
Contents of Lecture 2

Dominance relation
An inefficient and simple algorithm to compute dominance
Immediate dominators
Dominator tree

Jonas Skeppstedt Lecture 2 2023 1 / 52

Definition of Dominance

Consider a control flow graph G (V ,E , s, e) and two vertices u, v ∈ V .
If every path from s to v includes u then u dominates v .
For example 1 dominates itself, 2, 3, 4, and e.

s

1

2

3

4

e

Jonas Skeppstedt Lecture 2 2023 2 / 52

Notation and obvious facts

We write u dominates v as u ≫ v .
The set of dominators of a vertex w is written as dom(w), i.e.
dom(w) = {v |v ≫ w}.
The start vertex has only one dominator: dom(s) = {s}.
All vertices are dominated by s.
If u ≫ v and u ̸= v then we say that u strictly dominates v which is
written as u ≫ v .

Jonas Skeppstedt Lecture 2 2023 3 / 52

A restriction on CFG’s

In a CFG, we require that all vertices are on a path from s to e.
Vertices reachable from s can be detected using depth first search,
and then all unvisited vertices can be deleted.
Due to return statements and infinite loops there can be vertices with
no path to e.
Return-statements are usually collected in one place (in the exit
vertex) so a return then is a branch to the exit vertex.
Infinite loops can be given a ”fake” conditional branch (which is always
false) in order to create a path to exit.
In the optimization Dead Code Elimination it’s important that every
vertex is on a path to e.

Jonas Skeppstedt Lecture 2 2023 4 / 52

Sets and relations

Assume S and T are sets.
The Cartesian product S × T is the set {(a, b)|a ∈ S ∧ b ∈ T}.
Any subset T of S × S is a relation on S .
T is reflexive iff ∀a ∈ S , (a, a) ∈ T .

T is irreflexive iff ∀a ∈ S , (a, a) /∈ T .

T is symmetric iff (a, b) ∈ T ⇒ (b, a) ∈ T .

T is asymmetric iff (a, b) ∈ T ⇒ (b, a) /∈ T .

T is antisymmetric iff (a, b) ∈ T ∧ (b, a) ∈ T ⇒ a = b.

T is transitive iff (a, b) ∈ T ∧ (b, c) ∈ T ⇒ (a, c) ∈ T .

A relation which is reflexive, antisymmetric and transitive is called a
partial order.
In a total order such as the integers all elements can be compared but
not in a partial order.

Jonas Skeppstedt Lecture 2 2023 5 / 52

Dominance is a partial order

Dominance is reflexive. Obvious since v must be on any path to itself.
Dominance is antisymmetric: if both u ≫ v and v ≫ u then u = v .

Assume first that dominance is not antisymmetric and that u and v
dominate each other and they are different vertices.
Neither u nor v can be s since s is only dominated by itself.
Consider a cycle-free path from s to v . It must include u since u ≫ v .
But since v ≫ u, we must reach v on that path to u.
Now v is twice on the cycle free path which is a contradiction.
Hence u = v .

Dominance is transitive: if u ≫ v and v ≫ w then u ≫ w

Consider any path from s to w .
Since v ≫ w , v must be on that path.
Since u ≫ v , u must also be on that path.
The path was selected arbitrarily which means u is on any such path,
i.e. u ≫ w .

Jonas Skeppstedt Lecture 2 2023 6 / 52

Predecessors of a dominated vertex

If the edge (v ,w) ∈ E of a graph (V ,E) then v is a predecessor of w .
Consider any two vertices u, v ∈ V and u ̸= v . Then we have:
u ≫ v ⇐⇒ u ≫ pi ; ∀pi ∈ pred(v).

Jonas Skeppstedt Lecture 2 2023 7 / 52

Predecessors of a dominated vertex, continued

Let us consider the ⇒ direction first: u ≫ v ⇒ u ≫ pi ; ∀pi ∈ pred(v).
Assume the contrary, that there exists a predecessor pi of v which is
not dominated by u.
Then there exists a path p = (w0,w1,w2, ...,wk) from s = w0 to
pi = wk which does not include u.
Then there exists a path (w0,w1,w2, ...,wk ,wk+1) from s = w0 to
v = wk+1 which does not include u, but this is impossible since
u ≫ v .
Hence, u must dominate every predecessor of v .

u

0 1 2

v

if not u ≫ 2 then it cannot be true that u ≫ v
u must dominate each predecessor of v to be able
to dominate v .

Jonas Skeppstedt Lecture 2 2023 8 / 52

Predecessors of a dominated vertex, continued

Let us then consider the ⇐ direction: u ≫ v ⇐ u ≫ pi ; ∀pi ∈ pred(v).
If u dominates every predecessor of a vertex v then u must also
dominate v itself.
Assume the contrary that there exists a path from s to v which does
not include u.
The second last vertex on that path is a predecessor pi of v .
But u dominates every pi and therefore u must be on the selected
path. A contradiction which means u ≫ v .

u

0 1 2

v
Since u dominates every pi it must be on every
path to v and therefore dominate v .

Jonas Skeppstedt Lecture 2 2023 9 / 52

Computing the dominators of each vertex

procedure compute_dominance
dom(s)← {s}
for each w ∈ V − {s} do

dom(w)← V
change ← true
while change do

change ← false
for each w ∈ V − {s} do

old ← dom(w)

dom(w)← {w} ∪
⋂

p ∈ pred(w)
dom(p)

if old ̸= dom(w)
change ← true

end

Jonas Skeppstedt Lecture 2 2023 10 / 52

An Example Control Flow Graph 1(3)

0

1

2

3

4

5

6

7

dom(w)← {w} ∪
⋂

p ∈ pred(w)
dom(p)

vertex init. 1st iter.
0 {0} {0} = { 0 }
1 V {1} ∪ {0} = {0, 1}
2 V {2} ∪ {0, 1} = {0, 1, 2}
3 V {3} ∪ ({0, 1, 2} ∩ {0, 1}) = {0, 1, 3}
4 V {4} ∪ {0, 1, 3} = {0, 1, 3, 4}
5 V {5} ∪ ({0, 1, 3, 4} ∩ V) = {0, 1, 3, 4, 5}
6 V {6} ∪ {0, 1, 2} = {0, 1, 2, 6}
7 V {7} ∪ {0, 1, 2, 6} = {0, 1, 2, 6, 7}

Jonas Skeppstedt Lecture 2 2023 11 / 52

An Example Control Flow Graph 2(3)

0

1

2

3

4

5

6

7

dom(w)← {w} ∪
⋂

p ∈ pred(w)
dom(p)

vertex 1st iter. 2nd iter.
0 {0} same
1 {0, 1} same
2 {0, 1, 2} same
3 {0, 1, 3} same
4 {0, 1, 3, 4} same
5 {0, 1, 3, 4, 5} {5} ∪ ({0, 1, 3, 4} ∩ {0, 1, 2, 6, 7})
6 {0, 1, 2, 6} same
7 {0, 1, 2, 6, 7} same

After the third iteration also dom(5) = {0, 1, 5} will remain the same and
the algorithm terminates.

Jonas Skeppstedt Lecture 2 2023 12 / 52

An Example Control Flow Graph 3(3)

0

1

2

3

4

5

6

7

dom(w)← {w} ∪
⋂

p ∈ pred(w)
dom(p)

vertex 3rd iter. dom(w)

0 {0}
1 {0, 1}
2 {0, 1, 2}
3 {0, 1, 3}
4 {0, 1, 3, 4}
5 {0, 1, 5}
6 {0, 1, 2, 6}
7 {0, 1, 2, 6, 7}

Jonas Skeppstedt Lecture 2 2023 13 / 52

Immediate dominators

The set dom(w) is a total order.
In other words: if u, v ∈ dom(w) then either u ≫ v or v ≫ u.
We can order all vertices in dom(w) to find the ”closest” dominator
of w .
First let S ← dom(w)− {w}.
Consider any two vertices in S .
Remove from S the one which dominates the other. Repeat.
The only remaining vertex in S is the immediate dominator of w .
We write the immediate dominator of w as idom(w).
Every vertex, except s, has a unique immediate dominator.
We can draw the immediate dominators in a tree called the
dominator tree.

Jonas Skeppstedt Lecture 2 2023 14 / 52

The Dominator Tree of Example CFG 1(3)

0

1

2

3

4

5

6

7

vertex dom(w)− {w} idom(w) how to find idom
0 ∅ - has no idom
1 {0} 0 only 0
2 {0, 1} 1 remove 0
3 {0, 1} 1 remove 0
4 {0, 1, 3} 3 remove 0,1
5 {0, 1} 1 remove 0
6 {0, 1, 2} 2 remove 0,1
7 {0, 1, 2, 6} 6 remove 0,1,2

Jonas Skeppstedt Lecture 2 2023 15 / 52

The Dominator Tree of Example CFG 2(3)

CFG
0

1

2

3

4

5

6

7

w idom(w)

0 -
1 0
2 1
3 1
4 3
5 1
6 2
7 6

DT
0

1

2 3

4

5

6

7

Jonas Skeppstedt Lecture 2 2023 16 / 52

The Dominator Tree of Example CFG 3(3)

CFG
0

1

2

3

4

5

6

7

DT
0

1

2 3

4

5

6

7

domchild and domsibling
0

1

2 3

4

5

6

7

The children of a vertex in the DT are a set (and not ordered).

Jonas Skeppstedt Lecture 2 2023 17 / 52

How to construct the dominator tree

Assume we know the idom(w) of each vertex (except s).
How should we construct the DT?
typedef struct vertex_t vertex_t;
struct vertex_t {

vertex_t* idom;
vertex_t* domchild;
vertex_t* domsibling;

};

Of course both domchild and domsibling initially are null pointers.
Suppose you have just computed idom(w) and have a pointer to w .
How do you link it into the DT without using any conditional branch
instruction?

Jonas Skeppstedt Lecture 2 2023 18 / 52

Link w into DT

Don’t check for the case of domchild or domsibling being a null
pointer...

w->domsibling = w->idom->domchild;
w->idom->domchild = w;

Jonas Skeppstedt Lecture 2 2023 19 / 52

Summary so far

The iterative algorithm we saw is an example of iterative dataflow
analysis.
Dataflow analysis concerns the flow of values but the technique is
identical to what we saw.
The sets are represented as bit-vectors.
Usually about three iterations suffice.
It doesn’t matter for correctness in which order we inspect the vertices
in each iteration but to improve the speed of the compiler, there are
preferences (see below).
We will see an algorithm which is faster and constructs the dominator
tree directly.
Given the set dom(w) it takes (as we saw) additional effort to
construct the dominator tree.

Jonas Skeppstedt Lecture 2 2023 20 / 52

In which order should we process the vertices?

The information flows forward so it is better to have processed the
predecessors of a vertex w before w itself is processed.
We put each vertex in an array in reverse post order.

Jonas Skeppstedt Lecture 2 2023 21 / 52

Reverse post order

CFG
0

1

2

3

4

5

6

7

An array is allocated to hold each vertex.
The array will be processed with increasing
indexes.
The vertices are put into the array starting at
the highest index.
The last vertex put into the array is s at
index 0.
Do a depth first search as follows
When a vertex has no unvisited successor,
put it at the last free position in the array.
0 1 2 6 7 3 4 5

This way we will have processed both 4 and
7 before computing dom(5).

Jonas Skeppstedt Lecture 2 2023 22 / 52

Computing idom and DT faster

The LT algorithm was completed in 1979 by Robert Tarjan and his
PhD student Thomas Lengauer at Stanford.
Thomas Lengauer is the brother of Christian Lengauer whose group in
Passau has developed many high order transformations.
The LT algorithm calculates the immediate dominator and is based on
insights from depth first search.
We will focus on understanding the key ideas of the algorithm.

Jonas Skeppstedt Lecture 2 2023 23 / 52

The Semi-Dominator of a Vertex

The semi-dominator of a vertex is much easier to compute than the
immediate dominator and is almost always identical to the immediate
dominator.
We will soon define the semi-dominator.
The idea is to find the semi-dominator which is easy, and then
determine whether the semi-dominator also is the immediate
dominator.
If it’s not, then the immediate dominator of w is the immediate
dominator of a certain ancestor between w and sdom(w) in the DFS
tree (explained below).

Jonas Skeppstedt Lecture 2 2023 24 / 52

Definition of the Semi-Dominator of a Vertex

CFG
0

1

2

3

4

5

6

7

First a depth first search numbering is performed
on the CFG. This is shown to the left.
When we write u < v we mean that u has a lower
depth first search number than v .
The semi-dominator of a vertex w is the smallest
vertex v such that there is a path (v0, v1, v2, ..., vk)
from v = v0 to w = vk with vi > w for
1 ≤ i ≤ k − 1, and is written sdom(w).
For example sdom(5) = 2 since the path (2, 6, 7, 5)
starts with 2 which is lower than 4 in the
alternative path (4, 5).

Jonas Skeppstedt Lecture 2 2023 25 / 52

More about Semi-Dominators and Immediate Dominators

CFG
0

1

2

3

4

5

6

7

Consider again vertex 5. We have sdom(5) = 2 and
idom(5) = 1.
Assume we know how to compute the
semi-dominators — it’s not very difficult — we
only have to find a suitable path.
What is the ”problem” which is the root cause that
makes the semi-dominator can be different from
the immediate dominator?
Answer: there is an edge from a vertex coming in
from ”outside” and between the vertex 5 and the
semi-dominator, i.e. the edge (1, 3).
This is the key problem the algorithm has to deal
with.
Let us next find a way to compute the
semi-dominators.

Jonas Skeppstedt Lecture 2 2023 26 / 52

Computing the Semi-Dominators

CFG
0

1

2

3

4

5

6

7

Recall: the semi-dominator of a vertex w is the
smallest vertex v such that there is a path
(v0, v1, v2, ..., vk) from v = v0 to w = wk with
vi > w for 1 ≤ i ≤ k − 1, and is written sdom(w).
We can see there can be multiple candidates for
being the semi-dominator.
Any path to w obviously must end with an edge to
w from a predecessor of w .
All predecessors of w are searched for a possible
candidate path and semi-dominator.
Note that the path may consist of only one edge.
How far should we search backwards???

Jonas Skeppstedt Lecture 2 2023 27 / 52

Computing the Semi-Dominators

CFG
0

1

2

3

4

5

6

7

How far should we search backwards???
Recall we want to find a path
(v = w0,w1,w2, ...wk−1,wk = w) where wi > w
for 1 ≤ i < k .
Therefore we should only search backwards on
vertices with a higher number than w .
This is achieved as follows: the Lengauer-Tarjan
algorithm first processes each vertex in decreasing
depth-first search number.
We may only search backwards from one vertex to
its ancestor in the depth first search tree.
The function to find a semi-dominator candidate is
called eval and it finds the ancestor with the least
semi-dominator.

Jonas Skeppstedt Lecture 2 2023 28 / 52

Link and Eval

CFG
0

1

2

3

4

5

6

7

To limit the search backwards (or actually upwards
in the depth first search tree) a separate attribute
identical to the parent in the depth first search tree
is maintained.
When a vertex w has been processed, its attribute
w->parent is copied to w->ancestor by the
function link.
The function eval uses the w->ancestor to search
upwards in the depth first search tree.
The ancestor with least semi-dominator number is
returned from eval.
For all predecessors pi of w , the smallest return
value from eval(pi) is the semi-dominator of w .

Jonas Skeppstedt Lecture 2 2023 29 / 52

Sdom and Idom

CFG
0

1

2

3

4

5

6

7

To determine whether the semi-dominator is the
immediate dominator, a search from w to sdom(w)
is performed following the w->ancestor attributes.
First of all, the sdom(w) must be an ancestor of w
in the DFS tree.
If any ancestor v in that search has sdom(v) which
is lower than sdom(w) then there is an edge which
makes it impossible for sdom(w) to be idom(w).
Therefore, a vertex w is put in a ”bucket” in
sdom(w).
The bucket is emptied when a child of sdom(w) is
processed.
When the bucket is emptied, the search towards
sdom(w) is performed.

Jonas Skeppstedt Lecture 2 2023 30 / 52

Link and Eval

CFG
0

1

2

3

4

5

6

7

In the search mentioned on the previous slide, if no
ancestor with a lower semi-dominator was found,
then we know that idom(w) = sdom(w).
Otherwise, let u be the ancestor with least
semi-dominator found in the search.
It turns out that idom(w) = idom(u);
But we don’t yet know idom(u) and therefore must
record u as an attribute of w .
It’s put in the attribute w->idom.
After all vertices have been processed and found
their sdom the vertices are processed again with
increasing DFS number to determine the
immediate dominator unless already known.

Jonas Skeppstedt Lecture 2 2023 31 / 52

Summary of notation

G Control flow graph CFG .
T A depth-first tree of G .
DT The dominator tree of G .
w The depth-first search number of vertex w in T .
v < w v has a lower depth-first search number than w .
v

∗→ w v is an ancestor of w in T .
v

+→ w v is a proper ancestor of w : v ∗→ w and v ̸= w .
parent(w) parent of w in T .
ancestor(w) also parent of w in T .

Jonas Skeppstedt Lecture 2 2023 32 / 52

The Lengauer-Tarjan Algorithm 1(6)

int df /* Depth-first search number. */

procedure dfs (v , vertex [])
dfnum (v) ← df
vertex [df]← v
sdom (v) ← v
ancestor (v) ← null
df ← df + 1

for each w ∈ succ (v) do
if (sdom (w) = null) {

parent (w) ← v
dfs (w)

}

Jonas Skeppstedt Lecture 2 2023 33 / 52

The Lengauer-Tarjan Algorithm 2(6)

function eval (v)
vertex u

/* Find ancestor with least sdom. */
u ← v
while (ancestor (v) ̸= nil) do

if (dfnum(sdom(v)) < dfnum(sdom(u)))
u ← v

v ← ancestor(v)
return u

procedure link (v , w)
ancestor(w)← v

Jonas Skeppstedt Lecture 2 2023 34 / 52

The Lengauer-Tarjan Algorithm 3(6)

procedure dominators (V , s)
int i
int n = |V |
vertex vertex [n]

/* Step 1. */
for each w ∈ V do

sdom(w)← nil
bucket(w)← ∅

df ← 0
dfs(s,vertex)

Jonas Skeppstedt Lecture 2 2023 35 / 52

The Lengauer-Tarjan Algorithm 4(6)

for (i ← n − 1; i > 0; i ← i − 1) do {
/* Step 2. */
w ← vertex[i]
for each v ∈ pred(w) do {

u ← eval (v)
if (dfnum(sdom(u)) < dfnum(sdom(w)))

sdom(w)← sdom(u)
}
add w to bucket(sdom(w))

link(parent(w),w)

Jonas Skeppstedt Lecture 2 2023 36 / 52

The Lengauer-Tarjan Algorithm 5(6)

/* Step 3. */
for each v ∈ bucket(parent(w)) do {

remove v from bucket(parent(w))
u ← eval (v)
if (dfnum(sdom(u)) < dfnum(sdom(v)))

idom(v)← u
else

idom(v)← parent(w)
}

}

Jonas Skeppstedt Lecture 2 2023 37 / 52

The Lengauer-Tarjan Algorithm 6(6)

/* Step 4. */
for (i ← 1; i < n; i ← i + 1) {

w ← vertex [i]
if (idom(w) ̸= sdom(w))

idom(w)← idom(idom(w))
}
idom(s)← −1

}

Jonas Skeppstedt Lecture 2 2023 38 / 52

Example of Lengauer-Tarjan Algorithm: After Step 1

CFG
0

1

2

3

4

5

6

7

After Initialization in Step 1.
sdom(w) = w

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 ∅ - 1 -
2 1 ∅ - 2 -
3 2 ∅ - 3 -
4 3 ∅ - 4 -
5 4 ∅ - 5 -
6 2 ∅ - 6 -
7 6 ∅ - 7 -

Jonas Skeppstedt Lecture 2 2023 39 / 52

Processing Vertex 7: Step 2

CFG
0

1

2

3

4

5

6

7

The only predecessor of w = 7 is v = 6 which
evaluates to u = 6.
sdom(w = 7) becomes 6, and 7 is added to the
bucket of its sdom.

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 ∅ - 1 -
2 1 ∅ - 2 -
3 2 ∅ - 3 -
4 3 ∅ - 4 -
5 4 ∅ - 5 -
6 2 {7} - 6 -
7 6 ∅ 6 6 -

Jonas Skeppstedt Lecture 2 2023 40 / 52

Processing Vertex 7: Step 3

CFG
0

1

2

3

4

5

6

7

Now the only vertex v in the bucket of
parent(7) = 6 is inspected.
We set idom(7) = 6.

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 ∅ - 1 -
2 1 ∅ - 2 -
3 2 ∅ - 3 -
4 3 ∅ - 4 -
5 4 ∅ - 5 -
6 2 ∅ - 6 -
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 41 / 52

Processing Vertex 6: Step 2

CFG
0

1

2

3

4

5

6

7

The only predecessor of w = 6 is v = 2 which
evaluates to u = 2.
sdom(w = 6) becomes 2, and 6 is added to the
bucket of sdom(6) = 2.

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 ∅ - 1 -
2 1 {6} - 2 -
3 2 ∅ - 3 -
4 3 ∅ - 4 -
5 4 ∅ - 5 -
6 2 ∅ 2 2 -
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 42 / 52

Processing Vertex 6: Step 3

CFG
0

1

2

3

4

5

6

7

The bucket of 2 is emptied and idom(6) is set to 2.
vertex parent bucket ancestor sdom idom

0 - ∅ - 0 -
1 0 ∅ - 1 -
2 1 ∅ - 2 -
3 2 ∅ - 3 -
4 3 ∅ - 4 -
5 4 ∅ - 5 -
6 2 ∅ 2 2 2
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 43 / 52

Processing Vertex 5: Step 2

CFG
0

1

2

3

4

5

6

7

5 has two predecessors, 4 and 7.
After having evaluated 4, sdom(w = 5) tentatively
becomes 4.
Then eval(7) = 6 and sdom(6) = 2, so the final
value of sdom(w = 5) becomes 2, and 5 is added
to the bucket of 2.

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 ∅ - 1 -
2 1 {5} - 2 -
3 2 ∅ - 3 -
4 3 ∅ - 4 -
5 4 ∅ 4 2 -
6 2 ∅ 2 2 2
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 44 / 52

Processing Vertex 4: Step 2

CFG
0

1

2

3

4

5

6

7

We find sdom(4) = 3, and add 4 to the bucket
of 3.

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 ∅ - 1 -
2 1 {5} - 2 -
3 2 {4} - 3 -
4 3 ∅ 3 3 -
5 4 ∅ 4 2 -
6 2 ∅ 2 2 2
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 45 / 52

Processing Vertex 4: Step 3

CFG
0

1

2

3

4

5

6

7

We set idom(4) = 3.
vertex parent bucket ancestor sdom idom

0 - ∅ - 0 -
1 0 ∅ - 1 -
2 1 {5} - 2 -
3 2 ∅ - - -
4 3 ∅ 3 3 3
5 4 ∅ 4 2 -
6 2 ∅ 2 2 2
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 46 / 52

Processing Vertex 3: Step 2

CFG
0

1

2

3

4

5

6

7

We find sdom(3) = 1, and add 3 to the bucket
of 1.

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 {3} - 1 -
2 1 {5} - 2 -
3 2 ∅ 2 1 -
4 3 ∅ 3 3 3
5 4 ∅ 4 2 -
6 2 ∅ 2 2 2
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 47 / 52

Processing Vertex 3: Step 3

CFG
0

1

2

3

4

5

6

7

Now we will empty the bucket of 2 which contains
5.
eval(5) = 3 and sdom(3) = 1 < 2, which says
there is a path from 0 to 5 which does not include
2. We therefore set idom(5) = 3.

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 {3} - 1 -
2 1 ∅ - 2 -
3 2 ∅ 2 1 -
4 3 ∅ 3 3 3
5 4 ∅ 4 2 3
6 2 ∅ 2 2 2
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 48 / 52

Processing Vertex 2: Step 2

CFG
0

1

2

3

4

5

6

7

We find sdom(2) = 1, and add 2 to the bucket of
1.

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 {2, 3} - 1 -
2 1 ∅ 1 1 -
3 2 ∅ 2 1 -
4 3 ∅ 3 3 3
5 4 ∅ 4 2 3
6 2 ∅ 2 2 2
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 49 / 52

Processing Vertex 2: Step 3

CFG
0

1

2

3

4

5

6

7

Now we will empty the bucket of 1 which contains
2 and 3, both of which find 1 to be their immediate
dominator.

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 ∅ - 1 -
2 1 ∅ 1 1 1
3 2 ∅ 2 1 1
4 3 ∅ 3 3 3
5 4 ∅ 4 2 3
6 2 ∅ 2 2 2
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 50 / 52

Processing Vertex 1: Step 2

CFG
0

1

2

3

4

5

6

7

Finally, we find sdom(1) = 0.
vertex parent bucket ancestor sdom idom

0 - ∅ - 0 -
1 0 ∅ 0 0 0
2 1 ∅ 1 1 1
3 2 ∅ 2 1 1
4 3 ∅ 3 3 3
5 4 ∅ 4 2 3
6 2 ∅ 2 2 2
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 51 / 52

After Step 4

CFG
0

1

2

3

4

5

6

7

vertex parent bucket ancestor sdom idom
0 - ∅ - 0 -
1 0 ∅ 0 0 0
2 1 ∅ 1 1 1
3 2 ∅ 2 1 1
4 3 ∅ 3 3 3
5 4 ∅ 4 2 1
6 2 ∅ 2 2 2
7 6 ∅ 6 6 6

Jonas Skeppstedt Lecture 2 2023 52 / 52

