Loop

Let us take instructions from three iterations and interleave them.

First we need to execute instructions from the first two iterations in a
prologue.

cycle i ii iii
0 A0
1 B0 A1

2 C0 B1 A2
3 A3 C1 B2
4 B3 A4 C2

5 C3 B4 A5
6 A6 C4 B5
7 B6 A7 C5

8 C6 B7
9 C7

Assume for illustration only 8 iterations are executed.

For example A3 denotes instruction A in iteration 3.

After a steady-state with 2× 3 iterations there is an epilogue.

Consider instruction B3. While it waits for A3, the CPU can also
execute C1 and B2, assuming a pipelined superscalar CPU.

Jonas Skeppstedt Lecture 12 2023 15 / 22



List Scheduled Execution

i = 0

i = 1

i = 2

i = 3

Each iteration is completed
before the next starts.

The height of an iteration is the
number of clock cycles it takes.

Jonas Skeppstedt Lecture 12 2023 16 / 22



Parallelism with Modulo Scheduling

i = 0
i = 1

i = 2
i = 3

i = 4
i = 5

i = 6
i = 7

i = 8
i = 9

i = 10
i = 11

A new iteration is started before
the current has completed.

We wish to start the next
iteration as early as possible.

If we start the next iteration the
same clock cycle, we need a
multicore with one core per loop
iteration.

Jonas Skeppstedt Lecture 12 2023 17 / 22



The Initiation Interval

i = 0

i = 1

The initiation interval,
abbreviated II, is the number of
clock cycles between the start of
two iterations.

The II is limited by
1 Data dependencies
2 Available hardware resources

A maximum II is determined by
doing a normal list schedule of
the loop body.

A minimum II is computed from
the available resources and
required resources in the loop,
and the data dependencies.

Jonas Skeppstedt Lecture 12 2023 18 / 22



Performing Modulo Scheduling

The modulo scheduler then tries to find the smallest II which results
in a valid schedule, by trying each value of II starting from the
minimum II, and incrementing it by one.

All variables defined before being used in each loop iterations are
expanded to different variables for each iteration.

Then the loop body is duplicated and adapted for the proper iteration.

A prologue and an epilogue is also generated.

Jonas Skeppstedt Lecture 12 2023 19 / 22



Data Dependence Analysis for Modulo Scheduling

There are two data dependence analyzes done for modulo scheduling:
1 Instruction level — as we saw for list scheduling.
2 Loop level — as we saw in lecture F10.

There is one modification: in addition to the type (true, anti, or
output), dependencies for modulo scheduling are of the form (p, d),
where p is the dependence distance (i.e. iteration difference) and d is
the delay in clock cycles.

By delay is meant the time the instructions should be separated to
avoid pipeline stalls.

Jonas Skeppstedt Lecture 12 2023 20 / 22



Scheduling Instructions

Let σ(v) denote the clock cycle a certain instruction v is scheduled.

With a dependence (p, d) from instruction u to instruction v , and an
initiation interval II , to avoid pipeline stalls we need to satisfy:

σ(v)− σ(u) + p II ≥ d (1)

Additionally there must be sufficient hardware resources available in
each clock cycle.

Assume for simplicity an instruction only needs one resource each
clock cycle (e.g. a certain stage in a pipelined functional unit).

Then for each clock cycle i the instruction executes (counting from
zero in e.g. in the instruction decode stage) there must be such a
resource available in the clock cycle given by:

(σ(v) + i) mod II (2)

If no value for σ(v) can be found which satisfies all constraints, the
initiation interval must be increased, and the scheduling be repeated.
Jonas Skeppstedt Lecture 12 2023 21 / 22



Modulo Scheduling Algorithm

We have now seen the essential parts of the modulo scheduling.

There was in the 1980’s a debate regarding which hardware features
were needed for efficient software pipelining (e.g. rotating register
files).

The problem was solved completely in software by Monica Lam in her
PhD thesis from Carnegie Mellon University.

Her algorithm is described in her book ”A Systolic Array Optimizing
Compiler”, and is implemented in several compilers, including in SGI’s
compiler (now called Open64).

An interesting study was performed that compared an optimal
scheduler with the modulo scheduler in the SGI compiler, and
concluded that their modulo scheduler almost always produced
optimal code.

Jonas Skeppstedt Lecture 12 2023 22 / 22


