
Contents of Lecture 3

Translation to SSA Form
Translation from SSA Form

Jonas Skeppstedt Lecture 3 2023 1 / 29



Translation to SSA Form

A function is translated to SSA Form in the following steps
1 Compute the dominator tree DT of the function.
2 Compute the dominance frontier of each vertex in the CFG.
3 Insert ϕ-functions.
4 Rename variables while traversing the dominator tree.

Jonas Skeppstedt Lecture 3 2023 2 / 29



A Trick

We want to insert a ϕ-function where two paths from assignments
meet.
This formulation of the problem was difficult to use to find an efficient
algorithm.
The following is a trick which makes it easier to answer the question
of where to insert ϕ-functions:
Trick: Every variable is given a assignment in the start vertex.
That is, a variable x is given an assignment x0 in the start vertex.
No assembler code is produced for the assignment though.

Jonas Skeppstedt Lecture 3 2023 3 / 29



Why would x0 help???

x0 =

x?

x?

x1 =

x1

x1

With the assignment to x0 we
can see that two paths from
assignments join in the vertices
with x?.
Therefore each of them needs a
ϕ-function.
Another way to see this is that
these vertices are just outside
what is dominated by the vertex
with x1 =.

Jonas Skeppstedt Lecture 3 2023 4 / 29



Dominance frontier

We need to insert a ϕ-function in every vertex which is just outside
what is dominated by a vertex with an assignment.
”Just outside” is called the dominance frontier of a vertex u.
It is written DF (u).
DF (u) = { v | ∃ p ∈ pred(v), u ≫ p, u ≫/ v }.
In words: if u dominates a predecessor of v but does not dominate v
strictly, then v is in the dominance frontier of u.
After the dominator tree is found, the dominance frontier for each
vertex is computed.
Each local variable and compiler-generated temporary is inspected: for
each vertex u with an assignment to the variable, a ϕ-function is
inserted in DF (u).
N.B. a ϕ-function is an assignment — which also needs ϕ-functions in
the dominance frontier of its vertex. More about that below.

Jonas Skeppstedt Lecture 3 2023 5 / 29



Multiple assignments

x0 =

x2 = ϕ(x0, x4)

x3 = ϕ(x2, x5)

x1 =

x1x4 =

x5 = ϕ(x4, x1)

Consider the assignment to x4.
We must rename variables so
that after a later assignment the
new version is used during the
renaming.
Obviously it is x4 that should be
the ϕ-operand and not x1.
This is achieved with a stack of
variables.
The current version of a variable
is at the top of the stack.

Jonas Skeppstedt Lecture 3 2023 6 / 29



Using the Dominator Tree and a Stack of Variable Versions

x0 =

x2 = ϕ(x0, x4)

x3 = ϕ(x2, x5)

x1 =

x1x4 =

x5 = ϕ(x4, x1)

After ϕ-functions have been
inserted (more details below) the
dominator tree is traversed
during variable renaming.
Each variable has its own stack
of variable versions.
At a use of a variable in a
statement, the variable is
replaced in the statement by the
top of variable’s stack.
At an assignment a new variable
version is pushed on the
variable’s stack, and the variable
is replaced in the statement by
the new version.

Jonas Skeppstedt Lecture 3 2023 7 / 29



Illustration of what happens near the assignment to x1

x0 =

x2 = ϕ(x0, x4)

x3 = ϕ(x2, x5)

x1 =

x1x4 =

x5 = ϕ(x4, x1)

The new version x1 is pushed on
the stack of x .
The vertex with x4 is a child in
the DT and is inspected next.
The new version x4 is pushed on
the stack of x .
The ϕ-function in the successor
vertex gets one of its operands
replaced to x4 from the current
top of the stack.
The vertex with x4 has no child
in the DT and x4 is popped
from the stack.
x1 is then at the top of the
stack and is used next.

Jonas Skeppstedt Lecture 3 2023 8 / 29



Strict Dominance in the Definition of Dominance Frontier

0

1

2

3

4

5

6

7

DT
0

1

2 3

4

5

6

7

DF (u) = {v |∃p ∈ pred(v), u ≫ p, u ≫/ v}.
Consider 7 and suppose it contains ++i.
It then needs i = ϕ(i , i).
DF (7) = {5, 7}.
When 7 is added to its own DF it is both u,
p, and v in the definition.
This situation is the reason for using not
strict dominance in the definition.

Jonas Skeppstedt Lecture 3 2023 9 / 29



Computing the Dominance Frontiers of a CFG

0

1

2

3

4

5

6

7

DT
0

1

2 3

4

5

6

7

DF (u) = {v |∃p ∈ pred(v), u ≫ p, u ≫/ v}.
Below children(u) is the set of children of u
in the dominator tree.
The dominance frontier is computed bottom
up in the dominance tree using:

DF (u) = DFlocal(u) ∪
⋃

c ∈ children(u)
DFup(c)

DFlocal(u)
def
= {v ∈ succ(u)| u ≫/ v}.

DFup(c)
def
= {v ∈ DF (c) | idom(c) ≫/ v}.

These formulas can be simplified further as
we will see, but first we will build intuition
into why they are correct.

Jonas Skeppstedt Lecture 3 2023 10 / 29



DFlocal(u)

0

1

2

3

4

5

6

7

DT
0

1

2 3

4

5

6

7

DFlocal(u)
def
= {v ∈ succ(u)| u ≫/ v}.

The set DFlocal(u) is the contribution to
DF (u) which can be determined by only
looking at the successors of u in the CFG.
Since u does not dominate v strictly, but
clearly it dominates a predecessor of v
(namely itself), v ∈ DF (u).
For example, 3 ∈ DF (2) and 7 ∈ DF (7)
But e.g. 3 /∈ DF (1) since 1 ≫ 3.

Jonas Skeppstedt Lecture 3 2023 11 / 29



DFup(c)

0

1

2

3

4

5

6

7

DT
0

1

2 3

4

5

6

7

DFup(c)
def
= {v ∈ DF (c) | idom(c) ≫/ v}.

The set DFup(c) is the contribution from a
vertex c to the DF of idom(c).
To see that DFup(c) ⊆ DF (idom(c)),
consider any vertex v ∈ DF (c).
Assume v ∈ DF (c). There must exist a
p ∈ pred(v) such that c ≫ p.
Since dominance is transitive and obviously
idom(c) ≫ c we must have idom(c) ≫ p.
Thus the vertices in DF (c) which are not
strictly dominated by idom(c) should be
added to DF (idom(c)) and this is what
DFup(c) achieves.

Jonas Skeppstedt Lecture 3 2023 12 / 29



More about dominance frontiers

0

1

2

3

4

5

6

7

DT
0

1

2 3

4

5

6

7

In the book is also shown that every vertex in
DF (v) is accounted for in either DFlocal(v)
or DFup(c) where idom(c) = v .
One can also show that instead of:
DFlocal(u)

def
= {v ∈ succ(u) | u ≫/ v}

we can use:
DFlocal(u)

def
= {v ∈ succ(u) | u ̸= idom(v) }

and:
DFup(c)

def
= {v ∈ DF (c) | idom(c) ̸= idom(v)}.

Jonas Skeppstedt Lecture 3 2023 13 / 29



Computing the Dominance Frontiers of a CFG

0

1

2

3

4

5

6

7

DT
0

1

2 3

4

5

6

7

procedure df (G ,DT )
for each u in a postorder traversal of DT do

DF (u)← ∅
for each v ∈ succ(u) do

if (idom(v) ̸= u)
add v to DF (u)

for each w ∈ children(u) do
for each v ∈ DF (w) do

if (idom(v) ̸= u)
add v to DF (u)

Jonas Skeppstedt Lecture 3 2023 14 / 29



Computing the Dominance Frontiers of a CFG

0

1

2

3

4

5

6

7

DT
0

1

2 3

4

5

6

7

By postorder traversal is meant that when
we visit vertex u, we first compute the
dominance frontier of each child c of u in
DT before we compute DF (u).
You will implement this function in Lab 2.
Recursively walk through the dominator tree.
The first computed set will be
DFlocal(7) = {5, 7}.
DFup(c) is never explicitly stored but
computed by inspecting DF (c)

The first complete computed dominance
frontier will be DF (7) = {5, 7}.
Then the DF (6), DF (2), DF (4) etc...

Jonas Skeppstedt Lecture 3 2023 15 / 29



Inserting ϕ-functions

0

1

2

3

4

5

6

7

ϕ-functions are inserted for one variable at a time.
A counter iteration is incremented when the next
variable is processed — i.e. gets its ϕ-functions inserted
into the CFG.
Each vertex has two attributes for the ϕ-function insertion
which keeps track of for which iteration it was processed:

has_already – used to determine whether a ϕ-function
for a certain variable has already been inserted in that
vertex.
work – used to determine whether that vertex has been
put in a worklist called W.

These variables are all set to zero initially.

Jonas Skeppstedt Lecture 3 2023 16 / 29



Insert ϕ-functions

procedure insert-ϕ
W ← ∅
for each variable V do

iteration← iteration + 1
for each u ∈ vertex_with_assignment(V ) do

work[u]← iteration
add u to W

while (W ̸= ∅) do
take u from W
for each v ∈ DF (u) do

if (has_already [v ] < iteration)
place V ← ϕ(V , ...,V ) at v
has_already [v ]← iteration
if (work[v ] < iteration)

work[v ]← iteration
add v to W

Jonas Skeppstedt Lecture 3 2023 17 / 29



Remarks on previous slide

The use of an explicit counter and the attributes work and
has_already is how the algorithm was originally described by
researchers from IBM.
This is more efficient than using lookup-functions to determine
whether a vertex has a certain ϕ-function or a vertex is in the worklist.
For optimizing compilers research the speed of the compiler at normal
optimization levels, e.g. -O2 is extremely important.
However, some optimizations which analyze the whole program is
sometimes allowed to take hours.

Jonas Skeppstedt Lecture 3 2023 18 / 29



Rename

Rename performs a traversal of the dominator tree.
In a vertex u the sequence of three-address statements is examined
one statement at a time:

First the source operands (right hand side, or RHS) are renamed by
replacing the operand with the version of the variable on the top of the
variable’s rename stack.
Then the destination operand (left hand side, or LHS) is renamed by
creating a new variable version, pushing it on the rename stack, and
replacing the operand with the new version of the variable.

Then the ϕ-functions of each successor vertex v in the CFG is
inspected and the operand corresponding to the edge (u, v) is
renamed.
Then each child c in the DT is processed.
Finally every new version created and pushed on a rename stack in u
is popped from its rename stack.

Jonas Skeppstedt Lecture 3 2023 19 / 29



Rename Algorithm

procedure rename (u)
for each statement t in u do

for each variable V ∈ RHS(t)
replace use of V by use of Vi where i = top(S(V ))

for each variable V ∈ LHS(t) do
i ← C (V )
replace V by Vi

push i onto S(V )
C (V )← C (V ) + 1

for each v ∈ succ(u) do
j ← which_pred(u, v)
for each ϕ-function in v do

replace the j-th operand in RHS(ϕ) by Vi where i = top(S(V ))
for each v ∈ children(u) do

rename(v)
pop every variable version pushed in u

Jonas Skeppstedt Lecture 3 2023 20 / 29



Unnecessary ϕ-functions

It’s unnecessary to insert a ϕ-function if its value is never used:
if (a > 0) {

a = a + 1;
f(a);

}
return b;

Before the return, there will be a ϕ-function due to the assignment
to a.
In general the cost to determine whether the value will be used is not
worth the effort.
It’s not uncommon that a ϕ-function is inserted in a vertex where the
value is overwritten before being used. This special case can be easy
to determine and may be worth the effort of avoiding inserting an
unnecessary ϕ-function.

Jonas Skeppstedt Lecture 3 2023 21 / 29



Variable versions are almost only for illustration

Most optimization algorithms ignore the variable version number and
treat for instance ai and aj as completely different variables which
have no more in common than ai and bk have.
Therefore no counter is usually needed: it’s sufficient to simply create
a new temporary variable.
However, Partial Redundancy Elimination, SSAPRE, needs to know
from which original variable such a temporary comes.

Jonas Skeppstedt Lecture 3 2023 22 / 29



Translation from SSA Form

a1 = u3 + v1
a1 > b4 ??

a3 = ϕ(a1, a2)
b6 = ϕ(b4, b5)
y1 = a3 ∗ b6

a2 = u3 − v2
b5 = a2 − 1

The basic idea when translating
from SSA Form is to replace the
ϕ-functions with copy
statements in the predecessor
vertices.

Jonas Skeppstedt Lecture 3 2023 23 / 29



Translation from SSA Form

a1 = u3 + v1
a1 > b4 ??

a3 = a1
b6 = b4

y1 = a3 ∗ b6

a2 = u3 − v2
b5 = a2 − 1
a3 = a2
b6 = b5

It’s thus necessary to have a
vertex to insert the copy
statements into!
Without the leftmost vertex,
there is an edge from a vertex
with multiple successors to a
vertex with multiple predecessors
and such an edge is called a
critical edge.
Critical edges are removed by
inserting an extra empty vertex.
This is done before dominance
analysis.

Jonas Skeppstedt Lecture 3 2023 24 / 29



Translation from SSA Form

a2 = ϕ(a1, b2)
b2 = ϕ(b1, a2)

The ϕ-functions are parallel
copy statements.
Conceptually all ϕ-functions are
executed concurrently by first
reading all operands and then
writing all destinations.
What will go wrong here with a
”naive” translation from SSA
Form?

Jonas Skeppstedt Lecture 3 2023 25 / 29



Translation from SSA Form

a2 = a1
b2 = b1

a2 = b2
b2 = a2 What is wrong here?

Jonas Skeppstedt Lecture 3 2023 26 / 29



Translation from SSA Form

a2 = a1
b2 = b1

x = a2
a2 = b2
b2 = x

The value of a2 must be saved
before being overwritten!

Jonas Skeppstedt Lecture 3 2023 27 / 29



Detect Use of Uninitialized Variables

If version zero is used and there was no explicit initializer for the
variable (i.e. no int a = 1) it means we have discovered a buggy
program with undefined behavior!

Jonas Skeppstedt Lecture 3 2023 28 / 29



Copy Propagation

During Translation to SSA Form, a copy statement a = b can be
optimized as follows:
The current value of b, i.e. the version on the top of b’s rename stack
is pushed on a’s rename stack and the copy statement can then be
removed.
You will do this during Lab 2.
A copy is called MOV in vcc.
A NOP statement does nothing.
Easiest to remove a statement by changing it to a NOP.
All NOP can then be removed later.

Jonas Skeppstedt Lecture 3 2023 29 / 29


