Contents of Lecture 4

We will continue with SSA Form when you have done Lab 2
@ Live Variables Analysis
@ Graph Coloring Register Allocation
@ Interprocedural Register Allocation
o

Research from IBM Research Tokyo 2010: Coloring-based coalescing

Jonas Skeppstedt Lecture 4 2023 1/38

Live Variables Analysis

int h(int a, int b)

{

S1:

S2:

S3:

@ A variable x is live at a point p
(instruction) if it may be used in

, the future without being
int C;

assigned to.
c=a+b; @ ais live from the function start
and up to and including the add,
if (c < 0) and then after Sz and up to and

return c * 44; including the negation.

2= b - 14 @ b is live from the start and up to
and including the subtraction.

return -a; @ cis live from 51 and up to and
including the multiplication.

Jonas Skeppstedt Lecture 4 2023 2/38

Live Variables Analysis for Register Allocation

@ Live Variables Analysis is used for different purposes.

@ For example an assignment to a local variable which is not used in the
future can be removed.

@ This is called dead code elimination (DCE) and DCE based on live
variables analysis was used before SSA Form, which introduced a
better form of DCE (which you will implement in a project).

@ We will use live variables analysis for register allocation.

@ Two variables live at the same point in the program are said to
interfere and cannot be allocated the same register.

Lecture 4 2023 3/38

Jonas Skeppstedt

Uses and Kills

Live variables analysis is performed in a local and a global analysis.

In the local analysis, each basic block (vertex) is inspected with the
purpose of finding which variables are first used or first defined
(assigned to).

The information that a variable is live propagates backwards in the
control flow graph (CFG) from a use and to its definition.

The propagation of a use stops at a definition. The use in a + 13 is
killed by the definition a = 14.

a = 44,
b=a+ 11;
a = 14;
b =a+ 13;

In the global analysis the local information is combined to produce the
complete view.

@ Sometimes gen/kill is used instead of use/def.

Jonas Skeppstedt Lecture 4 2023 4 /38

Local Analysis

procedure local live analysis
for each vertex w do
for each stmt s do /* forward direction */
for each used variable x of s do
if (x ¢ def(w))
add x to use(w)
for each defined variable x of s do
if (x ¢ use(w))
add x to def(w)

end

Jonas Skeppstedt Lecture 4 2023 5/38

Local Analysis Example

Ola = 1
1[b = a+1
2|c = a+;\\\; a+3
3|d = btc| [b = a-1
41b = C+£///, 2| 8
5 |ret a+g////

Jonas Skeppstedt

vertex | use | def
0 j {a}
1 {a} | {b}
2 {a} | {c}
3 {b,c} | {d}
4 {c} | {b}
5 {a,b} | 0
6 {a} | {c}
7 {a} | {b}
8] {a}

Lecture 4

2023

6 /38

Global Analysis

procedure global live analysis
change < true
while (change) do
change < false
for each vertex w do

out(w) < < SLLJJCC(W) in(s)

old < in(w)

in(w) < use(w) U (out(w) — def (w))
if (old # in(w))

change < true

end

Jonas Skeppstedt Lecture 4 2023 7 /38

Dataflow Backwards: Postorder

@ Since data flows backward we want to have processed the successors
of a vertex w before we process w.

procedure find post order(w)
visited (w) < true
for each s € succ(w) do
if (not visited(s))
find post order(s)
array [num| < w
num <— num + 1
end

Jonas Skeppstedt Lecture 4 2023 8/38

Global Analysis Example: Iteration 1

n

Ola = 1

out
b = a+1l
c = at+2 c = a+3
d = b+c b = a-1
b = c+1 a = 2|8
ret atb

out(w) <

s € succ(w)

U

in(s)

in(w) < use(w) U (out(w) — def (w))

vertex | use | def out in
5 {a,b} | 0 0 {a, b}
4 0 {b} | {a, b} {a,c}
3 {b,c} | {d} | {a,c} | {a, b,c}
2 {a} | {c} |{a,b,c} | {a, b}
8 0 {a} | {a, b} {b}
7 {a} | {b} |{a,b,c} | {ac}
6 {a} | {c} | {ac} {a}
1 {a} | {b} | {a b} {a}
0] {a} {a} 0

Global Analysis Example: Iteration 2

n

Ola = 1

out
b = a+1l
c = at+2 c = a+3
d = b+c b = a-1
b = c+1 a = 2|8
ret atb

out(w) <

s € succ(w)

U

in(s)

in(w) < use(w) U (out(w) — def (w))

vertex | use | def out in
5 {a,b} | 0 0 {a, b}
4 0 {b} | {a, b} {a,c}
3 {b,c} | {d} | {a,c} | {a, b,c}
2 {a} | {c} |{a,b,c} | {a, b}
8 0 {a} | {a, b} {b}
7 {a} | {b} |{a,b,c} | {ac}
6 {a} | {c} | {ac} {a}
1 {a} | {b} | {a b} {a}
0] {a} {a} 0

Constructing the Interference Graph

@ Each vertex is analyzed again and the set of live variables in a vertex
Is maintained.

@ The live set is initialized to w(out) when vertex w is inspected.

@ When a variable x is defined, an edge (x, y), Vy € live — {x} is added
to the interference graph (if it's not already there).

@ The instructions in w are inspected in reverse order.
@ After an instruction / has been inspected, the live set becomes:
live = use(i) U (live — {def (i)})
@ Our description assumes there is at most one destination operand in
an instruction.

Jonas Skeppstedt Lecture 4 2023 11 /38

An Example

a =1

b = a 2
cC = a b
d =c

e = d 1
f =4d e
ret c f

Jonas Skeppstedt

@ Which variables cannot use the same register?

@ How many registers are needed?

Lecture 4 2023

12 /38

The Interference Graph

a =1

b = a 2
cC = a b
d =c

e =d 1
f =4d e
ret c f

Jonas Skeppstedt

&

X

live = use(i) U (live — {def(i)})

Qo
&)

o

Lecture 4

Initially live = out = {c, f}.
def (f): add edge (c, f).
live ={c,d,e}.

def (e): add edges (e, c¢), (e, d).
live ={c,d}.

def(d): add edge (d, c).
live = {c}.

def(c): no new edge.

live = {a, b}.

def (b): add edge (a, b).
live = {a}.

def(a): no new edge. live = ().

2023 13 /38

Coloring the Interference Graph

@ This interference graph needs three

" (e
. colors.

e e @ Can we use fewer colors?
ret ¢ + £

H O & 0 T P
Il
Qa0 P P =

Jonas Skeppstedt Lecture 4 2023 14 /38

Register Coalescing

a =1

b =a 2
cC = a b
d =c

e =d 1
f =4d e
ret c f

Jonas Skeppstedt

5

c and d have the same value so they
can use the same register!

It is done using a technique called
register coalescing.

Register coalescing is an example of
node merging.

Register coalescing needs a minor
modification to the construction of the
interference graph.

Lecture 4 2023 15 /38

Constructing the Interference Graph for Register Coalescing

@ Consider a copy instruction x = y.

@ The interference graph is called the /G.

a =1

b =a+ 2| e Recall: an edge (x, y) is added to the /G between the

c=a-b defined variable x and each y € live,x # y,(x,y) ¢ IG.

2 _ Z .1 @ When y € live we will add (x, y) to IG.

f=d-e @ By temporarily removing y from /ive and noting that
these variables might be merged to a single variable we

ret ¢ + £ prepare for register coalescing.

@ The removed variable is added back after the instruction

is processed:
live = USe(i) U (/ive — {def(l)})

Jonas Skeppstedt Lecture 4 2023 16 / 38

Summary so far

Copy instructions are treated in a special way.

Variables live at the same time cannot be allocated the same register
and an edge in the interference graph /G is added between them.

Given an interference graph, we want to color it with as few colors as
possible.

However, we are not always looking for the optimal solution with
fewest colors since that solution may use more colors than there are
registers.

Furthermore, since graph coloring is NP-complete we use an
approximation.

The algorithm described next was invented by Greg Chaitin in 1980 for
the IBM 801 project.

@ A variable is called a live range.

Jonas Skeppstedt Lecture 4 2023 17 /38

Simplifying the Interference Graph

Consider an interference graph /G and a number of available colors K.

Assume the IG can be colored with K colors and there is a node
v € IG with fewer than K neighbors.

Since v has fewer than K neighbors there must be at least one unused
color left for v.

Therefore we can remove v from the /G without affecting the
colorability of /G.

We remove v from IG and push v on a stack.
Then we proceed looking for a new node with fewer than K neighbors.

Assume the original /G was colorable and all it's nodes have been
pushed on the stack.

Then each node is popped and re-inserted into /G and given a color
which no neighbor has.

Jonas Skeppstedt Lecture 4 2023 18 /38

Spilling

The number of neighbors of a node v is denoted its degree, or deg(v).
When there is no node with deg(v) < K a variable is selected for
spilling.

Spilling means that a variable will reside in memory instead of being
allocated a register.

Through spilling the /G eventually will become empty, obviously.
Heuristics are used to decide which variable (i.e. node) to spill.

The expected number of memory accesses removed by allocating a
variable is calculated, and this count is typically divided by a "size” of
the node.

By size is meant the number of vertices or instructions that the
register would be reserved in for that variable, and hence cannot be
used for any other variable.

Jonas Skeppstedt Lecture 4 2023 19 /38

Rewriting the Program after Spills

@ On a RISC machine where operands cannot
be in memory a new tiny live range is created
at each original memory access of the spilled
variable.

@ These tiny live ranges should never be spilled.

@ The rewriting is done after all nodes have
t1 = b + c; been removed from the interference graph.

a = ti; @ If there was spilling the algorithm is
re-executed.

@ Eventually it will terminate and three

iteration almost always suffice.
t2 = a;

d = t2 + c;

Jonas Skeppstedt Lecture 4 2023 20/ 38

Overview of the Algorithm

© 00

Perform live variable analysis.
Construct the interference graph.

Either simplify the interference graph by removing a node and push it
on a stack, or spill a node to memory, until the interference graph is
empty.

If there were any spill, create tiny live ranges to load and store the
spilled variables, and goto 1.

If there were no spills, then assign colors to the nodes when popping
them from the stack, and then change the program to use registers
instead of variables.

Lecture 4 2023 21 /38

Jonas Skeppstedt

More Details About Coalescing

@ Two nodes can be coalesced into one if they do not interfere.

@ By removing the source operand temporarily from the live set, the
copy statement does not add an edge between the source and
destination operands.

@ However, in the following code there will be an edge between ¢ and d.

c =a-2>b
d =c

e =d+ 1
c=d+ 2
g=d+ 3

e With SSA Form, however, the assignments to ¢ would be to two
different variables so that problem is avoided.

Jonas Skeppstedt Lecture 4 2023 22 /38

Risks with Coalescing

Assume two live ranges u and v are coalesced into uv.
The new live range will have the union of the neighbors of v and v.
If v and v have the same neighbors then its no problem.

However, if deg(u) < K A deg(v) < K A deg(uv) > K then the IG
can become incolorable due the coalescing.

Therefore, heuristics of when to coalesce have been developed.

Chaitin’s original algorithm coalesced everything it could.

Jonas Skeppstedt Lecture 4 2023 23 /38

Conservative Coalescing

@ A node u has significant degree if deg(u) > K.

@ Conservative coalescing, introduced by Briggs, does not merge nodes
if the resulting node uv has K or more neighbors of significant degree.

@ All neighbors without significant degree will be removed during
simplification.

@ All neighbors with significant degree might remain and if uv has K or
more such neighbors, the /G cannot be colored.

@ This approach is conservative due to that it might have been possible
to coalesce u and v and still color the /G since some neighbors might
have been allocated the same color, and leaving a color for uv.

Jonas Skeppstedt Lecture 4 2023 24 /38

lterated Register Coalescing

@ Both Chaitin and Briggs performed coalescing before simplification.

@ In lterated Register Coalescing by George and Appel, the coalescing
is performed as a part of the main loop:

@ In the main loop, the following are attempted in sequence:

© Simplify, but no "move’-related nodes — they wait for coalescing.

@ Coalescing

© Freeze — move-related nodes that could not be coalesced no longer are
considered as move-related.

Q Spilling

Jonas Skeppstedt Lecture 4 2023 25 /38

More Details

The interference graph is represented in two ways. Both as a bit
matrix, and as adjacency lists.

Function call and return conventions introduces precolored live
ranges. For example, the first integer parameter is passed in register
R3 on Power machines.

With coalescing this is simply solved by introducing copy statements
and when possible merging a variable passed as a parameter with the
precolored node. This way the variable gets the correct register when
possible.

In Optimistic coloring (Briggs) a variable can be removed from the
IG and pushed even if it has significant degree. Whether it should be
spilled or not is determined when it is re-inserted into /G after being
popped. If there is no available color then it's spilled.

Jonas Skeppstedt Lecture 4 2023 26 / 38

Caller vs Callee Save Registers

@ The Application Binary Interface (ABI) specifies for UNIX which
registers the caller and the callee are responsible for saving and
restoring.

@ An Example: General Purpose Registers (ie integer) on Power:
Zero for some instructions: RO
Stack pointer: R1
Thread pointer: R2
Caller-saved: R3..R12
Callee-saved: R13..R31

@ If a variable allocated to a caller-save register is live across a function
call, it must be saved before the call and restored after it.

@ A function may modify the callee-save registers but must save and
restore them.

Jonas Skeppstedt Lecture 4 2023 27 /38

Neither is optimal

o If all registers are caller-save, then typically some unnecessary saving
will take place unless the called function modifies all registers

o If all registers are callee-save, then it's likely the called function
preserves a register which the caller does not care about

@ When a color is to be selected for a variable, if it's live across function
calls, it's preferable to use a callee-save register and hope that the
called function will not use that register

Lecture 4 2023 28 /38

Jonas Skeppstedt

Interprocedural Register Allocation

@ Intraprocedural register allocation can also assign global variables to
registers but only after copying to a temporary and then saving them
in memory before a function call or its own return (if the variable was
modified).

@ Interprocedural register allocation aims at three things:

o Allocate global variables in registers in a region of several functions.
o Make better choices with respect to caller/callee save registers.
e Avoid doing callee-save and restore unless necessary.

@ Interprocedural register allocation is most effective if the whole
program can be analyzed.

Jonas Skeppstedt Lecture 4 2023 29 /38

Call Graph

@ The call graph has functions as nodes and function calls as edges.

@ The linker (or a similar module) can construct the call graph after it
has found all files needed for an application.

Jonas Skeppstedt Lecture 4 2023 30/ 38

Global Variable Register Allocation

Jonas Skeppstedt

In a first step each function f is analyzed to
find which and how frequently global
variables are accessed in f.

In a second step the call graph is constructed
and sets of functions, called webs, for each
variable is constructed.

A web is a subgraph of the call graph in
which a global variable may be allocated a
register.

Let x be used in all functions except b, f, h.
The web for x will be {a,b,c,d,e, f,g}.

Lecture 4 2023 31/38

Using the Webs

Jonas Skeppstedt

A global variable can have many webs.

When two webs for different variables have
nodes in common, they interfere.

The global variable register allocator
estimates how useful it will be to allocate a
certain web to a callee-save register.

The webs compete and some are given a
register.

The program is then rewritten with some
webs “precolored”.

Since a callee-save register is used, the
function h will not destroy the global
variable.

Lecture 4 2023 32/38

Modifying the Program

@ Some nodes in a web are called entry nodes,
and they are a and b in our example.

@ The variable must be read from memory in
the entry nodes.

@ Note that in our example, the variable was
not used in b but b must be part of the web
and b must read the variable from memory.

@ In addition to being responsible for reading
the variable from memory to the allocated
register, the entry nodes are also responsible
for writing the value to memory if needed.

Jonas Skeppstedt Lecture 4 2023 33/38

Moving Saves and Restores

Jonas Skeppstedt

@ Assume b and c are called frequently.

@ Instead of letting them do the callee-save
and restore, it can be done in a.

@ This can improve performance.

Lecture 4 2023

34 /38

Live-range splitting

Instead of spilling, it is sometimes useful to split a live range

In the 1990's there were attempts to split to a large extent and then
hoping for coalescing to nicely merge live ranges when suitable

This did not work out very well

Research by Cooper et al. found it is better to split a live range at the
moment you find it should be spilled.

Their approach is based on a separate graph, the containment graph
constructed when constructing the interference graph

u =
while (...) {
vV = ... // the live range of u contains
.V // the live range of v and
+ // u can be split around v
u
Jonas Skeppstedt Lecture 4 2023 35 / 38

Coloring-based coalescing

@ A new approach to deciding what to coalesce was published by IBM
Research Tokyo in 2010

@ The Chaitin algorithm is used for this decision before the real coloring
@ A new set of colors is used, called extended colors

@ These extended colors are only used to decide whether two live ranges
should be coalesced

@ The normal colors are called real colors

Jonas Skeppstedt Lecture 4 2023 36 /38

Actions at a pop of live range u

@ If there is a real color ¢, unused by neighbors of u, but used by a live
range v which is move-related to u, then assign ¢ to u

@ Otherwise if there is a real color ¢, unused by neighbors of u, then
assign ¢ to u

@ Otherwise, if there is an extended color ¢, unused by neighbors of v,
but used by a live range v which is move-related to u, then assign ¢

to u

@ Otherwise assign a new extended color to u.

Lecture 4 2023 37 /38

Jonas Skeppstedt

Actions after assignment

@ When all live ranges have been assigned a real or extended color,
move-related live ranges with the same color (real or extended) are
coalesced

@ This process can be repeated

@ If extended colors where used during the final run of the algorithm,
spilling or splitting is used.

@ The effect was 1 % performance improvement on a machine with 16
integer and 16 floating point registers — good!

Jonas Skeppstedt Lecture 4 2023 38 /38

