class List {
 int data;
 List next;
};

List p;
A corrupted single linked list

How can you check if a list is corrupted without looping forever?
Inserting a new node

- Lists are more flexible than arrays
Optimizing append

- A header node with pointers both to first and last nodes
Double linked list

More efficient in some situations
A circular double linked list

- Beware of infinite loops!
- Often a do-while loop is convenient
A tree node t
- $\text{left}(t) = \text{null}$ or $\text{key(left}(t)) < \text{key}(t)$
- $\text{right}(t) = \text{null}$ or $\text{key(right}(t)) > \text{key}(t)$

- to insert a (key,value) pair,
- to delete a node with a certain key, and
- to search for a node with a certain key.
Without balancing, the running time of insert, delete, and insert would be $O(n)$.

Two Russian mathematicians, Georgy Adelson-Velsky and Evgenii Landis, discovered in 1962 the first self-balancing binary search tree with $O(\log n)$ time for insert, delete, and search: the AVL-tree.

In 1972 the German computer scientist Rudolf Bayer invented another self-balancing search tree: the red-black tree, with the same time complexity.
AVL tree balance attribute

<table>
<thead>
<tr>
<th>balance</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>left subtree is one higher than right subtree</td>
</tr>
<tr>
<td>0</td>
<td>left and right subtrees have equal heights</td>
</tr>
<tr>
<td>1</td>
<td>right subtree is one higher than left subtree</td>
</tr>
</tbody>
</table>
Insertion
Single rotations

\[
\begin{align*}
& s \
& \quad \searrow \quad \swarrow \quad \searrow \quad \swarrow \
& \quad T_1 \
& \quad T_2 \
& t \
& \quad \searrow \quad \swarrow \
& \quad T_3 \\
\xrightarrow{\text{\Rightarrow}}
& T_1 \\
& T_2 \\
& T_3 \\
& s \
& \quad \searrow \quad \swarrow \
& \quad T_1 \
& \quad T_2 \
& t \\
& \quad \searrow \quad \swarrow \
& \quad T_3 \\
\xrightarrow{\text{\Rightarrow}}
& T_1 \\
& T_2 \\
& T_3
\end{align*}
\]
Double rotations

\[s \rightarrow u \]

\[s \rightarrow t \]

\[t \rightarrow s \]

\[t \rightarrow u \]

\[s \rightarrow u \]

\[s \rightarrow t \]

\[t \rightarrow s \]

\[t \rightarrow u \]

\[s \rightarrow u \]

\[s \rightarrow t \]

\[t \rightarrow s \]

\[t \rightarrow u \]
Graphs

- Notation
- Graph traversal and connectivity
- Testing bipartiteness
- Connectivity in directed graphs
Graphs

$G = (V, E)$

- V is a set of nodes or vertices
- E is a set of edges or arcs

$V = \{a, b, c, d, e, f, g, h, i, j\}$

$E = \{a - b, b - d, \ldots, i - j\}$, or

- $n = |V|$
- $m = |E|$
Example graphs

- Cities connected by direct air flights: node = city, edge = flight
- Social networks: node = person, edge = friend
- An **undirected graph** describes friends on a social network
- When you follow somebody you have an edge from one to another, i.e. a **directed graph**
- Actually, we can view city connectivity through air flights as a directed graph but normally there is a flight back
- Chess games: node = position, edge = legal move
Graph representation: adjacency matrix

- \(n = |V| \) and \(m = |E| \)
- Number each vertex from 1..\(n \)
- Often two representations of each edge
- If there is an edge \(i - j \) then one is stored both in \(m[i][j] \) and in \(m[j][i] \), otherwise a zero
- If \(n \) is large it can be a good idea to store only half the matrix – how?
- \(\Theta(n^2) \) space
- \(\Theta(1) \) time to check if there is an edge \(i - j \)
- \(\Theta(n) \) time to find all neighbors of a node
- \(\Theta(n^2) \) time to list all edges
Graph representation: adjacency list

- $n = |V|$ and $m = |E|$
- Every vertex has a list of neighbors
- Every edge $u - v$ is stored in both u and v
- $\text{degree}(n)$ is the number of neighbors
- $\Theta(m)$ time to check if there is an edge $i - j$
- $\Theta(\text{degree}(n))$ time to find all neighbors of a node
- $\Theta(m)$ time to list all edges
- Store only half of the adjacency matrix for undirected graphs
- Store only the adjacency list you need in directed graph (maybe both of course)
- For a very dense graph the matrix is smaller and just as fast
- If you need both quick neighbor check and being able to quickly list all neighbors, then use both!
- Optimizing compilers use both when deciding which variable should be allocated a processor register: the variables are nodes and there is an edge $x \rightarrow y$ if x and y may be needed at the same time (and therefore cannot use the same register)
- **Path**: A sequence of nodes $p = (v_1, v_2, ..., v_k)$ such that v_i and v_{i+1} are neighbors in an undirected graph, or there is an edge from v_i to v_{i+1} in a directed graph.

- If all nodes in p are distinct then it is a **simple path**.

- An undirected graph is **connected** if there is a path between every pair of nodes.

- A **cycle** is a path which consists of a simple path followed by the first node such as (u, v, w, u).
A connected undirected graph is a **tree** if it has no cycle.

A tree has $n - 1$ edges.

In a **rooted tree** one node, r is called the root node.
Depth first search: DFS

int dfnum;
/* Depth-first search number. */

procedure dfs(v)
begin
 dfn(v) ← dfnum
 visited(v) ← true
 dfnum ← dfnum + 1

 for each w ∈ succ(v) **do**
 if (not visited(w))
 dfs(w)
 end

procedure depth_first_search(V)
 dfnum ← 0
 for each v ∈ V **do**
 visited(v) ← false
 dfs(s)
 end
Properties of depth-first search have been studied extensively by Robert Tarjan.

DFS is used a lot in compilers.

His algorithms tend to be faster than others’ and more beautiful than art.

They are art actually.
DFS example
The s-t connectivity problem

- The problem is to find a path from s to t.
- Often we want to find the shortest path from s to t.
- The **distance** between two nodes u and v is the number of edges on a shortest path from u to v.
- How to solve the connectivity problem?
- Check all nodes v at a distance k from s until either $v = t$ or there are no more nodes to check, in which case s and t are not connected.
- Let $k = 1, 2, 3, \ldots, \infty$
- This is called **breadth first search**, or simply BFS.
- Think of an onion. You are in the center and explore one layer at a time outwards.
Breadth first search

Is there a path from a to j?

A node v is added to a layer only the first time v is seen.

Check one layer at a time.

$L_0 = \{a\}$

$L_1 = \{b\}$

$L_2 = \{d, h\}$

$L_3 = \{c, e, g\}$

$L_4 = \{f, j\}$

We don’t need the layers. A list is sufficient.
BFS implementation to find path $s - t$

```plaintext
procedure $BFS(G, s, t)$
    $q \leftarrow$ new list containing $s$
    for $v \in V$ $visited(v) \leftarrow 0$
    $visited(s) \leftarrow 1$
    while $q \neq$ null
        $v \leftarrow$ take out the first element from $q$
        for $w \in neighbor(v)$
            if not $visited(w)$ then
                $visited(w) \leftarrow 1$
                add $w$ to end of $q$
                $pred(w) \leftarrow v$
            if $w = t$ then
                print "found path $s - t$"
                return
        print "found no path $s - t$"
```

jonasskeppstedt.net Lecture 2 2020 26 / 28
Finding the actual path \(s - t \)

- We want to find the path \(a - j \)
- It is \(p = (a, b, d, g, j) \)
- For each node \(w \) except the first, the attribute \(\text{pred}(w) \) is the previous node in \(p \).
- \(\text{pred}(j) = g \), \(\text{pred}(g) = d \), etc
- What is the running time of BFS?
- The while loop has up to \(n \) iterations with \(|V| = n \)
- Each node has at most \(n \) neighbors, so \(O(n^2) \)?
- What do you say?
BFS time complexity

- But in total m edges so $2m = \sum_{v \in V} \text{degree}(v)$ edges to process.
- $2m$ since each edge is in two adjacency lists
- Thus BFS can be implemented in $O(n + m)$ with adjacency lists