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Introduction to Data Dependence Analysis

There are data dependencies in the following code:

S1: x = a + b;

S2: y = x + 1;

S3: x = b * c;

The value written to x in S1 is read in S2.

This is called a true dependence and is written S1δ
tS2.

In a true data dependence between two statements both statements
access the same memory location, and the first statements writes a
value which the other statements reads.
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Data Dependencies at Different Levels

Data dependencies can be at several different levels, including:

Instructions
Statements
Loop iterations
Functions
Threads

We will focus on dependencies at the instruction and loop levels.

Parallelizing compilers focus on loop iterations.

Instruction scheduling finds parallelism between different instructions
in a basic block or loop iterations close to each other.
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Different Types of Data Dependencies

When we write ”instruction” below our sentence is also valid for the
other levels (statement, loop etc).

Below instruction I1 always executes before instruction I2.

Recall, in a true dependence, written I1δ
t I2, I1 produces a value

consumed by I2.

In an anti dependence, written I1δ
aI2, I1 reads a memory location

later overwritten by I2.

In an output dependence, written I1δ
o I2, I1 writes a memory

location later overwritten by I2.

In an input dependence, written I1δ
i I2, both I1 and I2 read the same

memory location.

The first three types of dependencies create partial orderings among
all instructions, which parallelizing compilers should exploit by
ordering instructions to improve performance.
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Dependencies in the Example Code

Let us classify all dependencies in the code:

S1: x = a + b;

S2: y = x + 1;

S3: x = b * c;

The is a true dependence from S1 to S2 due to x.

The is an anti dependence from S2 to S3 due to x.

The is an output dependence from S1 to S3 due to x.

The is an input dependence from S1 to S3 due to b.
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Loop Level Data Dependencies

In the loop

for (i = 3; i < 100; i += 1)

a[i] = a[i-3] + x;

There is a true dependence from iteration i to iteration i + 3.

E.g. iteration i = 3 writes to a3 which is read in iteration i = 6.

A loop level true dependence means one iteration writes to a memory
location which a later iteration reads.
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Perfect Loop Nests

A perfect loop nest L is a nest of m nested for loops L1, L2, ...Lm
such that the body of Li , i < m, consists of Li+1 and the body of Lm
consists of a sequence of assignment statements.

For 1 < r ≤ m, pr and qr are linear functions of I1, ..., Ir−1.

for (I1 = p1; I1 <= q1; I1+ = 1) {
for (I2 = p2; I2 <= q2; I2+ = 1) {

...
for (Im = pm; Im <= qm; Im+ = 1) {

h(I1, I2, ..., Im);
}

}
}
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Example Perfect Loop Nest

All assignments, except to the loop index variables are in the
innermost loop.

There may be any number of assignment statements in the innermost
loop.

for (i = 0; i < 100; i += 1) {

for (j = 3 + i; j < 2 * i + 10; j += 1) {

for (k = i - j; k < j - i; k += 1) {

a[i][j][k] += b[k][j][i];

}

}

}
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Loop Bounds

The lower bound for I1 is p10 ≤ I1.

The lower bound for I2 is

I2 ≥ p20 + p21I1
p20 ≤ I2 − p21I1
p20 ≤ −p21I1 + I2

(1)

The lower bound for I3 is

I3 ≥ p30 + p31I1 + p32I2
p30 ≤ I3 − p31I1 − p32I2
p30 ≤ −p31I1 − p32I2 + I3

(2)

and so forth. We represent this on matrix form as p0 ≤ IP.
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Loop Bounds on Matrix Form

P =


1 −p21 −p31 . . . −pm1

0 1 −p32 . . . −pm2

0 0 1 . . . −pm3
...

...
...

. . .
...

0 0 0 . . . 1

 and p0 = (p10, p20, ..., pm0).

Similarly, the upper bounds are represented as IQ ≤ q0.

The loop bounds, thus, are represented by the system:

p0 ≤ IP
IQ ≤ q0

}

Jonas Skeppstedt Lecture 10 2023 10 / 62



Example Non-Perfect Loop Nest

The assignment to cij before the innermost loop makes it a
non-perfect loop nest.

Sometimes non-perfect loop nest can be split up, or distributed, into
perfect loop nests.

See next slides.

for (i = 0; i < 100; i += 1) {

for (j = 0; j < 100; j += 1) {

c[i][j] = 0;

for (k = 0; k < 100; k += 1) {

c[i][j] += a[i][k] * b[k][j];

}

}

}
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Loop Distribution

Result of loop distribution.

for (i = 0; i < 100; i += 1)

for (j = 0; j < 100; j += 1)

c[i][j] = 0;

for (i = 0; i < 100; i += 1)

for (j = 0; j < 100; j += 1)

for (k = 0; k < 100; k += 1)

c[i][j] += a[i][k] * b[k][j];
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Some Terminology

The index vector I = (I1, I2, ..., Im) is the vector of index variables.

The index values of L are the values of (I1, I2, ..., Im).

The index space of L is the subspace of Zm consisting of all the index
values.

An affine array reference is an array reference in which all subscripts
are linear functions of the loop index variables.
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Symbolic Analysis

Data dependence analysis is normally restricted to affine array
references.

In practice, however, subscripts often contain symbolic constants as
shown below which is test s171 in the C version of the Argonne Test
Suite for Vectorizing Compilers.

There is no dependence between the iterations in this test.

for (i=0; i<n; i++)

a[i*n] = a[i*n] + b[i];
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Problematic Non-Affine Index Functions Problems

In the loop

scanf("%d", &x);

for (i = 3; i < 100; i += 1) {

S1: a[i] = a[x] + 1;

S2: b[i] = b[c[i-1]] + 2;

S3: d[i] = d[i * i] + 3;

}

Few compilers, if any, attempt to determine whether the code above
has data dependencies.

While S3 is not difficult, almost all parallelizing compilers focus on
index expressions which are linear functions of the loop variables.

Some compilers try to do runtime dependence testing.
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Representing Array References

Let X be an n-dimensional array. Then an affine reference has the
form:

X [a11i1 + a21i2...am1im + a01]...[a1ni1 + a2ni2...amnim + a0n]

This is conveniently represented as a matrix and a vector X [IA+ a0],
where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 and

a0 = (a10, a20, ..., an0).

We will refer to A and a0 as the coefficient matrix and the
constant term, respectively.
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The Data Dependence Equation

For two references X [IA+ a0] and X [IB+ b0] to refer to the same
array element there must be two index values, i and j such that
iA+ a0 = jB+ b0 which we can write as iA− jB = b0 − a0.

This system of Diophantine equations has n (the dimension of the
array X ) scalar equations and 2m variables, where m is the nesting
depth of the loop.

It can also be written in the following form:

(i; j)

(
A
−B

)
= b0 − a0. (3)

We solve the system of linear Diophantine equations in (3) using a
method presented shortly.
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An Example

for (i = 0; i < 100; i += 1)

for (j = 2*i + 4; j < i + 40; j += 1)

a[2i-3j-1][2i+j-3] = f(a[-3i+4j+1][-i+2j+7]);

The above loop nest has the following two array reference
representations:

A =

(
2 2
−3 1

)
and a0 = (−1,−3).

B =

(
−3 −1
4 2

)
and b0 = (1, 7).
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Dependence Distances

Let ≺ℓ be a relation in Zm such that i ≺ℓ j if i1 = j1, i2 = j2, ...,
il−1 = jl−1, and il < jl .

For example: (1, 3, 4) ≺3 (1, 3, 9).

The lexicographic order ≺ in Zm is the union of all the relations ≺ℓ:
i ≺ j iff i ≺ℓ j for some ℓ in 1 ≤ ℓ ≤ m.

The sequential execution of the iterations a loop nest follows the
lexicographic order.

Assume that (i; j) is a solution to (3), and that i ≺ j. Then d = j− i
is the dependence distance of the dependence.
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Uniform Dependence Distance

If a dependence distance d is a constant vector then the dependence
is said to be uniform.

The dependence distance d = (1, 2) is uniform, while the dependence
distance d = (1, t2) is nonuniform.

Uniform distance vectors are very desirable since loops with only
uniform distance vectors can be optimized with unimodular
transformations.

For this, the set of all distance vectors di of a loop nest L are arranged
in a matrix with n rows and m columns where n is the number of
dependencies in L and m is the number of index variables in L.
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Loop Independent and Loop Carried Dependencies

A loop independent dependence is a dependence such that
d = j− i = (0, ..., 0).

A loop independent dependence does not prevent concurrent
execution of different iterations a loop. Rather, it constrains the
scheduling of instructions in the loop body.

A loop carried dependence is a dependence which is not loop
independent, or, in other words, the dependence is between two
different iterations of a loop nest.

A dependence has level ℓ if in d = j− i, d1 = 0,d2 = 0, ...,dl−1 = 0,
and dl > 0.

Only a loop carried dependence has a level.
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The GCD Test

The GCD test was first described 1973.

Consider the loop

for (i = lb; i <= ub; ++i)

x[ a1 * i + c1] = x[a2 * i + c2] + y;

To prove independence, we must show that the Diophantine equation

a1i1 − a2i2 = c2 − c1 (4)

has no solutions.

We compute the gcd of a1 and a2 and check whether it divides
c2 − c1, and if it does not, there is no solution and we have proved
independence, otherwise we must use another test.
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Weaknesses of The GCD Test

There are two weaknesses of the GCD test:
1 It does not exploit knowledge about the loop bounds.
2 Most often the gcd is one.

The first weakness means the GCD Test might be unable to prove
independence despite the solution to (4) actually lies outside the
index space of the loop.

The second weakness means dependence cannot be disproved.
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GCD Test for Nested Loops and Multidimensional Arrays

The GCD Test can be extended to cover nested loops and
multidimensional arrays.

The solution is then a vector and it usually contains unknowns.

The Fourier-Motzkin Test described shortly takes the solution vector
from this GCD Test and checks whether the solution lies within the
loop bounds.

Next we will look at unimodular matrices and Fourier-Motzkin
elimination used by the Fourier-Motzkin Test.
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Unimodular matrices

An integer square matrix A is unimodular if its determinant
det(A) = ±1.
If A and B are unimodular, then A−1 exists and is itself unimodular,
and A× B is unimodular.

I is the m ×m identity matrix.
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Elementary row operations

The operations

reversal: multiply a row by −1,
interchange: interchange two rows, and
skewing: add an integer multiple of one row to another row,

are called the elementary row operations. With each elementary row
operation, there is a corresponding elementary matrix.
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3× 3 reversal matrices

 −1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 −1 0
0 0 1

 ,

and  1 0 0
0 1 0
0 0 −1

 .
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3× 3 interchange matrices

 0 1 0
1 0 0
0 0 1

 ,

 1 0 0
0 0 1
0 1 0

 ,

and  0 0 1
0 1 0
1 0 0

 .
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3× 3 upper skewing matrices

 1 z 0
0 1 0
0 0 1

 ,

 1 0 z
0 1 0
0 0 1

 ,

and  1 0 0
0 1 z
0 0 1

 .
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3× 3 lower skewing matrices

 1 0 0
z 1 0
0 0 1

 ,

 1 0 0
0 1 0
z 0 1

 ,

and  1 0 0
0 1 0
0 z 1

 .
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Performing Elementary Row Operations

To perform an elementary row operation on a matrix A, we can
pre-multiply it with the corresponding elementary matrix.

Assume we wish to interchange rows 1 and 3 in a 3× 3 matrix A.
The resulting matrix is formed by 0 0 1

0 1 0
1 0 0

× A.

The elementary matrices are all unimodular.
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Echelon Matrices

Let lρ denote the column number of the first nonzero element of a
matrix row.

A given m × n matrix A, is an echelon matrix if the following are
satisfied for some integer ρ in 0 ≤ ρ ≤ m:

rows 1 through ρ are nonzero rows,
rows ρ+ 1 through m are zero rows,
for 1 ≤ i ≤ ρ+ 1, each element in column li below row i is zero, and
l1 < l2 < ... < lρ.

The following are examples of echelon matrices:

 1 2 3
0 4 5
0 0 6

 1 2 3
0 0 4
0 0 0




1 2 3
0 4 5
0 0 6
0 0 0


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Echelon Reduction

Given an m × n matrix A, Echelon reduction finds two matrices U
and S such that U× A = S, where U is unimodular and S is echelon.

U remains unimodular since we only apply elementary row operations.

function echelon reduce (A)
U← Im
S← A
i0 ← 0
for (j ← 1; j ≤ n; j ← j + 1) {

if (there is a nonzero sij with i0 < i ≤ m) {
i0 ← i0 + 1
i = m
while (i ≥ i0 + 1) {

while (sij ̸= 0) {
σ ← sign (s(i−1)j × sij )

z ← ⌊|s(i−1)j |/|sij |⌋
subtract σz(row i) from (row i − 1) in (U; S)
interchange rows i and i − 1 in (U; S)

}
i ← i − 1

}
}

}
return U and S

end
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Example Echelon Reduction

We will now show how one can echelon reduce the following matrix:

A =


2 2
−3 1
3 1
−4 −2

 .

We start with with U = I4 and S = A which we write as:

(U;S) =


1 0 0 0 2 2
0 1 0 0 −3 1
0 0 1 0 3 1
0 0 0 1 −4 −2

 .

Then we will eliminate the nonzero elements in S starting with
s41, s31, s21, s42 and so on.

Jonas Skeppstedt Lecture 10 2023 34 / 62



Example Echelon Reduction

j = 1, i0 = 1, i = 4. We always wish to eliminate sij , which currently
means s41.

σ ← −1 and z ← 0. Nothing is subtracted from row 3.

Then rows 3 and 4 are interchanged in (U;S), resulting in:

(U;S) =


1 0 0 0 2 2
0 1 0 0 −3 1
0 0 0 1 −4 −2
0 0 1 0 3 1

 .
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Example Echelon Reduction

We continue the inner while loop and find that σ ← −1 and z ← 1.
Then −1× row 4 is subtracted from row 3, resulting in:

(U;S) =


1 0 0 0 2 2
0 1 0 0 −3 1
0 0 1 1 −1 −1
0 0 1 0 3 1

 .

Then rows 3 and 4 are interchanged, resulting in:

(U;S) =


1 0 0 0 2 2
0 1 0 0 −3 1
0 0 1 0 3 1
0 0 1 1 −1 −1

 .
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Example Echelon Reduction

s41 is still nonzero, and the inner while loop is continued and σ ← −1
and z ← 3. Then −3× row 4 is subtracted from row 3:

(U;S) =


1 0 0 0 2 2
0 1 0 0 −3 1
0 0 4 3 0 −2
0 0 1 1 −1 −1

 .

Then rows 3 and 4 are interchanged, resulting in:

(U;S) =


1 0 0 0 2 2
0 1 0 0 −3 1
0 0 1 1 −1 −1
0 0 4 3 0 −2

 .

Now the first ij has become zero and i is decremented.
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Example Echelon Reduction

j = 1, i0 = 1, i = 3. We now wish to eliminate s31. σ ← +1 and
z ← 3. Then 3× row 3 is subtracted from row 2:

(U;S) =


1 0 0 0 2 2
0 1 −3 −3 0 4
0 0 1 1 −1 −1
0 0 4 3 0 −2

 .

Then rows 2 and 3 are interchanged, resulting in:

(U;S) =


1 0 0 0 2 2
0 0 1 1 −1 −1
0 1 −3 −3 0 4
0 0 4 3 0 −2

 .
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Example Echelon Reduction

j = 1, i0 = 1, i = 2. We now wish to eliminate s21. σ ← −1 and
z ← 2. Then −2× row 2 is subtracted from row 1:

(U;S) =


1 0 2 2 0 0
0 0 1 1 −1 −1
0 1 −3 −3 0 4
0 0 4 3 0 −2

 .

Interchanging rows 2 and 1 results in:

(U;S) =


0 0 1 1 −1 −1
1 0 2 2 0 0
0 1 −3 −3 0 4
0 0 4 3 0 −2

 .
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Example Echelon Reduction

j = 2, i0 = 2, i = 4. We now wish to eliminate s42. σ ← −1 and
z ← 2. −2× row 4 is subtracted from row 3:

(U;S) =


0 0 1 1 −1 −1
1 0 2 2 0 0
0 1 5 3 0 0
0 0 4 3 0 −2

 .

Interchanging rows 4 and 3 results in:

(U;S) =


0 0 1 1 −1 −1
1 0 2 2 0 0
0 0 4 3 0 −2
0 1 5 3 0 0

 .

Jonas Skeppstedt Lecture 10 2023 40 / 62



Example Echelon Reduction

j = 2, i0 = 2, i = 3. We now wish to eliminate s32. σ ← 0 and z ← 0.
Nothing is subtracted from row 2 but rows 3 and 2 are interchanged:

(U;S) =


0 0 1 1 −1 −1
0 0 4 3 0 −2
1 0 2 2 0 0
0 1 5 3 0 0

 .

At this point S is an echelon matrix and the algorithm stops (the
outer while loop since i = i0). As will turn out to be convenient later,
we prefer positive values of s11 and therefore multiply with −1 finally
resulting in:

(U;S) =


0 0 −1 −1 1 1
0 0 4 3 0 −2
1 0 2 2 0 0
0 1 5 3 0 0

 .
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GCD of multiple integers

Let a1, a2, ..., am denote a list of integers, not all zero,

U an m ×m unimodular matrix,

S = (s11, 0, ...0)
T an m × 1 echelon matrix, such that UA = S where

A is the m × 1 matrix (a1, a2, ..., am)
T ,

then gcd(a1, a2, ..., am) = |s11|.
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Nested loop and one dimensional array 1(2)

Data dependence testing in the simplest form with a single for loop
and a one-dimensional array can be based on checking the GCD of
the coefficients of the references.

It is possible to use the GCD test for multidimensional arrays and
multiple nested for-loops.

With one-dimensional arrays and multiple nested for-loops, we get an
equation of the form:

a1x1 + a2x2 + ...+ amxm = c .

It is trivial to solve this when m = 1. Simply check if a1 divides c .

We can use echelon reduction to rewrite the general case so that it
can be solved trivially.
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Nested loop and one dimensional array 2(2)

We write the equation on matrix form:

xA = c (5)

We echelon reduce A such that UA = S and select a positive s11.

Recall s11 = g = gcd(a1, a2, ..., am).

The linear diophantine equation xA = c has a solution iff the gcd g
of its coefficients divides c . When a solution exists, the set of all
solutions is given by

x = (c/g , t2, t3, ..., tm)U (6)

where ti are arbitrary integers and U is any m ×m unimodular matrix
such that UA = (g , 0, ..., 0)T .
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Nested loop and multidimensional array

General case: array with n dimensions and m/2 loop levels.

xA = c (7)

Here x (again) is an 1×m integer matrix, A is an m × n integer
matrix, and c is an 1× n integer matrix.

(7) is easy to solve if A is an echelon matrix (but it is not).

With echelon reduction we instead find U and S such that UA = S.

Then we will check if there is an integer solution to tS = c instead.
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Linear Diophantine Equations

Theorem

Let A be a given m × n integer matrix and c a given integer n vector.

Let U denote an m ×m integer matrix and S an m × n integer
echelon matrix, such that UA = S.

The system of equations

xA = c (8)

has a solution iff there exists an integer m-vector t such that tS = c.
When a solution exists, the set of all solutions is given by the formula

x = tU (9)

where t is the integer vector which satisfies tS = c.
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Linear Diophantine Equations

Proof.

An integer m-vector x = tU will be a solution to (8) iff

c = xA = tUA = tS (10)

If there is no integer vector t such that tS = c, then there is no
integer solution to xA = c either.

If there is such a t, then all solutions have the form x = tU, where t
is integral and tS = c.
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Linear Diophantine Equations

To illustrate how equations of the form xA = c can be solved using
the techniques introduced above, let us solve

(
x1 x2 x3 x4

)
2 2
−3 1
3 1
−4 −2

 =
(
2 4

)
(11)

Firstly we use echelon reduction to find the matrices U and S.

Then we formulate the equation tS = c:

(
t1 t2 t3 t4

)
1 1
0 −2
0 0
0 0

 =
(
2 4

)
(12)

It is trivially solved and we find that t = (2,−1, t3, t4), where t3 and
t4 are arbitrary integers.
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Linear Diophantine Equations

We then find x:

x = tU =
(
2 −1 t3 t4

)
0 0 −1 −1
0 0 4 3
1 0 2 2
0 1 5 3

 = (13)

(t3, t4, 2t3 + 5t4 − 7, 2t3 + 3t4 − 5) (14)
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Fourier-Motzkin Elimination

If no solution was found then we know there is no dependence.

Suppose we found a solution integer vector x.

Then what we can conclude is that there exist index variables such
that the two array references being tested can reference the same
memory location.

If the solution x represents index variables which are out of the loop
bounds, then x does not prove that a data dependence exists. So, we
need also solve a linear inequality when the solution x exists.
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Fourier-Motzkin Elimination

In 1827 Fourier published a method for solving linear inequalities in
the real case. This method is known as Fourier-Motzkin elimination
and is used in compilers as an approximation.

If Fourier-Motzkin elimination finds that there is no real solution,
then there certainly is no integer either. But if there is a real solution,
there may or may not be an integer solution.

Fourier-Motzkin elimination is regarded as a time-consuming
algorithm and to apply it so perhaps thousands of data dependence
tests may make the compiler too slow. Therefore, it is used as a
backup tests when other faster tests fail to prove independence.

Jonas Skeppstedt Lecture 10 2023 51 / 62



Fourier-Motzkin Elimination

For instance, if a variable xi must satisfy 2.2 ≤ xi ≤ 2.8 then no
integer solution can exist.

If we find eg that 2.2 ≤ xi ≤ 4.8 then we may try the two cases of
setting xi = 3 and xi = 4, and see if there still is a real solution.
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Fourier-Motzkin Elimination

Assume we wish to solve the following system linear inequalities.

2x1 − 11x2 ≤ 3
−3x1 + 2x2 ≤ −5

x1 + 3x2 ≤ 4
−2x1 ≤ −3

(15)

We will first eliminate x2 from the system, and then check whether
the remaining inequalities can be satisfied. To eliminate x2, we start
out with sorting the rows with respect to the coefficients of x2:

−3x1 + 2x2 ≤ −5
x1 + 3x2 ≤ 4
2x1 − 11x2 ≤ 3
−2x1 ≤ −3

(16)
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Fourier-Motzkin Elimination

First we want to have rows with positive coefficients of x2, then
negative, and lastly zero coefficients.

Next we divide each row by its coefficient (if it is nonzero) of x2:

−3
2 x1 + x2 ≤ −5

2
1
3x1 + x2 ≤ 4

3
2
11x1 − x2 ≥ 3

11

(17)

Of course, the ≤ becomes ≥ when dividing with a negative
coefficient. We can now rearrange the system to isolate x2:

x2 ≤ 3
2x1 − 5

2
x2 ≤ −1

3x1 + 4
3

2
11x1 − 3

11 ≤ x2

(18)
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Fourier-Motzkin Elimination

At this point, we make a record of the minimum and maximum values
that x2 can have, expressed as functions of x1. We have:

b2(x1) ≤ x2 ≤ B2(x1) (19)

where

b2(x1) = 2
11x1

B2(x1) = min(32x1 −
5
2 ,−

1
3x1 +

4
3)

(20)
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Fourier-Motzkin Elimination

To eliminate x2 from the system, we simply combine the inequalities
which had positive coefficients of x2 with those which had negative
coefficients (ie, one with positive coefficient is combined with one
with negative coefficient):

2
11x1 − 3

11 ≤ 3
2x1 − 5

2
2
11x1 − 3

11 ≤ −1
3x1 + 4

3

(21)

These are simplified and the inequality with the zero coefficient of x2
is brought back:

−29
22x1 ≤ −49

22
−17

33x1 ≤ 53
33

−2x1 ≤ −3
(22)
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Fourier-Motzkin Elimination

We can now repeat parts of the procedure above:

x1 ≤ 53
17

x1 ≥ 49
29

x1 ≥ 3
2

(23)

We find that

b1() = max(49/29, 3/2) = 49/29
B1() = 53/17

(24)

The solution to the system is 49
29 ≤ x1 ≤ 53

17 and b2(x1) ≤ B2(x1) for
each value of x1.
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Fourier-Motzkin Elimination

procedure fourier motzkin elimination (x, A, c)
r ← m, s ← n, T← A, q← c
while (1) {

n1 ← number of inequalities with positive trj
n2 ← n1 + number of inequalities with negative trj
Sort the inequalities so that the n1 with trj > 0 come first,

then the n2 − n1 with trj < 0 come next,
and the ones with trj = 0 come last.

for (i = 1; i ≤ r − 1; i ← i + 1)
for (j = 1; i ≤ n2; j ← j + 1)

tij ← tij/trj
for (j = 1; i ≤ n2; j ← j + 1)

qj ← qj/trj
if (n2 > n1)

br (x1, x2, ..., xr−1) = maxn1+1≤j≤n2
(−

∑r−1
i=1 tij xi + qi )

else
br ← −∞

if (n1 > 0)

jr (x1, x2, ..., xr−1) = minn1+1≤j≤n2
(−

∑r−1
i=1 tij xi + qi )

else
Br ←∞

if (r = 1)
return make solution()
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Fourier-Motzkin Elimination

/* We will now eliminate xr . */
s′ ← s − n2 + n1(n2 − n1)
if (s′ = 0) {

/* We have not discovered any inconsistency and */
/* we have no more inequalities to check. */
/* The system has a solution. */
The solution set consists of all real vectors (x1, x2, ..., xm),
where xr−1, xr−2, ..., x1 are chosen arbitrarily, and
xm, xm−1, ..., xr must satisfy
bi (x1, x2, ..., xi−1) ≤ xi ≤ Bi (x1, x2, ..., xi−1) for r ≤ i ≤ m.
return solution set.

}
/* There are now s′ inequalities in r − 1 variables. */
The new system of inequalities is made of two parts:∑r−1

i (tik − til )xi ≤ qk − qj for 1 ≤ k ≤ n1, n1 + 1 ≤ j ≤ n2∑r−1
i tij xi ≤ qj for n2 + 1 ≤ j ≤ s

and becomes by setting r = r ← 1 and s ← s′:∑r
i tij xi ≤ qj for 1 ≤ j ≤ s

} end

function make solution ()
/* We have come to the last variable x1. */
if (b1 > B1 or (there is a qj < 0 for n2 + 1 ≤ j ≤ s))

return there is no solution
The solution set consists of all real vectors (x1, x2, ..., xm),

such that bi (x1, x2, ..., xm) ≤ xi ≤ Bi (x1, x2, ..., xm) for 1 ≤ i ≤ m.
return solution set.

end
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Summary, Step 1: GCD Test

In the case of a loop nest of height m and an n-dimensional array, we
use the matrix representation of the references iA+ a0 = jB+ b0, or
equivalently:

(i; j)

(
A
−B

)
= b0 − a0, (25)

where the A and B have m rows and n columns.

We find a 2m × 2m unimodular matrix U and a 2m × n echelon
matrix S such that

U

(
A
−B

)
= S. (26)

If there is a 2m vector t which satisfies tS = b0 − a0 then the GCD
test cannot exclude dependence, and if so...

..., the computed t will be input to the Fourier-Motzkin Test.
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Summary, Step 2: Fourier-Motzkin Test 1(2)

If the GCD Test found a solution vector t to tS = c, these solutions
will be tested to see if they are within the loop bounds.

Recall we wrote

x = (i; j)

(
A
−B

)
= b0 − a0. (27)

We find x from:

x = (i; j) = tU (28)

With U1 being the left half of U and U2 the right half we have:

i = tU1 (29)

j = tU2 (30)

These should be inserted to loop bounds constraints.
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Summary, Step 2: Fourier-Motzkin Test 2(2)

Recall the original loop bounds are:

p0 ≤ IP
IQ ≤ q0

}
The solution vector t must satisfy:

p0 ≤ tU1P
tU1Q ≤ q0

p0 ≤ tU2P
tU2Q ≤ q0

 (31)

If there is no integer solution to this system, there is no dependence.

Recall, however, the system is solved with real or rational numbers so
the Fourier-Motzkin Test may fail to exclude independence.
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