
Spelling correction using N-grams

David Sundby

Lund Institute of Technology, Sweden

david.sundby@gmail.com

Abstract

This article presents a spelling correction mod-

el prioritizing word suggestions according to

the natural context of the sentence they are tar-

geted. The architecture of the developed solu-

tion are described, the word suggestion algo-

rithms used are depicted. The data used to al-

low this model to work are presented along

with a comparison with a more common type

of word correction used in everyday applica-

tions.

1 Introduction

Nowadays spelling correction is widely

used in a growing set of applications. As

processing capacity has increased both on

Personal Computers and network comput-

ers automatic spelling correction has be-

come a matter of course. Spelling correc-

tion has become more and more automated

over the last decade, and the average user

of computers is aware of that such spelling

correctors are build into applications i.e.

office suites. What the average user is not

aware of is how the correction system op-

erates, and what model it follows.

Most common spelling checkers

use a model that provides probabilistic

matrices of what keyboard character A the

typist meant to press when wrongly spel-

ling a word by pressing character B. What

this model for spelling correction does not

take into hand is the words in the context

of the sentence it is located in. This means

that using such a spelling correction model

may force the system to provide high pri-

oritized word suggestions that would ac-

tually contribute in the building of bad

sentences.

The goal of this project is to build a

spelling checker that suggests words and

prioritizes them according to the context of

the sentence the badly spelled word is lo-

cated in. By providing this kind of priori-

tizing the words with the highest priority in

the suggestion list will also be the words

that are most natural in the context of a

correctly built sentence.

 The rest of this article is structured

as followed: We will start by describing

the architecture of the spelling checker

before giving a brief description of the

word suggestion algorithms used. Then we

will dig deeper into what kind of data that

we use for prioritizing the suggested words

and how we use it. In the next section we

will present an experiment to compare the

implemented spelling correction applica-

tion against a commonly used one using

the prioritizing model described above. In

the preceding section we will present the

results before finally concluding.

2 Architecture

Before describing how prioritizing is done

we will briefly describe the architecture of

the implemented spelling correction appli-

cation. The implementation can be divided

into three main steps, executed in the same

order; initialization, indexing and spelling

correction.

Initialization: In the initialization

phase all the data is loaded into memory.

This data includes the dictionary and the

analysis data used for prioritizing. In worst

case scenarios the number of lookups done

by the spelling checker is up to 100-500

dictionary and analysis data lookups for

mailto:das022@post.uit.no

each word misspelled. The data is mainly

loaded into memory to be able to decrease

the execution time of lookups made in the

dictionary and in the analysis data.

Indexing: When all the data has

been loaded into memory indexes are made

for both the dictionary data and the analy-

sis data. The indexes consists of two cha-

racter indexes (26x26 indexes) all having

an integer value. Using the dictionary as an

example this integer value represent the

position in the dictionary where the first

occasion of a word having e.g. the charac-

ter „a‟ as the first character (single charac-

ter index) or the first occasion of a word

having e.g. the two characters „ab‟ as the

first and second character (double charac-

ter index). Providing such indexes allows

lookups in a small partition of the data

instead of traversing the whole data set x-

number of times in worst case scenarios.

Spelling correction: When all data

has been loaded into memory and the in-

dexes are made, the actual spelling correc-

tion application is launched. The interface

consists of a text area similar to ordinary

text editor‟s i.e. MS Word. Words within

the text area are looked up against the dic-

tionary. Words that are not seen in the dic-

tionary are marked for word suggestion.

Word suggestions are returned using four

word suggestion algorithms, namely inser-

tion, deletion, substitution and reversal.

These algorithms will be explained in the

next section. Each method implemented as

the four algorithms returns a set of word

suggestions, which after all algorithms has

finished are combined. Together the com-

bined results produce a list of unique

words representing the list of word sugges-

tions for a badly spelled word. When all

word suggestions have been collected the

words are prioritized using the analysis

data. The analysis data consists of frequen-

cies of bigrams and trigrams extracted

from a small corpus
1
 consisting of a collec-

tion of excerpts from financial papers. If

1
http://www.daviddlewis.com/resources/testcollections/re

uters21578/

the suggested word, set into the context of

the sentence using bigrams and trigrams,

does not give frequencies higher than 2, a

unigram frequency is used instead. In such

cases the application collects the unigram

frequency of the word suggestions and

prioritize those with the highest frequency

first. The unigram frequency is simply the

number of occasions of a given word lo-

cated in our test corpus. We will explain all

the data extractions made on the test cor-

pus in section 4.

3 Word suggestion algorithms

In this section we will explain the algo-

rithms used to collect word suggestions for

wrongly spelled or wrongly typed words.

In the implementation of the spelling cor-

rection application we used four word sug-

gestion algorithms; insertion, deletion,

substitution and reversal. If you already are

familiar with these algorithms you can skip

to section 4.

3.1 Insertion

Insertion is an algorithm that corrects

wrongly spelled words missing a character.

Using insertion we insert each character in

the alphabet, which in our case are A-Z, in

each character position of the wrongly

spelled or wrongly typed word, see figure

1.

Figure 1: Insertion

From the figure the wrongly spelled word

is “wrd”. Using insertion we start by in-

serting the character „a‟ in position 1 of the

word, then we insert the character „b‟ in

the same position and all the way to „z‟.

For the second row we do the same for

character position 2 of the word, we insert

the character „a‟ in position 2, then the

character „b‟ and all the way to character

„z‟. For each character insertion the pre-

pared word will be looked up and inserted

into the word suggestion list if and only if

the word is seen in the dictionary.

3.2 Deletion

Deletion is an algorithm which deletes

characters from a misspelled word. Using

deletion we delete one character at a time

and look up the prepared word in each de-

letion step to see if the word is seen in the

dictionary. In figure 2 we have the word

“worrd”, which in deletion step 3 and 4

prepares the correct word “word”.

Figure 2: Deletion

As for insertion each word look-up seen in

the dictionary using deletion will be in-

serted into the word suggestion list.

3.3 Substitution

Usually correct typos made by the typist. If

the typist meant to e.g. press the character

„g‟ a common mistyping is to instead press

one of the characters physically close to „g‟

on the keyboard, e.g. by pressing „f‟, „v‟,

‟b‟ ,‟h‟ and so on. Using substitution we

substitute each character making up the

word, one at a time by a character from the

alphabet, in our case starting with „a‟ and

ending with „z‟, see figure 3.

Figure 3: substitution

When substitution has finished all word

suggestions are inserted into word sugges-

tion list.

3.4 Reversal

Reversal is used to correct misspellings

where the typist has typed a character at

the wrong location of a word, e.g. by spel-

ling the word “typist”, wrongly “tpyist”.

Using reversal we change the location of

all characters in the wrongly typed word

one at a time.

Figure 4: reversal

From figure 4, we start by moving the first

character („w‟) to character position 2, then

to character position 3 and all the way to

the last character position in the word.

Then we do the same for the second cha-

racter until all characters has been inter-

changed. Finally, all suggestions are in-

serted into word suggestion list.

4 Data analysis

For our data analysis we used a small fi-

nancial corpus consisting of ca. 4 million

words. From this corpus we managed to

extract approximately 20 000 unique words

found in the dictionary. For each of these

unique words we did three data extractions

from the corpus, unigram frequency, bi-

grams and trigrams. What we here call

trigrams is in reality a set of two bigrams,

we will explain this later on.

Unigram: The first data extraction

we made was collecting the unigram fre-

quency for each unique word from the test

corpus. The unigram frequency is simply

the number of occasions of a specific word

from the corpus used. We use unigrams for

prioritizing when the frequency of the bi-

grams or the trigrams in the context of the

sentence, gives frequencies lower than two.

Bigrams: The second data extrac-

tion we composed was the collection of

two sets of bigrams related to all unique

words extracted from the corpus. For each

unique word (n) we located each occasion

of it in the corpus and recorded the word in

front of it (n-1) and the word behind it

(n+1). E.g. for the sentence “the man

walked down the street”, where walked is

the unique word, the bigram from the first

extraction would be “man walked” and the

bigram from the second extraction would

be “walked down”. Each unique bigram n-

1 and n+1 are counted and the frequency is

stored as analysis data for the spelling

checker. This data is used for prioritizing

word suggestions in the natural context of

the sentence were the word correction is

located.

Trigrams: A more precise name for

it in our context would be frequencies of

two bigrams added together. In the bigrams

extractions described above the frequen-

cies of two different types of bigrams are

collected, n-1 and n+1. The frequencies

from these two bigram data sets are added

together in our spelling correction applica-

tion. E.g. for the sentence “the man walked

down the street”, where “walked” is the

unique word a “real” trigram frequency

would be the number of occasions of the

string “man walked down” from the test

corpus. Instead we use the frequency of the

bigram “man walked” (n-1) plus the fre-

quency of the bigram “walked down”

(n+1). Bigram frequencies i.e. these put

together are what we call a trigram to dif-

ferentiate it from the bigrams. This means

that the bigram (n+1) only strengthens or

in some cases make the difference of

whether or not to use unigram frequency

for prioritizing.

5 Experiment

As with most projects it is important to

make a point and compare it with solutions

already made to similar problems. To col-

lect this data we have decided to compare

our solution with a spelling correction ap-

plication known to most of us, which is

that one built into Microsoft Word 2007. In

this section I will present the data and ex-

plain the experiment itself before present-

ing the results and a discussion of the ex-

periment in section 6.

Since the test corpus that we used

in the project is a collection of excerpts

from financial papers, we found it most

natural to include financial papers in our

experiment as well. We used excerpts from

two articles from an online financial paper,

forbes (2009). To these collected texts we

manually added 100 spelling errors. The

reason why we chose to manually add spel-

ling errors was mainly for two reasons;

First of all, we found it difficult to

find blogs and articles which included

spelling mistakes. An explanation for this

can be that most modern tools used to

write articles or blogs have a built in spel-

ling checker. Another explanation can be

that the search engine
2
 that we used to

browse for relevant texts filters out web

pages that include bad language, i.e. spel-

ling errors and typos.

 Second if we found any articles or

blogs which included a few spelling errors

many of these were not relevant for our

spelling checker, because of its restrictions.

E.g. for the wrongly spelled word “ty-

pissst” our spelling checker would not find

the correct word “typist”. This would re-

quire the word suggestion algorithm dele-

tion to delete two characters (“ss”). Since

our implementation only handles transfor-

mation on one level, which for the deletion

algorithms case would be one character

deletion, such spelling errors would not get

any word suggestions. Anyhow for each of

these 100 spelling mistakes we collected

the disambiguation accuracy (DA) from 1

to 5 (DA1-DA5) for both the MS words

spelling checker and for our own. DA1 is

true only if the correct word is located as

priority one, DA2 is true if the correct

word is located as priority one or priority

two and so on. E.g. if we typed the wrong-

ly spelled word “typsit”, while we meant to

write “typist” and the spelling correction

return a list of suggestions with “typist” in

priority three, the DA1 and DA2 would be

2
 http://www.google.com

false while DA3, DA4 … , DAn would be

true. The goal is of course to get the cor-

rect word as high as possible up in the

priority list. The results and comparison

are presented in the next section.

6 Discussion and Results

From table 1 we can see the results from

the experiment described in section 5. The

Disambiguation Accuracy 1-5 is listed for

MS Word and for our implementation us-

ing bigrams (n-1) and using trigrams (two

bigrams added together (n-1 and n+1)), see

section 4. Between each DA columns, a

frequency column is in place. This column

tells us how many percent of the prioritiz-

ing were done using unigram frequency.

We recall that when the bigram or trigram

frequency is lower than 2, a unigram fre-

quency is used for prioritizing instead.

 From the table we can see that our

implementation gives better results than

MS Word‟s. Using our model 95 percent

of the word suggestions has the correct

word as the highest priority (DA1) against

only 67 percent for MS Word. As we move

down to lower priorities (DA2-DA5) we

can see that the DA for the two spelling

checkers balance out. From DA5 we can

see that MS Word have a score of 94 per-

cent, which means that the correct word

were not present in the suggestion list for 6

percent of the misspelled words. This does

not mean that MS Word was not able to

find the correct word using its correction

algorithms, but that it prioritized it lower

than position 5 (MS Word only includes

the five highest priorities).

Table 1: Disambiguation accuracy and frequency

from experiment

Table 2: Column chart of Disambiguation Accuracy

 Even though the results collected

are quite good, it is important to remember

that the two implementations use com-

pletely different prioritizing models. Spel-

ling checkers i.e. Microsoft Word‟s use a

prioritizing model which is similar to the

one described in Kernighan et al. (1990).

This model builds on a model referred to

as a noisy channel model. This model basi-

cally depends on that the user of the sys-

tem knows which word that he or she are

writing but that some “noise” is added dur-

ing the word creation in the form of typos

or spelling errors. Typos here refers to that

the typist of the system presses the wrong

button on the keyboard during the building

of a word. The system also has a probabil-

istic matrix of all probabilities of what

keyboard character A the typist meant to

press when wrongly spelling a word by

pressing character B. The most obvious

prioritizing strategy here is that the charac-

ters closest to a character A has a higher

priority than one in a different part of the

keyboard. This model works well for the

most “common” spelling errors, which

include hitting the wrong character by

pressing one of its neighbors instead. From

the experiment we included both common

and not so common spelling errors. The

most common spelling errors, i.e. pressing

a neighbor character when misspelling a

word, gives good result for both spelling

checkers. When it comes to not so com-

mon spelling errors, MS Word fails. Here

are some examples from the experiment

where MS Word failed to compete with

our model:
Example 1: Wrongly spelled excerpt

“contracts oir the” where oir is the wrong-

ly spelled word for “or”. MS Word set the

correct word “or” as priority three in the

word suggestion list, our model set “or” to

priority one.

Example 2: Wrongly spelled excerpt

“control orve the” where orve is the

wrongly spelled word for over. MS Word

did not include “over” to the word sugges-

tion list (D1-D5), our model set “over” to

highest priority.

From these two examples we can see

where the model used by MS Word fails.

Basically this is because such spelling er-

rors are not of those this model builds on.

It builds on favoring the most common

spelling errors and does not take into hand

the natural context of the sentence where

the suggested words are meant to be in-

serted.

7 Conclusion

Looking at the results from section 6 we

can conclude that the results from our spel-

ling checker has good results compared to

those of MS Word‟s. The difference be-

tween the two models is that for our solu-

tion we use corpus data analysis to create

priority lists with words that are natural in

the context of the sentence with highest

priority. MS word uses a “noisy channel”

like model. This model basically use prob-

abilistic matrixes consisting of probabili-

ties of which button on the keyboard the

typist meant to press when constructing a

misspelled word by pressing a certain

“wrong” character.

 By using corpus analysis data, as

used in our solution, we have a higher pos-

sibility of having words high in the priority

list that are natural in the context of the

sentence. On the other side this depends on

what kind of spelling mistakes the user has

typed. Using the “noisy channel” like

model, used by MS Word, most common

spelling errors are recorded and usually

have the correct words high in the priority

list. This leads us to the question whether

or not it is really necessary to have a dif-

ferent model, one that is natural to the con-

text of the sentence the word suggestions

are supposed to be inserted into.

Using the corpus analysis model al-

so give high priority to the correct word for

spelling errors that are “not so common”.

Put in another way spelling errors includ-

ing keyboard characters that are far away

from the character the typist should have

pressed. Since the corpus data model

brings equally good results for the most

common spelling errors and expands with

also giving good results for not so common

spelling errors, this model is preferable as

long as we can keep its execution time

within acceptable limits. This model also

gives us assurance that the words that are

natural in the context of the sentence are

given high priority.

8 Acknowledgements

The author would like to thank Pierre Nu-

gues for supervision, motivation and con-

structive contributions to the project.

9 References

forbes, 2009,
http://www.forbes.com/feeds/ap/2009/12/05/ge

neral-us-obama-economy_7185836.html
forbes, 2009,

http://www.forbes.com/feeds/reuters/2009/12/0

5/2009-12-

05T201531Z_01_N06186635_RTRIDST_0_E

CUADOR-OIL.html

Kernighan D. Mark, Church W. Kenneth, Gale A.

William, 1990, A spelling correction Program

Based on a Noisy Channel Model , Internation-

al Conference On Computational Linguistics -

Proceedings of the 13th conference on Compu-

tational linguistics - Volume 2, pp 205-210

http://www.forbes.com/feeds/ap/2009/12/05/general-us-obama-economy_7185836.html
http://www.forbes.com/feeds/ap/2009/12/05/general-us-obama-economy_7185836.html
http://www.forbes.com/feeds/reuters/2009/12/05/2009-12-05T201531Z_01_N06186635_RTRIDST_0_ECUADOR-OIL.html
http://www.forbes.com/feeds/reuters/2009/12/05/2009-12-05T201531Z_01_N06186635_RTRIDST_0_ECUADOR-OIL.html
http://www.forbes.com/feeds/reuters/2009/12/05/2009-12-05T201531Z_01_N06186635_RTRIDST_0_ECUADOR-OIL.html
http://www.forbes.com/feeds/reuters/2009/12/05/2009-12-05T201531Z_01_N06186635_RTRIDST_0_ECUADOR-OIL.html

