
Contents

Administration
Motivation
Overview of optimizing compiler internals
Control flow analysis
Scalar optimizations on SSA Form
Register allocation
Instruction scheduling
Vectorization

Jonas Skeppstedt Lecture 1 2023 1 / 39

EDAN75 Optimizing compilers

Course book at amazon.se: ISBN 9781725930483
Two compulsory labs: dominance analysis and SSA form
We will use E:Alfa and discord for the labs
Twelve lectures
Three projects:

Two with vcc: constant propagation and dead code elimination
One with llvm: a new SSA-optimization

Oral exam: sign up at calendly.com/forsete

Jonas Skeppstedt Lecture 1 2023 2 / 39

The Compiler is the Programmer’s Most Important Tool

The programmer with knowledge about optimizing compilers knows
what the compiler can optimize faster and better than itself, and
compilers’ limitations and how to write code that helps them to do
better automatic optimization

The competent programmer focuses on writing code which is
correct,
efficient, and
easy to maintain

Using optimizing compilers improves programmer productivity
Suppose you are a product manager and your engineers spend 1000
programmer hours to improve the performance of the product by 1%,
then it may be useful to check out improving the compiler as well
(real world example and exactly what management decided)

Jonas Skeppstedt Lecture 1 2023 3 / 39

Use different compilers and optimization levels!

This can help with:
detect bugs in your code which happened to go undetected with one
compiler
detect non-portable code — which depends on

unspecified behavior (e.g. evaluation order of parameters)
implementation-defined behavior (e.g. sizes of integer types)

detect compiler bugs
better insights into which compilers are best on different kinds of
source code (or is one best for all on your favorite machine?)

Jonas Skeppstedt Lecture 1 2023 4 / 39

Overview of the Internals of an Optimizing Compiler

Lexical, syntactic and semantic analysis: output is an abstract syntax
tree (AST)
Translate the AST to three-address code — similar to assembler for a
generic RISC architecture
Control flow analysis: represents a function as a directed graph of
straight line code
Initial optimizations such as constant propagation
High-order transformations: vectorization, parallelization, locality
optimization
Scalar optimizations
Instruction selection, instruction scheduling and register allocation

Jonas Skeppstedt Lecture 1 2023 5 / 39

Lexical Analysis and Parsing

Lexical analysis is often implemented using tools such as flex or lex, or
without any tool as normal C functions (also very easy).
Parsing is often implemented using tools such as bison or yacc.
Semantic analysis is easily implemented as a normal module of C
functions.

Jonas Skeppstedt Lecture 1 2023 6 / 39

Control-Flow Graph: Example C Code

a = u + v;
if (a > b) {

y = u;
} else {

a = u - v;
b = a - 1;

}
y = a * b;

Jonas Skeppstedt Lecture 1 2023 7 / 39

Control-flow graph: Basic Blocks and Branches

a = u + v
a > b ??

y = u

y = a * b

a = u - v
b = a - 1

Basic block: sequence of instructions with no label or branch
CFG: directed graph with basic blocks as nodes and branches as edges

Jonas Skeppstedt Lecture 1 2023 8 / 39

Control-Flow Graph: the CFG View

s

1

2

3

4

e

Special nodes:
the first node is called s — start
the last node is called e — exit

Jonas Skeppstedt Lecture 1 2023 9 / 39

Dominance in the CFG

s

u

x

y

w

e

v

u dominates v if all paths from s to v include u

Jonas Skeppstedt Lecture 1 2023 10 / 39

Dominance Analysis: Finding who Dominates who

The fastest algorithm for finding dominators was discovered by Robert
Tarjan in 1979.

Jonas Skeppstedt Lecture 1 2023 11 / 39

Static Single Assignment: SSA Form

A variable is only assigned to by one unique instruction
That instruction dominates all the uses of the assigned value
We introduce a new variable name at each assignment
SSA form is the key to elegant and efficient scalar optimization
algorithms
Invented by IBM Research Yorktown Heights in New York

But what to do when paths from different assignments join???

Jonas Skeppstedt Lecture 1 2023 12 / 39

Partial Translation to SSA Form

a0 = u + v
a0 > b ??

s

y = ux

a2 = ???
y0 = a2 + v

e

a1 = u - v
b = a1 - 1

y

In node e: if we came from node x we let a2 ← a0 and if we came from
node y we let a2 ← a1. This operation is called the ϕ-function.

Jonas Skeppstedt Lecture 1 2023 13 / 39

Our Example Translated to SSA Form

a0 = u + v
a0 > b ??

y = u

a2 ← ϕ(a0, a1)
y0 = a2 + v

a1 = u - v
b = a1 - 1

s

x y

e

Jonas Skeppstedt Lecture 1 2023 14 / 39

A Function Translated to SSA Form

We insert a ϕ-function where the paths from two different assignments
of the same variable join
With the ϕ-function, each definition dominates its uses

Jonas Skeppstedt Lecture 1 2023 15 / 39

Copy Propagation

x0 = a0 + b0; x0 = a0 + b0;
if (...) { if (...) {

...; ...;
} }
y0 = x0; /* COPY */
if (...) { if (...) {

...; ...;
} }
c0 = y0 + 1; /* USE */ c0 = x0 + 1;

With SSA form we can know that it is correct to replace y0 with x0

The values of x0 and y0 do not change after the definition (in a static
sense)

Jonas Skeppstedt Lecture 1 2023 16 / 39

Hash-Based Value Numbering

Useful rules if A is an integer

2 * a => a << 1
a / 2 => a >> 1 OK if unsigned integer
a - a => 0
1 * a => a
0 * a => 0

Shift right is defined in Java to be arithmetic but may be logic in
C/C++
What is the value of ∞× 0 according to IEEE 754 (ie IEC 60559) ?
Hash-based value numbering is typically implemented as part of the
translation to SSA form

Jonas Skeppstedt Lecture 1 2023 17 / 39

Global Value Numbering (GVN)

int h(int a, int b) int h(int a, int b)
{ {

int x, y; int x;

x = 1; x = 1;
y = 1; do {
do { a = a + b;

a = a + b; x = x + a;
x = x + a; } while (a > 0);
y = y + a; return x + x;

} while (a > 0); }
return x + y;

}

Jonas Skeppstedt Lecture 1 2023 18 / 39

Common Subexpression Elimination (CSE)

int h(int a, int b) int h(int a, int b)
{ {

int c = 1, d = 2; int c = 1, d = 2;
int t;

if (a > b) if (a > b) {
c = a * b; t = a * b

else c = t;
d = a * b; } else {

return c + a * b; t = a * b;
} d = t;

}
return c + t;

}

Jonas Skeppstedt Lecture 1 2023 19 / 39

Loop-Invariant Code Motion

t = a[i];
while (x != y) ===> while (x != y)

x = x + a[i]; x = x + t;

t = a[i];
do do

x = x + a[i]; ===> x = x + t;
while (x != y); while (x != y);

Which transformation above is valid?

Jonas Skeppstedt Lecture 1 2023 20 / 39

Partial Redundancy Elimination (PRE)

a = u + v; a = u + v;
if (...) { if (...) {

...; ...;
===> t = a * b;

} else { } else {
a = u - v; a = u - v;
x = a * b; t = a * b;

x = t;
} }
y = a * b; y = t;

Jonas Skeppstedt Lecture 1 2023 21 / 39

More Partial Redundancy Elimination (PRE)

t = a / b;
do do

x = x + a / b; ===> x = x + t;
while (x != y); while (x != y);

a/b is partially redundant!

PRE can move code out of loops without knowledge about loops

Jonas Skeppstedt Lecture 1 2023 22 / 39

Induction Variable Elimination

Also known as Operator strength reduction

do { do {
x = x + a[i]; s = i * 4;
i = i + 1; t = load a+s;

} while (i < N); x = x + t;
i = i + 1;

} while (i < N);

The primary goal is to get rid of the multiplication

Jonas Skeppstedt Lecture 1 2023 23 / 39

Basic and Dependent IV

do {
s = i * 4;
t = load a+s;
x = x + t;
i = i + 1;

} while (i < N);

i is a basic induction variable
Classes of dependent induction variables: j ← b × i + c , i is a basic IV
s ← 4× i + 0

Jonas Skeppstedt Lecture 1 2023 24 / 39

Strength Reduction

s = 4 * i;
do { do {

s = i * 4;
t = load a+s; t = load a+s;
x = x + t; x = x + t;
i = i + 1; i = i + 1;

s = s + 4;
} while (i < N); } while (i < N);

Initialize the dependent IV before the loop
Increment the dependent IV just after the basic IV is incremented
Maybe we can get rid of the basic IV now?

Jonas Skeppstedt Lecture 1 2023 25 / 39

Linear Function Test Replacement

s = 4 * i; m = 4 * N;
do { s = 4 * i;

t = load a+s; do {
x = x + t; t = load a+s;
i = i + 1; x = x + t;
s = s + 4; s = s + 4;

} while (i < N); } while (s < m);

s = i × b + c (we have b = 4 and c = 0)
i = s−c

b

i < N ⇒ s−c
b < N ⇒ s < N × b + c , if b > 0

Jonas Skeppstedt Lecture 1 2023 26 / 39

Translation Back from SSA Form

Essentially, a copy is inserted for each operand of the ϕ-function
One copy instruction for each predecessor node, i.e. for each operand.
Each copy writes to the destination of the ϕ-function.
A clever register allocator will put a0, a1 and a2 in the same register
and remove the COPY
We will later see that there are some complications we must take into
account to avoid bugs when doing the translation from SSA form, but
the principle is to insert copy statements.

Jonas Skeppstedt Lecture 1 2023 27 / 39

Register Allocation

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e
return c + f

Which variables cannot use the same register?
How many registers are needed?

Jonas Skeppstedt Lecture 1 2023 28 / 39

The Interference Graph

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e
return c + f

a b

c d

e f

Jonas Skeppstedt Lecture 1 2023 29 / 39

Coloring the Interference Graph

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e
return c + f

a b

c d

e f

This interference graph needs three
colors.
Can we use fewer colors?

Jonas Skeppstedt Lecture 1 2023 30 / 39

List Scheduling: within one Basic Block

Create a data dependence graph between the instructions.
An edge from a producer to a consumer of a value. TRUE
An edge from a producer to a later producer of the same variable.
OUTPUT
An edge from a consumer to a later producer of the same variable.
ANTI
Perform a topological sort of the graph, ie schedule any instruction
with no predecessor in the graph.
The goal is to reduce the total time to execute the basic block.

Jonas Skeppstedt Lecture 1 2023 31 / 39

Software Pipelining: Modulo Scheduling

Normally, one loop iteration is executed to completion before the next
is started.
In software pipelining the next iteration is started II (II = initiation
interval) cycles after the current, without (1) violating data
dependencies or (2) using more hardware resources than are available
(eg issue slots, functional units).
One iteration is scheduled using list scheduling, and hardware
resources are checked modulo II, and data dependencies are also
checked with respect to II.
If a valid schedule with II is not found, II is incremented and a new
schedule is tried.
Modulo scheduling can often give a speedup of 2-3 in numerical codes,
but it does increase the register pressure, since each concurrent
iteration needs its registers.

Jonas Skeppstedt Lecture 1 2023 32 / 39

Modulo Scheduling Example

for (i = 0; i < N; i++) { | A0
A | B0 A1
B | for (i = 2; i < N; i += 3) {
C | C0 B1 A2

} | A0 C1 B2
| B0 A1 C2
| }
| C0 B1
| C1

Think that three threads (0, 1, and 2) are running, sharing PC and
registers.
While waiting for one producer two other threads are running.

Jonas Skeppstedt Lecture 1 2023 33 / 39

Representing Array References as Matrices

for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)

x[2 i - 1][i + j] = x[3 j][i + 2]

An array reference is written as x(IA+ a0) where I = (i , j)

The two references become x(IA+ a0) and x(IB + b0) with

A =

(
2 1
0 1

)
and a0 =

(
−1 0

)
, and

B =

(
0 1
3 0

)
and b0 =

(
0 2

)

Jonas Skeppstedt Lecture 1 2023 34 / 39

The Dependence Matrix

There is a data dependence between two references S(i1, j1) and
T (i2, j2) if they access the same memory location and at least one of
the accesses is a write
If there is an integer solution to I1A+ a0 = I2B + b0 there is a
dependence between the iterations I1 and I2

Data dependence analysis tests for a possible solution between all
references to the same array in a loop nest
The dependence distance is I2 − I1 (or I1 − I2, if I2 comes first)
The dependence matrix D consists of a all dependence distances in
the loop

Jonas Skeppstedt Lecture 1 2023 35 / 39

An Example Dependence Matrix

for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)

x[i][j] = x[i - 1][j] + x[i][j - 1];
/* ref A ref B ref C */

A =

(
1 0
0 1

)
, a0 =

(
0 0

)
B =

(
1 0
0 1

)
, b0 =

(
−1 0

)
C =

(
1 0
0 1

)
, c0 =

(
0 −1

)
The dependence matrix for the loop nest becomes D =

(
1 0
0 1

)
This D tells us that neither loop can execute concurrently

Jonas Skeppstedt Lecture 1 2023 36 / 39

Unimodular Transformations

We would like to transform our dependence matrix into eg

DT =

(
1 0
1 1

)
which has no dependencies at level 2 so that the

inner loop can execute in parallel
By the finding unimodular matrix U such that DT = DU we can
rewrite the loop and execute the inner loop in parallel

For our example U =

(
1 0
1 1

)
and the new loop variables

(k1, k2) = (i , j) · U

for (k1 = 0; k1 <= 6; k1++)
for (k2 = max(0, k1 - 3); k2 <= min(3, k1); k2++)

x[k1 - k2][k2] = x[k1 - k2 - 1][k2] + x[k1 - k2][k2 - 1];

Jonas Skeppstedt Lecture 1 2023 37 / 39

Loop Parallelization

Parallel inner loops can be exploited for:
Modulo-scheduling
Vectorization, eg using modern SIMD instructions

Parallel outer loops can be exploited for:
Parallel computers, eg shared-memory multiprocessors

Jonas Skeppstedt Lecture 1 2023 38 / 39

Optimizing Compilers Hall of Fame at Lund University
2023 ? ?
2020 Simon Andersson, Mattias Leifsson, Micael Pater D
2018 Alexander Hansson D
2016 Johan Ju E
2014 Karl Hylén F
2013 Erik Hogeman/Mads Nielsen D
2012 Martin Nitsche Math. Göttingen
2011 Linus Åkesson PhD/CS
2010 Joakim Andersson/Jon Steen D
2009 Manfred Dellkrantz/Jesper Öqvist D
2008 Jonas Paulsson D
2007 Björn Carlin/Hans Gylling π/D
2006 Fredrik Nilsson D
2005 Mats Mattsson π
2004 Jonas Åström π
2003 Alexander Malmberg D
2002 Richard Johansson D
2001 Bo Do/Per Fransson CS
2000 Per Cederberg PhD/Robotics

Jonas Skeppstedt Lecture 1 2023 39 / 39

