
Contents of Lecture 7

What can PRE achieve?
Partial Redundancy Elimination History
Key ideas in SSAPRE from SGI

Jonas Skeppstedt Lecture 7 2023 1 / 21



Purpose of Partial Redundancy Elimination

Recall that Partial Redundancy Elimination, or PRE, can eliminate
both full and partial redundancies.
Full redundancies: when the expression is available from all predecessor
basic blocks.
Partial redundancies: when the expression is only available from some
but not all predecessor basic blocks.
Partial redundancy elimination also covers loops, i.e., PRE can move
code out from loops.

Jonas Skeppstedt Lecture 7 2023 2 / 21



Partial Redundancy Elimination History

PRE was invented by Morel and Renvoise in 1979.
Then Fred Chow in his PhD thesis at Stanford from 1983 (with John
Hennessy as supervisor) improved it.
In 1992 Knoop et al. published a version of PRE which is optimal in
the sense of minimizing register pressure. They called their algorithm
Lazy Code Motion.
In 1999 Kennedy and Chow and others at SGI published the SSA
formulation of Lazy Code Motion and called it SSAPRE.
We will first study a simpler version of it and then note that there
exists an efficient variant of SSAPRE which is much faster.

Jonas Skeppstedt Lecture 7 2023 3 / 21



Limitations of Value Numbering

a0 + b00

a0 + b01

a1 ← x2 4

a2 ← ϕ(a1, a0)
a2 + b0

3

Both hash-based and global
value numbering can optimize
the full redundancy in vertex 1.
None of them can optimize the
partial redundancy in vertex 3.

Jonas Skeppstedt Lecture 7 2023 4 / 21



The Key Idea of SSAPRE

h← a+ b0

h← a+ b1

a← x
h← ⊥

2 4

h← Φ(h, h)
a← ϕ(a, a)
h← a+ b

3

We create Φ-functions for the
hypothetical variable h.
After SSAPRE, Φ-functions
become normal ϕ-functions and
they are really the same
(different notation to distinguish
between them only).
By inserting the expression a+ b
at Φ-operands with the value ⊥
(”bottom”), the partial
redundancy in vertex 3 becomes
a full redundancy and can be
eliminated.

Jonas Skeppstedt Lecture 7 2023 5 / 21



Overview of SSAPRE: ∀ expression a + b do

Insert Φ-functions.
Perform SSA-renaming for the variable h and all other variables
(again).
Compute downsafety, i.e. where the expression is anticipated.
Compute can_be_avail, i.e. where the expression can be available,
either because the expression is there or it can replace a ⊥-operand.
Compute later, i.e. if can be lazy and insert the expression further
down in the control flow graph.
Perform finalize1, i.e. modify the code.
Perform finalize2, i.e. clean up various things.

Jonas Skeppstedt Lecture 7 2023 6 / 21



Insertion of Φ-functions

a = x
b = y

h← a+ b

h← a+ b

0

1

2

3

Recall that in SSAPRE every
expression assigns to a
hypothetical variable h.
Where should we then insert
Φ-functions for h?

1 In the iterated dominance
frontiers of all evaluations of
the expression, i.e. assignment
to h.

2 In the iterated dominance
frontiers of all assignments to
operands in the expression —
since they mean h← ⊥

Jonas Skeppstedt Lecture 7 2023 7 / 21



Iterated Dominance Frontiers of Evaluations of a + b

a = x
b = y

h← a+ b

h← Φ(h, h)
h← a+ b

0

1

2

3
We have already computed the
dominance frontiers of each
vertex.
We thus simply have to collect
the vertices which contain such
an evaluation.

Jonas Skeppstedt Lecture 7 2023 8 / 21



Iterated Dominance Frontiers of h← ⊥

a = x
b = y
h = a+ b

a← x + y

h← Φ(h, h)
a← ϕ(a, a)
h← a+ b

0

1

2

3

Although we can collect all vertices
with assignments to a or b, and find
the iterated dominance frontiers of
these, there is a simpler way.
Every vertex for which we will insert a
Φ-function due to an h← ⊥ must
contain a ϕ-function to any of the
variables in the expression, i.e. ϕ(a) or
ϕ(b).
So we simply look for ϕ(a) and ϕ(b),
and insert Φ(h) in the same vertex.
Recall that ϕ-functions are parallel
copy statements.

Jonas Skeppstedt Lecture 7 2023 9 / 21



Anticipated Expressions

a = x
b = y
h = a+ b

a← x + y

h← a+ b

h← Φ(h, h)
a← ϕ(a, a)
h← a+ b

0

1

2

4

3

An expression is anticipated at a
point p in the control flow graph if it
is certain it will be evaluated with all
operands having the same value on all
paths from p.
At the end of vertex 0, a+ b is not
anticipated since a might be assigned
a new value in vertex 4.
At the end of vertices 1 and 4 the
expression is anticipated due to the
evaluation in vertex 2 which certainly
will be evaluated.
The word ”evaluated” here means
”executed”.

Jonas Skeppstedt Lecture 7 2023 10 / 21



The Main Rule of the Game of PRE

a = x
b = y
h = a+ b

a← x

h← a+ b

h← Φ(h, h)

h← Φ(h,⊥)

0

1

2

3

4

5

6

7

No matter what, PRE may never
transform a function so it will execute
additional instructions due to PRE.
Should the ⊥ in vertex 2 be replaced
with h← a+ b?
No, it’s not safe to insert the
expression since the expression is not
anticipated by the Φ-function.
The path (0, 7, 2, 3, 4, 5) would execute
a+ b at the end of vertex 7 (for the
Φ-operand) without any purpose.
Actually, a Φ-operand is regarded as
belonging to the predecessor vertex.

Jonas Skeppstedt Lecture 7 2023 11 / 21



Occurrences

There are three main types of so called occurrences of an expression:
1 A real occurrence, i.e. the expression a+ b,
2 A Φ-function occurrence, and
3 A Φ-operand occurrence.

Note that Φ-operands are placed in the predecessor basic block.

Jonas Skeppstedt Lecture 7 2023 12 / 21



Attributes of Φ-functions

a = x
b = y
h = a+ b

a← x

h← a+ b

h← Φ(h, h)

h← Φ(h,⊥)

0

1

2

3

4

5

6

7

Each Φ-function has a number of
boolean attributes:

downsafe or ds
can_be_available or cba
later
will_be_available or wba

If a Φ-function is downsafe, it’s OK to
replace a ⊥ operand with the
expression.
We will soon see how downsafe is
computed.
A Φ-operand has the boolean attribute
has_real_use which is true if the
value comes from a real occurrence.

Jonas Skeppstedt Lecture 7 2023 13 / 21



Renaming

a0 = x
b0 = y
h0 = a0 + b0

a2 ← x

a1 ← ϕ(a0, a2)
h1 ← Φ(h0,⊥)

h3 ← a1 + b0

h2 ← Φ(h1, h3)

0

1

2

3

4

5

6

7

The dominator tree is traversed.
At a Φ-function occurrence, a new
version of h is always created.
At a Φ-operand occurrence it is noted
if the value comes from a real
occurrence, in which case
has_real_use is set to true.
At a real occurrence, a new version of
h is created if any operand has a new
version (compared to the stack of h),
and then if the top of the stack of h is
a Φ-function, that Φ-function is
marked as ds = 0

Both real and Φ-function occurrences
are pushed on the rename stack of h.

Jonas Skeppstedt Lecture 7 2023 14 / 21



More initialization of downsafe

a0 = x
b0 = y
h0 = a0 + b0

a2 ← x

a1 ← ϕ(a0, a2)
h1 ← Φ(h0,⊥)

h3 ← a1 + b0

h2 ← Φ(h1, h3) ds = 0

ds = 1

0

1

2

3

4

5

6

7

In addition to the previous slide,
downsafe is also set as follows.
If there is a path from a Φ-function to
the exit vertex that Φ-function is not
downsafe unless the expression was
evaluated.
When renaming comes to the exit
vertex, it checks the top of the stack
of h.
If the top is a Φ-function, it is marked
with ds = 0.

Jonas Skeppstedt Lecture 7 2023 15 / 21



Computing Downsafety

a0 = x
b0 = y
h0 = a0 + b0

a2 ← x

a1 ← ϕ(a0, a2)
h1 ← Φ(h0,⊥)

h3 ← a1 + b0

h2 ← Φ(h1, h3) ds = 0

set to ds = 0

0

1

2

3

4

5

6

7

After the initialization of downsafety
during rename, the downsafety is
computed for all Φ-functions.
What should be done?
A Φ-function with ds = 0 should tell
other Φ-functions that also they are
not downsafe!
A Φ-function with ds = 0 and with a
Φ-operand that is defined by a
Φ-function and for which
has_real_use = 0, should reset its
downsafety and continue the recursion.
In this example both Φ-functions have
ds = 0.

Jonas Skeppstedt Lecture 7 2023 16 / 21



Computing Downsafety

procedure reset_downsafe (x)
if (has_real_use (x) or def (x) is not a Φ)

return
f ← def (x)
if (not down_safe (f ))

return
down_safe (f ) ← false
for each operand ω of f do

reset_downsafe (ω)

procedure downsafety
for each f ∈ F do

if (not down_safe (f ))
for each operand ω of f do

reset_downsafe (ω)

Jonas Skeppstedt Lecture 7 2023 17 / 21



Compute Can Be Available

procedure compute_can_be_avail
for each f ∈ F in the program do

can_be_avail (f ) ← true
for each f ∈ F in the program do

if (not down_safe (f )
and can_be_avail (f )
and ∃ an operand of f that is ⊥)

reset_can_be_avail (f )
end

Jonas Skeppstedt Lecture 7 2023 18 / 21



Reset Can Be Available

procedure reset_can_be_avail (g)
can_be_avail (g) ← false
for each f ∈ F with operand ω with g =def (ω) do

if (not has_real_use (ω)
and not downsafe (f )
and can_be_avail (f ))

reset_can_be_avail (f )
end

Jonas Skeppstedt Lecture 7 2023 19 / 21



Computing Later

procedure reset_later (g)
later (g) ← false
for each f ∈ F with operand ω with g =def (ω) do

if (later (f ))
reset_later (f )

end

procedure compute_later
for each f ∈ F do

later (f ) ← can_be_avail (f )
for each f ∈ F do

if (later (f ) and
∃ an operand ω of f such that def (ω) ̸= ⊥ and has_real_use (ω))

reset_later (f )
end

procedure will_be_avail
compute_can_be_avail
compute_later

end

Jonas Skeppstedt Lecture 7 2023 20 / 21



Finalize1

procedure finalize1 (g)
let E ← the current expression
for each redundancy class x of E do

avail_def [x] = ⊥
for each occurrence ψ of E in preorder DT traversal order do

x ← class (ψ)
if (ψ is a Φ occurrence) {

if (will_be_avail (ψ))
avail_def [x] = ψ

} else if (ψ is a real occurrence) {
if (avail_def [x] is ⊥ or avail_def [x] does not dominate ψ)

reload (ψ) ←false
avail_def [x] = ψ

} else {
reload (ψ) ←true
def (ψ) ←avail_def [x]

}
} else {

/* ψ is a Φ operand occurrence. */
let f be the Φ in the successor vertex of this operand
if (will_be_avail (f )) {

if (ψ satisfies insert) {
insert E at the end of the vertex containing ψ
def (ψ) ← inserted occurrence

} else
def (ψ) ←avail_def [x]

}
}

end

Jonas Skeppstedt Lecture 7 2023 21 / 21


