Contents of Lecture 6

- Copy Propagation during Translation to SSA Form
- Hash-Based Value Numbering during Translation to SSA Form
- Global Value Numbering on SSA Form
Copy Propagation During Translation to SSA Form

\[
\begin{align*}
 a_0 & \leftarrow x + y \\
 b_0 & \leftarrow a_0 \\
 c_0 & \leftarrow z + 44 \\
 d_0 & \leftarrow b_0 + c_0
\end{align*}
\]

- Instead of pushing \(b_0 \) on \(b \)'s stack...
- we can push \(a_0 \) on \(b \)'s stack
- You will implement this optimization in Lab 2.
The name is due to each expression, e.g. \(t_i \leftarrow a + b \), is given a number, essentially a hash-table index.

In subsequent occurrences of \(t_j \leftarrow a + b \) it is checked whether the statement can be changed to \(t_j \leftarrow t_i \).

This is a very old optimization technique with one version that is performed during translation to SSA Form and other versions when the code already is on SSA Form.

There are obviously older versions used before SSA Form but we will not look at them.
An expression $a + b$ is **redundant** if it is evaluated multiple times with identical values of the operands.

Eliminating redundant expressions is a very important optimization goal.

There are different approaches to redundancy elimination, including:

1. Hash-Based Value Numbering
2. Global Value Numbering
3. Common Subexpression Elimination
4. Code Motion out of Loops
5. Partial Redundancy Elimination

We will study 1, 2, and 5 in detail.
Some Optimization Goals

- Redundancy Elimination
- Operator Strength Reduction – replace slow instructions with faster
- Control Flow Optimization
 - For example place basic blocks in an order which reduces the number of dynamically executed branches.
 - Inline functions to eliminate function call overhead.
- Memory Hierarchy Optimization
 - Register allocation
 - Locality optimizations using e.g. tiling.
 - Cut functions into two halves and put hot halves together in cache blocks or virtual pages.
- Pipeline Optimizations through instruction scheduling.
- Parallelization
 - SIMD
 - Multicore
In vertex 1 the expression $a_0 + b_0$ is first computed.

- The redundant occurrences of $a_0 + b_0$ can easily be removed.
- On SSA Form we simply check that the variable versions are the same in the current and previous occurrence.
Example 2

The occurrences in vertices 3 and 4 cannot mistakenly be regarded as useful due to mismatching variable versions.
Obviously there are no redundant expressions here.

We could perhaps save memory by computing $a_0 + b_0$ in vertex 1 but that is not a goal for redundancy elimination.

Which data structure should we use for performing value numbering during translation to SSA Form?
procedure rename(w)
 oldLHS ← empty list
 enter new scope in hash table
 for each statement t in w do
 for each variable V ∈ RHS(t)
 replace use of V by use of V_i where i = top(S(V))

 V = LHS(t)
 if (V = null)
 continue
 add V to oldLHS
simplify \(t \) using e.g. \(V_i - V_i = 0 \)

\(h \leftarrow \text{lookup } RHS(t) \text{ in hash table} \)

\textbf{if} (\(h \) was found)

\hspace*{1em} push left-hand side of \(h \) onto \(S(V) \)

\textbf{else} \{

\hspace*{1em} \(i \leftarrow C(V) \)

\hspace*{1em} replace \(V \) by \(V_i \)

\hspace*{1em} push \(i \) onto \(S(V) \)

\hspace*{1em} \(C(V) \leftarrow C(V) + 1 \)

\hspace*{1em} install \(t \) in hash table

\}

for each $v \in \text{succ}(w)$ do
 $j \leftarrow \text{which}_\text{pred}(w, v)$
 for each ϕ-function in v do
 replace the j-th operand in $RHS(\phi)$ by V_i where $i = \text{top}(S(V))$
for each $v \in \text{children}(w)$ do
 rename(v)
for each variable V in oldLHS do
 pop(V)
exit scope in hash table
Global Value Numbering (GVN)

- Global Value Numbering was one of the first optimization presented on SSA Form, and was invented by IBM Research.
- SSA Form was explained in that paper as well to introduce this novelty to the reader.
- IBM actually uses an unpublished version of this algorithm which is better.
- Mårten Kongstad, D99, implemented this algorithm in his Master’s Thesis as a pass in GCC and observed performance improvements of up to 6.1%.
Recall that in constant propagation only the start vertex is initially assumed to be executable.

In GVN the initial assumption is that all instructions with the same operation will produce the same value.

I.e. all adds produce the same value, etc.

This most likely is not the case, of course.

Then, for example, the add instructions are inspected to check whether the compiler can determine that two such instructions do not produce the same value.

When the algorithm terminates, it has proved which instructions produce the same value.
The set I of all instructions in a control flow graph is partitioned into blocks B_j, i.e. $\bigcup B_j = I$.

Initially a block B_j consists of all instructions with the same operator and type.

Each instruction i has a number of operands.

Two instructions are regarded as equivalent if they belong to the same block B_j and their operands come from the same blocks.

A variable x with unknown value is put in a singleton block B_x.

ϕ-functions can be equal only if they belong to the same basic block.
An Example of Equivalent Instructions

- We denote an instruction with the variable defined by it, and $\text{left}(a)$ and $\text{right}(a)$ denote the instruction which define the left and right operand of instruction a, respectively.

\begin{align*}
a &= x + y; \\
b &= x - z; \\
c &= x + z; \\
d &= a - b; \\
e &= a + d; \\
f &= a + b; \\
g &= b + d;
\end{align*}

- $B_x = \{x\}$, $B_y = \{y\}$, and $B_z = \{z\}$
- $B_+ = \{a, c, e, f, g\}$
- $B_- = \{b, d\}$

Let us check some instructions:

- $\text{left}(e) \in B_+$ and $\text{left}(f) \in B_+$ and $\text{right}(e) \in B_-$ and $\text{right}(f) \in B_-$ so we still think $e \equiv f$.
- $\text{left}(f) \in B_+$ and $\text{left}(g) \in B_-$ so $f \not\equiv g$.

What should we do when we have discovered that two instructions from the same block cannot be equivalent?
We just discovered that $f \neq g$.

Therefore we split B_+ into B'_+ and B''_+.

$B_x = \{x\}$, $B_y = \{y\}$, and $B_z = \{z\}

$B'_+ = \{a, c, e, f\}$

$B''_+ = \{g\}$

$B_- = \{b, d\}$

Thus, we split blocks when we discover that two members cannot be equivalent due to their respective operands come from different blocks.

How should we practically perform the splitting?
The Basic Algorithm

procedure N^2-partition
let $\pi_0 = \{B_0, B_1, B_2, \ldots, B_p\}$ be the initial partition
$i \leftarrow 0$
$change \leftarrow true$
while ($change$) do
 $change \leftarrow false$
 $k \leftarrow 0$
 for each $B_j \in \pi_i$ do
 take one node v from B_j
 create a new block B_k in π_{i+1}
 put v in B_k in π_{i+1}
 for each node $w \in B_j$ do
 if (match(v, w))
 add w to B_k in π_{i+1}
 else {
 if (B_{k+1} has not already been created)
 create a new block B_{k+1} in π_{i+1}
 $change \leftarrow true$
 add w to B_{k+1} in π_{i+1}
 }
 end
All instructions in a block B_k in the final partition π produce the same value.

Suppose a and b are members of B_k.

Using dominance at the instruction level, if $a \gg b$ then b is redundant and can be replaced with a.
Assume we have the statement:
\[b = a[0] + a[1] + a[2] + \ldots + a[n]; \]
All the add instructions will belong to the same block in \(\pi_0 \).
Then one instruction is removed each iteration which results in an \(N^2 \) algorithm.
This algorithm is too slow in practice and we will next look at a faster algorithm.
The main problem with the \(N^2 \)-algorithm is that a block is used to split itself by inspecting all its members.
A Key Idea for a Faster Algorithm

- Instead of taking one block B_k and inspect every instruction in it, and either putting it in B'_k or in B''_k we can take one block and use it to split other blocks. Each block is given a sword.

- To simplify the description let us for the moment only consider unary operators.

- Consider blocks B_i and B_j and whether B_j should be split due to B_i.

- Assume some of the members of B_j take their operand from B_i while some others don’t.

- Then B_j must be split, and those with operands from B_i should be put in B'_j and the rest in B''_j.

- $INV(B_i)$ is the set of instructions which take their operand from B_i.

- If $INV(B_i) \cap B_j \neq \emptyset$ and $B_j \notin INV(B_i)$ then B_j must be split.
Consider a block B_j with instructions.

Let $x \in B_j$ and assume x only operand was defined in B_i.

We write this as $f(x) \in B_i$. $INV(B_i) = \{ v \mid f(v) \in B_i \}$.

We might split B_j due to B_i into B'_j and B''_j.

$B'_j = \{ v \mid v \in B_j \land f(v) \in B_i \}$ and $B''_j = \{ v \mid v \in B_j \land f(v) /\in B_i \}$.

Recall B_j is split due to B_i if $INV(B_i) \cap B_j \neq \emptyset$ and $B_j \not\subseteq INV(B_i)$

If $INV(B_i) \cap B_j = \emptyset$ then B_j is completely unrelated to B_i, and B_j should therefore not be split due to B_i.

If $B_j \subseteq INV(B_i)$ then all instructions in B_j take their operand from B_i, and B_j should therefore not be split due to B_i.
Every initial block B_j is put on a worklist W.

B_i is taken from W and $INV(B_i)$ is computed.

Then all other blocks are inspected and split if:

$INV(B_i) \cap B_j \neq \emptyset$ and $B_j \not\subseteq INV(B_i)$

A block B_i on the worklist W is equipped with a sword to cut all other blocks into two pieces.

If a split block B_j also was on W, then both pieces of B_j, i.e. B_j' and B_j'', will remain on W (but not B_j obviously).

What should we do if B_j is not on the worklist?
Splitting a Block B_j not on the Worklist

- Assume $B_j \notin W$.
- It means B_j already has had its chance to cut other blocks.
- However, when B_j is split into B_j' and B_j'' some block B_k might now have to be split!
- Do we have to put both B_j' and B_j'' into W?
- Assume that $\forall v \in B_k \ f(v) \in B_j$. Then, if B_j is split into B_j' and B_j'', we must either have $f(v) \in B_j'$ or $f(v) \in B_j''$, hence $f(v) \in B_j' \iff f(v) \notin B_j''$. Therefore, to split B_k we can use either B_j' or B_j'':

$$\{ \ v \mid v \in B_k \wedge f(v) \in B_j' \} = B_k - \{ \ v \mid v \in B_k \wedge f(v) \in B_j'' \}$$
$$\{ \ v \mid v \in B_k \wedge f(v) \in B_j'' \} = B_k - \{ \ v \mid v \in B_k \wedge f(v) \in B_j' \}$$

- By using the smaller of the sets B_j' and B_j'' we can achieve a time complexity of $O(N\log N)$ where N is the number of nodes in the value graph.
int h(int a, int b) {
 int x, y;
 x = 1;
 y = 1;
 do {
 a = a + b;
 x = x + a;
 y = y + a;
 } while (a > 0);
 return x + y;
}

int h(int a, int b) {
 int x, y;
 x = 1;
 do {
 a = a + b;
 x = x + a;
 } while (a > 0);
 return x + x;
}