
Contents of Lecture 6

Copy Propagation during Translation to SSA Form
Hash-Based Value Numbering during Translation to SSA Form
Global Value Numbering on SSA Form

Jonas Skeppstedt Lecture 6 2023 1 / 23



Copy Propagation During Translation to SSA Form

a0 ← x + y
b0 ← a0
c0 ← z + 44
d0 ← b0 + c0

a0 ← x + y
c0 ← z + 44
d0 ← a0 + c0

Instead of pushing b0 on b’s stack...
we can push a0 on b’s stack
Part of Lab 2.

Jonas Skeppstedt Lecture 6 2023 2 / 23



Redundancy Elimination

An expression a+ b is redundant if it is evaluated multiple times with
identical values of the operands.
Eliminating redundant expressions is a very important optimization
goal.
There are different approaches to redundancy elimination, including

1 Hash-Based Value Numbering
2 Global Value Numbering
3 Common Subexpression Elimination
4 Code Motion out of Loops
5 Partial Redundancy Elimination

We will study 1, 2, and 5 in detail.

Jonas Skeppstedt Lecture 6 2023 3 / 23



Value Numbering

The name is due to each expression, e.g. ti ← a+ b, is given a
number, essentially a hash-table index.
In subsequent occurrences of tj ← a+ b it is checked whether the
statement can be changed to tj ← ti .
This is a very old optimization technique with one version that is
performed during translation to SSA Form and other versions when
the code already is on SSA Form.
There are obviously older versions used before SSA Form but we will
not look at them.

Jonas Skeppstedt Lecture 6 2023 4 / 23



Example 1

a0 ← x
b0 ← y

0

c0 ← a0 + b0
1

d0 ← a0 + b0
2

/* ... */
3

e0 ← a0 + b0
4

In vertex 1 the expression a0 + b0 is first
computed.

The redundant occurrences of a0 + b0 can
easily be removed.

On SSA Form we simply check that the
variable versions are the same in the
current and previous occurrence.

Jonas Skeppstedt Lecture 6 2023 5 / 23



Example 2

a0 ← x
b0 ← y

0

c0 ← a0 + b0
b0 = a0?

1

d0 ← a0 + b0
2

a1 ← ϕ(a0, a2)
f0 ← a1 + b0

3

a2 ← a0 + b0
e0 ← a2 + b0

4

The second occurrence in vertex 4 and the
only in 3 cannot mistakenly be regarded
as useful due to mismatching variable
versions.

Jonas Skeppstedt Lecture 6 2023 6 / 23



Example 3

a0 ← x
b0 ← y

0

1

d0 ← a0 + b0
2

3

e0 ← a0 + b0
4

Obviously there are no redundant
expressions here.

We could perhaps save memory by
computing a0 + b0 in vertex 1 but that is
not a goal for redundancy elimination.

Which data structure should we use for
performing value numbering during
translation to SSA Form?

Jonas Skeppstedt Lecture 6 2023 7 / 23



Modifying the Rename Function 1(3)

procedure rename (w)
oldLHS ← empty list
enter new scope in hash table
for each statement t in w do

for each variable V ∈ RHS(t)
replace use of V by use of Vi where i = top(S(V ))

V = LHS(t)
if (V = null)

continue
add V to oldLHS

Jonas Skeppstedt Lecture 6 2023 8 / 23



Modifying the Rename Function 2(3)

simplify t using e.g. Vi − Vi = 0
h← lookup RHS (t) in hash table
if (h was found)

push left-hand side of h onto S(V )
else {

i ← C (V )
replace V by Vi

push i onto S(V )
C (V )← C (V ) + 1
install t in hash table

}

Jonas Skeppstedt Lecture 6 2023 9 / 23



Modifying the Rename Function 3(3)

for each v ∈ succ(w) do
j ← which_pred(w , v)
for each ϕ-function in v do

replace the j-th operand in RHS(ϕ) by Vi where i = top(S(V ))
for each v ∈ children(w) do

rename(v)
for each variable V in oldLHS do

pop(V )
exit scope in hash table

Jonas Skeppstedt Lecture 6 2023 10 / 23



Global Value Numbering (GVN)

Global Value Numbering was one of the first optimizations presented
on SSA Form, and was invented by IBM Research.
SSA Form was explained in that paper as well to introduce this
novelty to the reader.
IBM actually uses an unpublished version of this algorithm which is
better.
Mårten Kongstad, D99, implemented this algorithm in his Master’s
Thesis as a pass in GCC and observed performance improvements of
up to 6.1%.

Jonas Skeppstedt Lecture 6 2023 11 / 23



Key Ideas of GVN

Recall that in constant propagation only the start vertex is initially
assumed to be executable.
In GVN the initial assumption is that all instructions with the same
operation will produce the same value.
I.e. all adds produce the same value, etc.
This most likely is not the case, of course.
Then, for example, the add instructions are inspected to check
whether the compiler can determine that two such instructions do not
produce the same value.
When the algorithm terminates, it has proved which instructions
produce the same value.

Jonas Skeppstedt Lecture 6 2023 12 / 23



Equivalent Instructions

The set I of all instructions in a control flow graph is partitioned into
blocks Bj , i.e.

⋃
Bj = I .

Initially a block Bj consists of all instructions with the same operator
and type.
Each instruction i has a number of operands.
Two instructions are regarded as equivalent if they belong to the same
block Bj and their respective operands come from the same blocks.
A variable x with unknown value is put in a singleton block Bx .
ϕ-functions can be equal only if they belong to the same basic block.

Jonas Skeppstedt Lecture 6 2023 13 / 23



An Example of Equivalent Instructions

a = x + y;
b = x - z;
c = x + z;
d = a - b;
e = a + d;
f = a + b;
g = b + d;

We denote an instruction with the variable defined
by it, and left(a) and right(a) denote the
instruction which define the left and right operand
of instruction a, respectively.
Bx = {x}, By = {y}, and Bz = {z}
B+ = {a, c , e, f , g}
B− = {b, d}
Let us check some instructions:

left(e) ∈ B+ and left(f ) ∈ B+ and right(e) ∈ B−
and right(f ) ∈ B− so we still think e ≡ f .
left(f ) ∈ B+ and left(g) ∈ B− so f ̸= g .

What should we do when we have discovered that
two instructions from the same block cannot be
equivalent?

Jonas Skeppstedt Lecture 6 2023 14 / 23



Splitting Blocks

a = x + y;
b = x - z;
c = x + z;
d = a - b;
e = a + d;
f = a + b;
g = b + d;

We just discovered that f ̸= g .
Therefore we split B+ into B ′

+ and B ′′
+.

Bx = {x}, By = {y}, and Bz = {z}
B ′
+ = {a, c , e, f }

B ′′
+ = {g}

B− = {b, d}
Thus, we split blocks when we discover that two
members cannot be equivalent due to their
respective operands come from different blocks.
How should we practically perform the splitting?

Jonas Skeppstedt Lecture 6 2023 15 / 23



The Basic Algorithm

procedure N2-partition
let π0 = {B0, B1, B2, ..., Bp} be the initial partition
i ← 0
change ← true
while (change) do

change ← false
k ← 0
for each Bj ∈ πi do

take one node v from Bj
create a new block Bk in πi+1
put v in Bk in πi+1
for each node w ∈ Bj do

if (match (v,w))
add w to Bk in πi+1

else {
if (Bk+1 has not already been created)

create a new block Bk+1 in πi+1
change ← true

add w to Bk+1 in πi+1
}

end

Jonas Skeppstedt Lecture 6 2023 16 / 23



Redundancy Elimination

All instructions in a block Bk in the final partition π produce the same
value.
Suppose a and b are members of Bk .
Using dominance at the instruction level, if a ≫ b then b is redundant
and can be replaced with a.

Jonas Skeppstedt Lecture 6 2023 17 / 23



Inefficiency of this Algorithm

Assume we have the statement:
b = a[0] + a[1] + a[2] + ... + a[n];

All the add instructions will belong to the same block in π0.
Then one instruction is removed each iteration which results in an N2

algorithm.
This algorithm is too slow in practice and we will next look at a faster
algorithm.
The main problem with the N2-algorithm is that a block is used to
split itself by inspecting all its members.

Jonas Skeppstedt Lecture 6 2023 18 / 23



A Key Idea for a Faster Algorithm

Instead of taking one block Bk and inspect every instruction in it, and
either putting it in B ′

k or in B ′′
k we can take one block and use it to

split other blocks. Each block is given a sword.
To simplify the description let us for the moment only consider unary
operators.
Consider blocks Bi and Bj and whether Bj should be split due to Bi .
Assume some of the members of Bj take their operand from Bi while
some others don’t.
Then Bj must be split, and those with operands from Bi should be put
in B ′

j and the rest in B ′′
j .

INV (Bi ) is the set of instructions which take their operand from Bi .
If INV (Bi ) ∩ Bj ̸= ∅ and Bj ⊈ INV (Bi ) then Bj must be split.

Jonas Skeppstedt Lecture 6 2023 19 / 23



More Details About Splitting

Consider a block Bj with instructions.
Let x ∈ Bj and assume x only operand was defined in Bi .
We write this as f (x) ∈ Bi . INV (Bi ) = { v | f (v) ∈ Bi }.
We might split Bj due to Bi into B ′

j and B ′′
j .

B ′
j = { v | v ∈ Bj ∧ f (v) ∈ Bi } and B ′′

j = { v | v ∈ Bj ∧ f (v) /∈ Bi }.
Recall Bj is split due to Bi if INV (Bi ) ∩ Bj ̸= ∅ and Bj ⊈ INV (Bi )

If INV (Bi ) ∩ Bj = ∅ then Bj is completely unrelated to Bi , and Bj

should therefore not be split due to Bi .
If Bj ⊆ INV (Bi ) then all instructions in Bj take their operand from Bi ,
and Bj should therefore not be split due to Bi .

Jonas Skeppstedt Lecture 6 2023 20 / 23



A Worklist

Every initial block Bj is put on a worklist W .
Bi is taken from W and INV (Bi ) is computed.
Then all other blocks are inspected and split if:
INV (Bi ) ∩ Bj ̸= ∅ and Bj ⊈ INV (Bi )

A block Bi on the worklist W is equipped with a sword to cut all other
blocks into two pieces.
If a split block Bj also was on W , then both pieces of Bj , i.e. B ′

j and
B ′′
j , will remain on W (but not Bj obviously).

What should we do if Bj is not on the worklist?

Jonas Skeppstedt Lecture 6 2023 21 / 23



Splitting a Block Bj not on the Worklist

Assume Bj /∈W .
It means Bj already has had its chance to cut other blocks.
However, when Bj is split into B ′

j and B ′′
j some block Bk might now

have to be split!
Do we have to put both B ′

j and B ′′
j into W ?

Assume that ∀v ∈ Bk f (v) ∈ Bj . Then, if Bj is split into B ′
j and B ′′

j ,
we must either have f (v) ∈ B ′

j or f (v) ∈ B ′′
j , hence

f (v) ∈ B ′
j ⇔ f (v) /∈ B ′′

j . Therefore, to split Bk we can use either B ′
j

or B ′′
j :

{ v | v ∈ Bk ∧ f (v) ∈ B ′
j } = Bk − { v | v ∈ Bk ∧ f (v) ∈ B ′′

j }
{ v | v ∈ Bk ∧ f (v) ∈ B ′′

j } = Bk − { v | v ∈ Bk ∧ f (v) ∈ B ′
j }

By using the smaller of the sets B ′
j and B ′′

j we can achieve a time
complexity of O(NlogN) where N is the number of nodes in the value
graph.
Jonas Skeppstedt Lecture 6 2023 22 / 23



The Power of Global Value Numbering

int h(int a, int b) int h(int a, int b)
{ {

int x, y; int x, y;

x = 1; x = 1;
y = 1; do {
do { a = a + b;

a = a + b; x = x + a;
x = x + a; } while (a > 0);
y = y + a; return x + x;

} while (a > 0); }
return x + y;

}

Jonas Skeppstedt Lecture 6 2023 23 / 23


