Greedy graph algorithms

- Dijkstra’s algorithm
- Prim’s algorithm
- Kruskal’s algorithm
- Union-find data structure with path compression
What is the shortest path from \(a \) to \(n \)?

To every other node?

How can we find these paths efficiently?

For navigation, the edge weights are positive distances (obviously)

For some other graphs the weights can be a positive or negative cost

The problem is easier with positive weights
Dijkstra’s algorithm

- Given a directed graph $G(V, E)$, a weight function $w : E \rightarrow R$, and a node $s \in V$, Dijkstra’s algorithm computes the shortest paths from s to every other node.
- The sum of all edge weights on a path should be minimized.
- A weight can e.g. mean metric distance, cost, or travelling time.
- For this algorithm, we assume the weights are nonnegative numbers.
Dijkstra’s algorithm — overview

- input $w(e)$ weight of edge $e = (u, v)$. We also write $w(u, v)$
- output $d(v)$ shortest path distance from s to v for $v \in V$
- output $\text{pred}(v)$ predecessor of v in shortest path from s to $v \in V$
- A set Q of nodes for which we have not yet found the shortest path
- A set S of nodes for which we have already found the shortest path

procedure `dijkstra` (G, s)

```
\begin{align*}
d(s) &\leftarrow 0 \\
Q &\leftarrow V - \{s\} \\
S &\leftarrow \{s\}
\end{align*}
```

while $Q \neq \emptyset$

```
\begin{align*}
&\text{select } v \text{ which minimizes } d(u) + w(e) \text{ where } u \in S, v \notin S, e = (u, v) \\
d(v) &\leftarrow d(u) + w(e) \\
\text{pred}(v) &\leftarrow u \\
\text{remove } v \text{ from } Q \\
\text{add } v \text{ to } S
\end{align*}
```
Shortest paths

Only b has a predecessor in S

- $d(b) \leftarrow 4$
- $\text{pred}(b) \leftarrow a$
- $S \leftarrow \{a, b\}$
Shortest paths

- $d(b) + w(b, d) = 4 + 2 = 6$
- $d(b) + w(b, h) = 4 + 21 = 25$
- d minimizes $d(u) + w(u, v)$
- $d(d) \leftarrow 6$
- $pred(d) \leftarrow b$
- $S \leftarrow \{a, b, d\}$
Shortest paths

- \(d(b) + w(b, h) = 4 + 21 = 25 \)
- \(d(d) + w(d, c) = 6 + 8 = 14 \)
- \(d(d) + w(d, g) = 6 + 13 = 19 \)
- \(c \) minimizes \(d(u) + w(u, v) \)
- \(d(c) \leftarrow 14 \)
- \(\text{pred}(c) \leftarrow d \)
- \(S \leftarrow \{a, b, c, d\} \)
Shortest paths

- $d(b) + w(b, h) = 4 + 21 = 25$
- $d(d) + w(d, g) = 6 + 13 = 19$
- $d(c) + w(c, e) = 14 + 3 = 17$
- e minimizes $d(u) + w(u, v)$
- $d(e) \leftarrow 17$
- $pred(e) \leftarrow c$
- $S \leftarrow \{a, b, c, d, e\}$
Shortest paths

- $d(b) + w(b, h) = 4 + 21 = 25$
- $d(d) + w(d, g) = 6 + 13 = 19$
- $d(e) + w(e, f) = 17 + 9 = 26$
- g minimizes $d(u) + w(u, v)$
- $d(g) \leftarrow 19$
- $pred(g) \leftarrow d$
- $S \leftarrow \{a, b, c, d, e, g\}$
Shortest paths

\[d(b) + w(b, h) = 4 + 21 = 25 \]
\[d(e) + w(e, f) = 17 + 9 = 26 \]
\[d(g) + w(g, h) = 19 + 7 = 26 \]
\[d(g) + w(g, j) = 19 + 3 = 22 \]
\[j \text{ minimizes } d(u) + w(u, v) \]
\[d(j) \leftarrow 22 \]
\[\text{pred}(j) \leftarrow g \]
\[S \leftarrow \{a, b, c, d, e, g, j\} \]
Shortest paths

- \(d(b) + w(b, h) = 4 + 21 = 25 \)
- \(d(e) + w(e, f) = 17 + 9 = 26 \)
- \(d(g) + w(g, h) = 19 + 7 = 26 \)
- \(d(j) + w(j, m) = 22 + 3 = 25 \)
- \(h \) and \(m \) minimize \(d(u) + w(u, v) \)
- We can take any of them
- \(d(h) \leftarrow 25 \)
- \(\text{pred}(h) \leftarrow b \)
- \(S \leftarrow \{a, b, c, d, e, g, h, j\} \)
Shortest paths

- $d(e) + w(e, f) = 17 + 9 = 26$
- $d(j) + w(j, m) = 22 + 3 = 25$
- $d(h) + w(h, k) = 25 + 6 = 27$
- m minimizes $d(u) + w(u, v)$
- $d(m) \leftarrow 25$
- pred$(m) \leftarrow j$
- $S \leftarrow \{a, b, c, d, e, g, h, j, m\}$
Shortest paths

\[d(e) + w(e, f) = 17 + 9 = 26 \]
\[d(h) + w(h, k) = 25 + 6 = 27 \]
\[d(m) + w(m, n) = 25 + 5 = 30 \]
\[f \text{ minimizes } d(u) + w(u, v) \]
\[d(f) \leftarrow 26 \]
\[\text{pred}(f) \leftarrow e \]
\[S \leftarrow \{ a, b, c, d, e, f, g, h, j, m \} \]
Shortest paths

- $d(h) + w(h, k) = 25 + 6 = 27$
- $d(m) + w(m, n) = 25 + 5 = 30$
- $d(f) + w(f, i) = 26 + 6 = 32$
- k minimizes $d(u) + w(u, v)$
- $d(k) \leftarrow 27$
- $pred(k) \leftarrow h$
- $S \leftarrow \{a, h, j, k, m\}$
Shortest paths

- \(d(m) + w(m, n) = 25 + 5 = 30 \)
- \(d(f) + w(f, i) = 26 + 6 = 32 \)
- \(n \) minimizes \(d(u) + w(u, v) \)
- \(d(n) \leftarrow 30 \)
- \(\text{pred}(k) \leftarrow h \)
- \(S \leftarrow \{a - k, m, n\} \)
Shortest paths

\[
d(f) + w(f, i) = 26 + 6 = 32
\]

- Only \(i \) possible
- \(d(i) \leftarrow 32 \)
- \(\text{pred}(i) \leftarrow f \)
- \(S \leftarrow \{a - k, m, n\} \)
Shortest paths

\[
d(i) + w(i, l) = 32 + 1 = 33
\]
- Only \(l \) possible
- \(d(l) \leftarrow 33 \)
- \(\text{pred}(l) \leftarrow i \)
- \(S \leftarrow \{ a - n \} \)
Observations about Dijkstra’s algorithm

- We only add an edge when it really is to the node which is closest to the start vertex.
- To print the shortest path from s to any node v, simply print v and follow the $\text{pred}(v)$ attributes.
Dijkstra’s algorithm

Theorem

For each node \(v \in S \), \(d(v) \) is the length of the shortest path from \(s \) to \(v \).

Proof.

- We use induction with base case \(|S| = 1 \) which is true since \(S = \{s\} \) and \(d(s) = 0 \).
- Inductive hypothesis: Assume theorem is true for \(|S| \geq 1 \).
- Let \(v \) be the next node added to \(S \), and \(\text{pred}(v) = u \).
- \(d(v) = d(u) + w(e) \) where \(e = (u, v) \).
- Assume in contradiction there exists a shorter path from \(s \) to \(v \) containing the edge \((x, y) \) with \(x \in S \) and \(y \notin S \), followed by the subpath from \(y \) to \(v \).
- Since the path via \(y \) to \(v \) is shorter than the path from \(u \) to \(v \), \(d(y) < d(v) \) but it is not since \(v \) is chosen and not \(y \). A contradiction which means no shorter path to \(v \) exists.
Recall

procedure *dijkstra* (*G*, *s*)

- \(d(s) \leftarrow 0\)
- \(Q \leftarrow V - \{s\}\)
- \(S \leftarrow \{s\}\)

while \(Q \neq \emptyset\)

- select \(v\) which minimizes \(d(u) + w(e)\) where \(u \in S, v \notin S, e = (u, v)\)
- \(d(v) \leftarrow d(u) + w(e)\)
- \(\text{pred}(v) \leftarrow u\)
- remove \(v\) from \(Q\)
- add \(v\) to \(S\)

- We use a heap priority queue for \(Q\) with \(d(v)\) as keys.
- For \(v \neq s\) we initially set \(d(v) \leftarrow \infty\) and then decrease it
Assume n nodes and m edges

Constructing Q: $O(n)$ using heapify (but $O(n \log n)$ using n inserts)

Heapify is called init_heap in C and pseudo-code in the book

$O(n)$ iterations of the while loop

Each selected node must check each neighbor not in S and possibly reduce its key

$O(m \log n)$ operations for reducing keys

With all nodes reachable from s, we have $m \geq n - 1$

Therefore $(m \log n)$ running time
The Minimum Spanning Tree Problem

Assume the nodes are cities and a country wants to build an electrical network.

The edge weights are the costs of connecting two cities.

We want to find a subset of the edges so that all cities are connected, and which minimizes the cost.

This problem was suggested to the Czech mathematician Otakar Borůvka during World War I for Mähren.
In 1926 Borůvka published the first paper on finding the minimum spanning tree.

It is an abbreviation of minimum-weight spanning tree.

It has been regarded as the cradle of combinatorial optimization.

Borůvka’s algorithm has been rediscovered several times: Choquet 1938, by Florek, Lukasiewicz, Steinhaus, and Zubrzycki 1951 and by Sollin 1965.

We will study two classic algorithms for this problem:
- Prim’s algorithm, and
- Kruskal’s algorithm

One of the currently fastest MST algorithm by Chazelle 2000 is based on Borůvka’s algorithm.
Consider a connected undirected graph $G(V, E)$.
If $T \subseteq E$ and (V, T) is a tree, it is called a **spanning tree** of $G(V, E)$.
Given edge costs $c(e)$, a (V, T) is a **minimum spanning tree**, or **MST** of G such that the sum of the edge costs is minimized.
Prim’s algorithm is similar to Dijkstra’s and grows one MST.
Kruskal’s algorithm instead creates a forest which eventually becomes one MST.
A root node s must first be selected.

Any will do.

How can we know which edge to add next?

Is it possible to do it with a greedy algorithm?

Compare with the Traveling Salesman Problem! (JS/Section 6.6)

TSP searches a path from one node which visits all nodes and returns.

TSP asks if there is such a tour of cost at most x?
Safe edges

- We will next learn a rule which Prim’s and Kruskal’s algorithm rely on.
- It determines when it is safe to add a certain edge \((u, v)\).
- A partition \((S, V - S)\) of the nodes \(V\) is called a **cut**.
- An edge \((u, v)\) **crosses** the cut if \(u \in S\) and \(v \in V - S\).
- Let \(A \subseteq E\) and \(A\) be a subset of the edges in some minimum spanning tree of \(G\).
- \(A\) does not necessarily create a connected graph — \(A\) is applicable to both Prim’s and Kruskal’s algorithms and represents the edges selected so far.
- An edge \((u, v)\) is **safe** if \(A \cup \{(u, v)\}\) is also a subset of the edges in some MST.
- So how can we determine if an edge is safe?
Lemma

Assume A is a subset of the edges in some minimum spanning tree of G, $(S, V - S)$ is any cut of V, and no edge in A crosses $(S, V - S)$. Then every edge (u, v) with minimum weight, $u \in S$, and $v \in V - S$ is safe.

Proof.

- Assume $T \subseteq E$ is a minimum spanning tree of G.
- We have either $(u, v) \in T$ (in which case we are done) or $(u, v) \notin T$.
- Without loss of generality we can assume $u \in S$ and $v \in V - S$.
- There is a path p in T which connects u and v.
- Therefore $T \cup \{(u, v)\}$ creates a cycle with p.
- There is an edge $(x, y) \in T$ which also crosses $(S, V - S)$ and by assumption $(x, y) \notin A$.

Jonas Skeppstedt (jonasskeppstedt.net)
Proof.

- Since T is a minimum spanning tree, it has only one path from u to v.
- Removing (x, y) from T partitions V and adding (u, v) creates a new spanning tree U.

 $$U = (T - \{(x, y)\}) \cup \{(u, v)\}$$

- Since (u, v) has minimum weight, $w(U) \leq w(T)$, and since T is a minimum spanning tree, $w(U) = w(T)$.

- Since $A \cup (u, v) \subseteq U$, (u, v) is safe for A.

Jonas Skeppstedt (jonasskeppstedt.net)
Prim’s algorithm — overview

- input $w(e)$ weight of edge $e = (u, v)$. We also write $w(u, v)$
- a root node $r \in V$
- output minimum spanning tree T

procedure $prim(G, r)$

1. $T \leftarrow \emptyset$
2. $Q \leftarrow V - \{r\}$
3. while $Q \neq \emptyset$
 1. select a v which minimizes $w(e)$ where $u \not\in Q, v \in Q, e = (u, v)$
 2. remove v from Q
 3. add (u, v) to T

return T

- We use a heap priority queue for Q with $d(v)$, the distance to any node in $V - Q$, as keys.
Prim’s algorithm has the same running time as for Dijkstra’s algorithm.
Assume n nodes and m edges.
Constructing Q: $O(n)$ using heapify (but $O(n \log n)$ using n inserts).
$O(n)$ iterations of the while loop.
Each selected node must check each neighbor not in S and possibly reduce its key.
$O(m \log n)$ operations for reducing keys.
With all nodes reachable from s, we have $m \geq n - 1$.
Therefore $(m \log n)$ running time.
Kruskal’s algorithm — overview

- input $w(e)$ weight of edge $e = (u, v)$. We also write $w(u, v)$
- output minimum spanning tree T

procedure $kruskal(G)$

1. $T \leftarrow \emptyset$
2. $B \leftarrow E$
3. **while** $B \neq \emptyset$
 1. select an edge e with minimal weight
 2. if $T \cup \{e\}$ does not create a cycle **then**
 1. add e to T
 2. remove e from B
 end if
4. **return** T

- How can we detect cycles?
The union-find data structure

- Consider a set, such as with n nodes of a graph
- A union-find data structure lets us:
 - Create an initial partitioning $\{p_0, p_1, \ldots, p_{n-1}\}$ with n sets consisting of one element each
 - Merge two sets p_i and p_j
 - Check which set an element belongs to
- The merge operation is called \textbf{union}
- The check set operation is called \textbf{find}
- We can use this as follows:
 - A set represents a connected subgraph and initially consists of one node
 - When we add an edge (u, v) to the minimum spanning tree, we need to
 - Find the set p_u with u
 - Find the set p_v with v
 - Ignore (u, v) if $\text{find}(u) = \text{find}(v)$
 - Note that the two subgraphs are connected using union otherwise
How should the sets p_i be "named"?

It is only essential that two different sets have different names.

It is suitable to let the node v be the initial name of p_v.

Thus no extra data type is needed. We simply add an attribute to the node.

Then after a union operation with u and v we set one of the nodes as the name of the merged set.

Assume we use u as the name. Then v needs a way to find u.

For this the node attribute $parent(v) = u$.

Code for find: if $parent(v) == \text{null}$ then v else $parent(v)$.
Efficiency of Union-Find

- Refer to Section 3.7 of JS.
- Using both path compression and union-by-size (or union-by-rank), the time complexity of \(m \) find and \(n \) union operations is:
 \[
 \Theta(m\alpha(m, n)) \quad m \geq n \\
 \Theta(n + m\alpha(m, n)) \quad m < n
 \]
- \(\alpha(m, n) \leq 4 \) for all practical values of \(m \) and \(n \)
Running time of Kruskal’s algorithm

- Assume n nodes and m edges and $m > n$
- Sorting the edges: $O(m \log m)$
- Adding an edge (v, w) would create a cycle if $\text{find}(v) = \text{find}(w)$
- There are m edges so we do at most $2m$ find operations
- A tree has $n - 1$ edges so we do $n - 1$ union operations
- From previous slide the complexity of these union-find operations is $\Theta(m \alpha(m, n))$
- We can conclude that sorting the edges is more costly than the union-find operations so the running time of Kruskal’s algorithm is $O(m \log m)$
- We have $m \leq n^2$
- Therefore $O(m \log m) = O(m \log n^2) = O(m^2 \log n) = O(m \log n)$
- I.e. the same as for Prim’s algorithm.