Contents of Lecture 8

Purpose of Operator Strength Reduction, OSR
Original algorithm for OSR

The SSA Graph

Strongly Connected Components

Tarjan's Algorithm for computing the strongly connected components
OSR on SSA Form

Jonas Skeppstedt Lecture 8 2023 1/48

Purpose of OSR

double al[N]; doublex* p = a;
doublex* end = &al[N];
for (i = 0; i < N; ++i)
x += alil; while (p < end)
X += ¥*p++;

@ The most important purpose is to rewrite the code to the left into the
code to the right.

@ C/CH+ compilers are required to make it possible to use the address
of the array element after the last declared element.

@ Typically, in total one extra byte might be wasted in memory due to
this.

@ It's not one extra byte per array but rather per memory segment.

Jonas Skeppstedt Lecture 8

Invalid C Code

double al[N]; doublex* p = &al[N];
for (i = N-1; i >= 0; --1i) while (--p >= a)
x += ali]; X += *p;
@ In the last iteration p == a[-1] in the comparison.

@ The compiler is not required to make that address valid.

@ The code to the right triggers undefined behavior.

Jonas Skeppstedt Lecture 8 2023 3/48

Another Name for OSR

OSR is also known as Induction Variable Elimination

do { do {
x = x + alil; s =1 % 4;
1 =1+ 1; t = load ats;
} while (i < N); X =X + t;

1 =1+ 1;
} while (i < N);

Jonas Skeppstedt Lecture 8 2023 4 /48

Basic och dependent IV

The primary goal is to get rid of the multiplication

do {

=1 x 4;

load ats;

=X + t;
i=1+1;

} while (i < N);

o T S /)
I

@ i is a basic induction variable
@ Classes of dependent induction variables: j < b x i + ¢, i is a basic IV

@ s+—4xi/+0

Jonas Skeppstedt Lecture 8 2023 5/48

Strength reduction

s = 4 x
do A do {
s =1 % 4;
t = load ats; t =
X =X + t; X =
i=1+1; 1 =
g =
} while (i < N); } while

@ Initialize the dependent IV before the loop
@ Increment the dependent IV just after the basic

@ Maybe we can get rid of the basic IV now?

Jonas Skeppstedt Lecture 8

load at+s;
X + t;
1+ 1;
s + 4;
(1 < N);

IV is incremented

2023

6 /48

Linear function test replacement

s =4 % 1 m =4 * N;
do { s =4 % 1,
t = load a+s; do {
X = X + t; t = load ats;
1 =1+ 1; X =X + t;
s =8 + 4; s = s + 4;
} while (i < N); } while (s < m);

@ s=ix b+ c (we have b=4 and ¢ =0)

@ | = —S;C

oi<N:>%<N:>s<N><b+c,ifb>O

Jonas Skeppstedt Lecture 8 2023 7 /48

OSR with Tarjan's algorithm for finding SCC's

procedure operator strength reduce(ssa_graph)

dfnum < 0
empty stack
for each vertex v € ssa graph do

visited (v) <« false
for each vertex v € ssa graph do

if (not visited(v))

strong connect(v)

end

Jonas Skeppstedt Lecture 8 2023 8/48

Tarjan's Algorithm: Initial Processing of 0

int dfnum /* Depth-first search number. */ @

procedure strong connect (v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum <— dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc <
do

w < pop ()
add w to scc
while (w # v)

process _scc(scc)

stack

end

Lecture 8 2023 9 /48

Jonas Skeppstedt

Tarjan's Algorithm: Initial Processing of 1

int dfnum /* Depth-first search number. */ @

procedure strong connect (v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum <— dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))

scc + 0
do O
w < pop ()
add w to scc StaCk
while (w # v)
process _scc(scc)
end
Jonas Skeppstedt Lecture 8 2023 10 /48

Tarjan's Algorithm: Initial Processing of 2

int

procedure strong connect (v)

end

dfnum /* Depth-first search number. */ @

dfn(v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)

dfnum <— dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)

lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc <
do
w < pop ()
add w to scc
while (w # v)

process _scc(scc)

Jonas Skeppstedt Lecture 8

2023

11 /48

Tarjan's Algorithm: Initial Processing of 3

int

procedure strong connect (v)

end

dfnum /* Depth-first search number. */ @

dfn(v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)

dfnum <— dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)

lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc <
do
w < pop ()
add w to scc
while (w # v)

process _scc(scc)

Jonas Skeppstedt Lecture 8

2023

=N W

stack

12 /48

Tarjan's Algorithm: Initial Processing of 4

int

procedure strong connect (v)

end

dfnum /* Depth-first search number. */ @

dfn(v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)

dfnum <— dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)

lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc <
do
w < pop ()
add w to scc
while (w # v)

process _scc(scc)

Jonas Skeppstedt Lecture 8

2023

RIN WS

stack

13 /48

Tarjan's Algorithm: Initial Processing of 5

int

procedure strong connect (v)

end

dfnum /* Depth-first search number. */ @

dfn(v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)

dfnum <— dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)

lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc <
do

w < pop ()
add w to scc
while (w # v)

process _scc(scc)

Jonas Skeppstedt Lecture 8

2023

=N W B O

stack

14 / 48

Tarjan's Algorithm: Initial Processing of 6

int

procedure strong connect (v)

end

dfnum /* Depth-first search number. */ @

dfn(v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)

dfnum <— dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)

lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc <
do

w < pop ()
add w to scc
while (w # v)

process _scc(scc)

Jonas Skeppstedt Lecture 8

2023

FRINW &~ OO

stack

15 / 48

Tarjan's Algorithm: More Processing of 6

@ (6,2) = 6 in same scc as 2.

int dfnum /* Depth-first search number. */

procedure strong connect (v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

RN W &~ OO

if (lowlink (v) = dfn(v))

scc < ()

do
w < pop () StaCk
add w to scc

while (w # v)

process scc (scc)

end N
Jonas Skeppstedt Lecture 8 2023 16 / 48

Tarjan's Algorithm: More Processing of 6

@ (6, 3). no action.

int dfnum /* Depth-first search number. */

procedure strong connect (v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

RN W &~ OO

if (lowlink (v) = dfn(v))

scc < ()

do
w < pop () StaCk
add w to scc

while (w # v)

process scc (scc)

end N
Jonas Skeppstedt Lecture 8 2023 17 / 48

Tarjan's Algorithm: More Processing of 6

@ 6 remains on the stack.

int dfnum /* Depth-first search number. */

procedure strong connect(v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

RN W &~ OO

if (lowlink (v) = dfn(v))

scc <

do
w < pop () StaCk
add w to scc

while (w # v)

process scc(scc)

end N
Jonas Skeppstedt Lecture 8 2023 18 /48

Tarjan's Algorithm: More Processing of 5

@ New lowlink and remains.

int dfnum /* Depth-first search number. */

procedure strong connect(v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

RN W &~ OO

if (lowlink (v) = dfn(v))

scc <

do
w < pop () StaCk
add w to scc

while (w # v)

process scc(scc)

end N
Jonas Skeppstedt Lecture 8 2023 19 /48

Tarjan's Algorithm: More Processing of 4

@ New lowlink and remains.

int dfnum /* Depth-first search number. */

procedure strong connect(v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

RN W &~ OO

if (lowlink (v) = dfn(v))

scc <

do
w < pop () StaCk
add w to scc

while (w # v)

process scc(scc)

end N
Jonas Skeppstedt Lecture 8 2023 20/ 48

Tarjan's Algorithm: More Processing of 3

@ New lowlink. Next 7.

int dfnum /* Depth-first search number. */

procedure strong connect(v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

RN W &~ OO

if (lowlink (v) = dfn(v))

scc <

do
w < pop () StaCk
add w to scc

while (w # v)

process scc(scc)

end N
Jonas Skeppstedt Lecture 8 2023 21 /48

Tarjan's Algorithm: Processing of 7

@ Lowlink is set.

int dfnum /* Depth-first search number. */

procedure strong connect(v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

N W Ao O N

if (lowlink (v) = dfn(v))

scc <

do
w < pop () StaCk
add w to scc

while (w # v)

process scc(scc)

end N
Jonas Skeppstedt Lecture 8 2023 22 /48

Tarjan's Algorithm: More Processing of 2

@ Remove SCC from stack

int dfnum /* Depth-first search number. */

procedure strong connect(v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc < 0
do

w < pop ()
add w to scc
while (w # v)

process scc(scc)

end

Lecture 8 2023 23 /48

Jonas Skeppstedt

Tarjan's Algorithm: Initial Processing of 8

@ No path from 2 to 8.

int dfnum /* Depth-first search number. */

procedure strong connect(v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc < 0
do

w < pop ()
add w to scc
while (w # v)

process scc(scc)

end

Lecture 8 2023 24 /48

Jonas Skeppstedt

Tarjan's Algorithm: More Processing of 8

@ 8 isits own SCC.

int dfnum /* Depth-first search number. */

procedure strong connect(v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc < 0
do

w < pop ()
add w to scc
while (w # v)

process scc(scc)

end

Lecture 8 2023 25 /48

Jonas Skeppstedt

Tarjan's Algorithm: More Processing of 1

@ 1 isits own SCC.

int dfnum /* Depth-first search number. */

procedure strong connect(v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc < 0
do

w < pop () StaCk

add w to scc
while (w # v)

process scc(scc)

end

Lecture 8 2023 26 / 48

Jonas Skeppstedt

Tarjan's Algorithm: More Processing of 0

@ 0isits own SCC.

int dfnum /* Depth-first search number. */

procedure strong connect(v)
dfn (v) < dfnum
lowlink (v) < dfnum
visited (v) < true
push (v)
dfnum < dfnum +1

for each w € succ(v) do /* operands(v) = succ(v) */
if (not visited (w)) {
strong connect (w)
lowlink (v) < min (lowlink (v), lowlink (w))
} else if (dfn(w) < dfn(v) and w is on stack)
lowlink (v) <— min (lowlink (v), dfn(w))

if (lowlink (v) = dfn(v))
scc < 0
do

w < pop () StaCk

add w to scc
while (w # v)

process scc(scc)

end

Lecture 8 2023 27 /48

Jonas Skeppstedt

Tarjan's Algorithm: Remarks

o Consider the edge (v, w).

@ When w is not yet visited we must visit it by calling
strong _connect(w).
@ If w has been visited, we have two main cases:

@ w is not on the stack, because it has already found its SCC.
@ w is on the stack, because it's waiting for being popped.
o If dfn(w) < dfn(v) then v must set it's lowlink so it does not think it is
its own SCC.

o If dfn(w) > dfn(v) then no more interesting information for v is
available.

Lecture 8 2023 28 /48

Jonas Skeppstedt

A Loop and its SSA Representation

double

al[N];

for (1 = 0; i < N; ++i)

Jonas Skeppstedt

x += alil;

Lecture 8

xo < 0
o <+ 0

X1+ ¢(x0, x2)
h'e_¢(bab)
ilzn?

t1 < 11 X8
tz%M[a—Ftl]
Xo <— X1 + b
b < 11 +1

2023

20 / 48

The SSA Graph of Loop

X0

X1

X2

@ We first find all strongly connected components of the SSA graph.
@ We want to copy the SCC of / and modify the copy for t;.
@ Therefore we want to have processed i before processing t;.

@ Let us start with x.

Jonas Skeppstedt Lecture 8 2023 30/48

Processing of xg

o SCCy = {xp}. Empty stack.
@ Nodes processed in a SCC are green.

@ Next processing xi.

Jonas Skeppstedt Lecture 8 2023 31/48

Processing of x; and x,

@ xi; and x> are pushed and then the search continues with t;.
@ Nodes on the stack are red.

@ Next processing t».

Jonas Skeppstedt Lecture 8 2023 32/48

Processing of t;

@ Next processing tj.

Jonas Skeppstedt Lecture 8 2023 33/48

Processing of t;

@ Next processing .

Jonas Skeppstedt Lecture 8 2023 34 /48

Processing of i, and i

@ Next processing Iy.

Jonas Skeppstedt Lecture 8 2023 35 /48

Processing of i

X0

X1

¢(x0, x2) @(io, i2)

X2

(] SCC1 — {io}

@ Next more processing in ir.

Jonas Skeppstedt Lecture 8 2023 36 /48

Classifying SCC, = {i1, ir}

X0

X1

X2

o 5CC2 — {il, iz}
@ SCG, is an induction variable due it consists of a ¢-function and an

add with a region constant.

@ A region constant is not modified in a loop, i.e. it's a number or its
definition strictly dominates the loop header.

Jonas Skeppstedt Lecture 8 2023 37 /48

Replacing 1; x 8

o SC(3 = {tl}
@ SCG3 is a multiplication of an induction variable and a region constant.
@ Therefore SCC; is replaced by a modified copy of SCC, with ¢(i).

Jonas Skeppstedt Lecture 8 2023 38 /48

Moditying a Copy of SC(C, to Compute t;

X0 0 t1 Yo 0] io 0

@7)/2)

y2

X2

o S5CCy = {y1, 2}
@ Due to the replacement, the assignment to t; becomes dead code.

@ There is a very beautiful algorithm to remove t; and other dead code
that we will look at during the next lecture.

Jonas Skeppstedt Lecture 8 2023 39/48

Also a 4+ y; can be Replaced

X0 0 t1 0 Yo 0

6,)@)

X2

@ Due to Tarjan's algorithm we can start in any node and be sure we
have already processed the operand nodes, when a variable’'s definition
Is going to be replaced.

@ Not only multiplications but also some additions can be replaced, but
we don't show this in the example.

Jonas Skeppstedt Lecture 8 2023 40 / 48

Processing of a new SCC

@ When nodes have been popped from the stack and collected in a SCC,
the following is performed.

@ A SCC has the attribute header which is the header of a loop in the
control flow graph.

procedure process scc(scc)
if (scc has a single member n)
if (valid form(n))
replace(n, iv, rc)
else
header(n) < L
else
classify (scc)

end

Jonas Skeppstedt

Lecture 8 2023 41 / 48

Valid Forms of Definition for Replacement

@ /v is induction variable

@ rcC Is region constant

function valid form(n)

if (nis of form x < iv X rc
or nis of form x < rc X iv
or n is of form x < iv £ rc
or n is of form x < rc + iv)
return true

else
return false

end

Jonas Skeppstedt

Lecture 8 2023 42 / 48

Definition of Region Constant

function region const(x, header)
return x is constant or vertex(x) strictly dominates header
end

scanf ("%d %d", &a, &b);
while (i < n) {
x += ula * 1 + b];
i +=1;

@ The variables a and b are region constants in the loop.

Jonas Skeppstedt Lecture 8 2023 43 / 48

Reverse Post Order

int i

procedure dfs(v)
visited (v) < true
for each w € succ(v) do
if (not visited (w))
dfs (w)
i< i—1
rpo (v) < i
end

procedure compute rpo(CFG)
i +— |V| N
for each vertex v do
visited (v) < false
dfs(s)

end

Jonas Skeppstedt Lecture 8 2023 44 / 48

Classification of SCC as Induction Variable

procedure classify (scc)
for each n € scc do
if (rpo (vertex(n)) < rpo (header))
header < vertex(n)
for each n € scc do
if (operator(n) & {¢,+, —, move})
scc is not an induction variable
else
for each operand w € operands(n) do
if (w € scc and not region const(w, header))
scc is not an induction variable
if (scc is an induction variable)
for each n € scc do
header (n) <— header
else
for each n € scc do
if (valid form (n))
reEIace(n, iv, rc)
else
header(n) «+ L

end

Jonas Skeppstedt Lecture 8 2023 45 / 48

procedure replace(operation, iv, rc)
result < reduce (opcode (operation), iv, rc)
replace operation with mov using result as source
header (operation) < header (iv)

end

Jonas Skeppstedt Lecture 8 2023 46 / 48

function reduce(operation, iv, rc)
result < lookup (opcode, iv, rc)
if (result is not found)
result < new temp ()
install (opcode, iv, rc, result)
new def <— copy def(iv, result)
for each operand w in new def do
if (w is an induction variable)
replace w with reduce(opcode, w, rc)
else if (opcode = x or new defis a ¢)
replace w with apply (opcode, w, rc)
return result

end

Jonas Skeppstedt Lecture 8 2023 47 / 48

Apply

function apply (opcode, opl, op2)
result < lookup (opcode, opl, op2)
if (result is not found)
if (opl is an induction variable and op2 is a region constant)
result < reduce(opcode, opl, op2)
else if (op2 is an induction variable and opl is a region constant)
result < reduce (opcode, op2, opl)
else
result < new temp ()
install (opcode, opl, op2, result)
choose the location where the operation will be inserted
perform constant folding if possible
create a new operation at the chosen location
return result
end

Jonas Skeppstedt Lecture 8

