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Abstract 

This article presents a spelling correction mod-

el prioritizing word suggestions according to 

the natural context of the sentence they are tar-

geted. The architecture of the developed solu-

tion are described, the word suggestion algo-

rithms used are depicted. The data used to al-

low this model to work are presented along 

with a comparison with a more common type 

of word correction used in everyday applica-

tions. 

 

1    Introduction 

Nowadays spelling correction is widely 

used in a growing set of applications. As 

processing capacity has increased both on 

Personal Computers and network comput-

ers automatic spelling correction has be-

come a matter of course. Spelling correc-

tion has become more and more automated 

over the last decade, and the average user 

of computers is aware of that such spelling 

correctors are build into applications i.e. 

office suites.  What the average user is not 

aware of is how the correction system op-

erates, and what model it follows.  

Most common spelling checkers 

use a model that provides probabilistic 

matrices of what keyboard character A the 

typist meant to press when wrongly spel-

ling a word by pressing character B. What 

this model for spelling correction does not 

take into hand is the words in the context 

of the sentence it is located in. This means 

that using such a spelling correction model 

may force the system to provide high pri-

oritized word suggestions that would ac-

tually contribute in the building of bad 

sentences. 

The goal of this project is to build a 

spelling checker that suggests words and 

prioritizes them according to the context of 

the sentence the badly spelled word is lo-

cated in. By providing this kind of priori-

tizing the words with the highest priority in 

the suggestion list will also be the words 

that are most natural in the context of a 

correctly built sentence.  

 The rest of this article is structured 

as followed: We will start by describing 

the architecture of the spelling checker 

before giving a brief description of the 

word suggestion algorithms used. Then we 

will dig deeper into what kind of data that 

we use for prioritizing the suggested words 

and how we use it. In the next section we 

will present an experiment to compare the 

implemented spelling correction applica-

tion against a commonly used one using 

the prioritizing model described above. In 

the preceding section we will present the 

results before finally concluding.  

 

2    Architecture 

Before describing how prioritizing is done 

we will briefly describe the architecture of 

the implemented spelling correction appli-

cation. The implementation can be divided 

into three main steps, executed in the same 

order; initialization, indexing and spelling 

correction.  

Initialization: In the initialization 

phase all the data is loaded into memory. 

This data includes the dictionary and the 

analysis data used for prioritizing. In worst 

case scenarios the number of lookups done 

by the spelling checker is up to 100-500 

dictionary and analysis data lookups for 
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each word misspelled. The data is mainly 

loaded into memory to be able to decrease 

the execution time of lookups made in the 

dictionary and in the analysis data.  

Indexing: When all the data has 

been loaded into memory indexes are made 

for both the dictionary data and the analy-

sis data. The indexes consists of two cha-

racter indexes (26x26 indexes) all having 

an integer value. Using the dictionary as an 

example this integer value represent the 

position in the dictionary where the first 

occasion of a word having e.g. the  charac-

ter „a‟ as the first character (single charac-

ter index) or the first occasion of a word 

having e.g. the two characters „ab‟ as the 

first and second character (double charac-

ter index). Providing such indexes allows 

lookups in a small partition of the data 

instead of traversing the whole data set x-

number of times in worst case scenarios.   

Spelling correction: When all data 

has been loaded into memory and the in-

dexes are made, the actual spelling correc-

tion application is launched. The interface 

consists of a text area similar to ordinary 

text editor‟s i.e. MS Word. Words within 

the text area are looked up against the dic-

tionary. Words that are not seen in the dic-

tionary are marked for word suggestion. 

Word suggestions are returned using four 

word suggestion algorithms, namely inser-

tion, deletion, substitution and reversal. 

These algorithms will be explained in the 

next section. Each method implemented as 

the four algorithms returns a set of word 

suggestions, which after all algorithms has 

finished are combined. Together the com-

bined results produce a list of unique 

words representing the list of word sugges-

tions for a badly spelled word.  When all 

word suggestions have been collected the 

words are prioritized using the analysis 

data. The analysis data consists of frequen-

cies of bigrams and trigrams extracted 

from a small corpus
1
 consisting of a collec-

tion of excerpts from financial papers. If 
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the suggested word, set into the context of 

the sentence using bigrams and trigrams, 

does not give frequencies higher than 2, a 

unigram frequency is used instead. In such 

cases the application collects the unigram 

frequency of the word suggestions and 

prioritize those with the highest frequency 

first. The unigram frequency is simply the 

number of occasions of a given word lo-

cated in our test corpus. We will explain all 

the data extractions made on the test cor-

pus in section 4.    

 

3    Word suggestion algorithms 

In this section we will explain the algo-

rithms used to collect word suggestions for 

wrongly spelled or wrongly typed words. 

In the implementation of the spelling cor-

rection application we used four word sug-

gestion algorithms; insertion, deletion, 

substitution and reversal. If you already are 

familiar with these algorithms you can skip 

to section 4. 

 

3.1    Insertion 

Insertion is an algorithm that corrects 

wrongly spelled words missing a character. 

Using insertion we insert each character in 

the alphabet, which in our case are A-Z, in 

each character position of the wrongly 

spelled or wrongly typed word, see figure 

1.  

 

 
 

Figure 1: Insertion 

 

From the figure the wrongly spelled word 

is “wrd”. Using insertion we start by in-

serting the character „a‟ in position 1 of the 

word, then we insert the character „b‟ in 

the same position and all the way to „z‟.  

For the second row we do the same for 

character  position 2 of the word, we insert 

the character „a‟ in position 2, then the 



character „b‟ and all the way to character 

„z‟. For each character insertion the pre-

pared word will be looked up and inserted 

into the word suggestion list if and only if 

the word is seen in the dictionary.   

 

3.2    Deletion 

Deletion is an algorithm which deletes 

characters from a misspelled word. Using 

deletion we delete one character at a time 

and look up the prepared word in each de-

letion step to see if the word is seen in the 

dictionary. In figure 2 we have the word 

“worrd”, which in deletion step 3 and 4 

prepares the correct word “word”. 

 

 
Figure 2: Deletion 

 

As for insertion each word look-up seen in 

the dictionary using deletion will be in-

serted into the word suggestion list. 

 

3.3    Substitution 

Usually correct typos made by the typist. If 

the typist meant to e.g. press the character 

„g‟ a common mistyping is to instead press 

one of the characters physically close to „g‟ 

on the keyboard, e.g. by pressing „f‟, „v‟, 

‟b‟ ,‟h‟ and so on. Using substitution we 

substitute each character making up the 

word, one at a time by a character from the 

alphabet, in our case starting with „a‟ and 

ending with „z‟, see figure 3. 

  

 
Figure 3: substitution 

 

When substitution has finished all word 

suggestions are inserted into word sugges-

tion list. 

3.4    Reversal 

Reversal is used to correct misspellings 

where the typist has typed a character at 

the wrong location of a word, e.g. by spel-

ling the word “typist”, wrongly “tpyist”. 

Using reversal we change the location of 

all characters in the wrongly typed word 

one at a time.  

 
Figure 4: reversal 

 

From figure 4, we start by moving the first 

character („w‟) to character position 2, then 

to character position 3 and all the way to 

the last character position in the word. 

Then we do the same for the second cha-

racter until all characters has been inter-

changed. Finally, all suggestions are in-

serted into word suggestion list. 

 

4    Data analysis 

For our data analysis we used a small fi-

nancial corpus consisting of ca. 4 million 

words. From this corpus we managed to 

extract approximately 20 000 unique words 

found in the dictionary. For each of these 

unique words we did three data extractions 

from the corpus, unigram frequency, bi-

grams and trigrams. What we here call 

trigrams is in reality a set of two bigrams, 

we will explain this later on.  

Unigram: The first data extraction 

we made was collecting the unigram fre-

quency for each unique word from the test 

corpus. The unigram frequency is simply 

the number of occasions of a specific word 

from the corpus used. We use unigrams for 

prioritizing when the frequency of the bi-

grams or the trigrams in the context of the 

sentence, gives frequencies lower than two.  

Bigrams: The second data extrac-

tion we composed was the collection of 

two sets of bigrams related to all unique 

words extracted from the corpus. For each 



unique word (n) we located each occasion 

of it in the corpus and recorded the word in 

front of it (n-1) and the word behind it 

(n+1). E.g. for the sentence “the man 

walked down the street”, where walked is 

the unique word, the bigram from the first 

extraction would be “man walked” and the 

bigram from the second extraction would 

be “walked down”. Each unique bigram n-

1 and n+1 are counted and the frequency is 

stored as analysis data for the spelling 

checker. This data is used for prioritizing 

word suggestions in the natural context of 

the sentence were the word correction is 

located.  

Trigrams: A more precise name for 

it in our context would be frequencies of 

two bigrams added together. In the bigrams 

extractions described above the frequen-

cies of two different types of bigrams are 

collected, n-1 and n+1. The frequencies 

from these two bigram data sets are added 

together in our spelling correction applica-

tion. E.g. for the sentence “the man walked 

down the street”, where “walked” is the 

unique word a “real” trigram frequency 

would be the number of occasions of the 

string “man walked down” from the test 

corpus. Instead we use the frequency of the 

bigram “man walked” (n-1) plus the fre-

quency of the bigram “walked down” 

(n+1).  Bigram frequencies i.e. these put 

together are what we call a trigram to dif-

ferentiate it from the bigrams. This means 

that the bigram (n+1) only strengthens or 

in some cases make the difference of 

whether or not to use unigram frequency 

for prioritizing.  

 

5    Experiment 

As with most projects it is important to 

make a point and compare it with solutions 

already made to similar problems. To col-

lect this data we have decided to compare 

our solution with a spelling correction ap-

plication known to most of us, which is 

that one built into Microsoft Word 2007. In 

this section I will present the data and ex-

plain the experiment itself before present-

ing the results and a discussion of the ex-

periment in section 6.  

Since the test corpus that we used 

in the project is a collection of excerpts 

from financial papers, we found it most 

natural to include financial papers in our 

experiment as well. We used excerpts from 

two articles from an online financial paper, 

forbes (2009). To these collected texts we 

manually added 100 spelling errors. The 

reason why we chose to manually add spel-

ling errors was mainly for two reasons;  

First of all, we found it difficult to 

find blogs and articles which included 

spelling mistakes. An explanation for this 

can be that most modern tools used to 

write articles or blogs have a built in spel-

ling checker. Another explanation can be 

that the search engine
2
 that we used to 

browse for relevant texts filters out web 

pages that include bad language, i.e. spel-

ling errors and typos. 

 Second if we found any articles or 

blogs which included a few spelling errors 

many of these were not relevant for our 

spelling checker, because of its restrictions. 

E.g. for the wrongly spelled word “ty-

pissst” our spelling checker would not find 

the correct word “typist”. This would re-

quire the word suggestion algorithm dele-

tion to delete two characters (“ss”). Since 

our implementation only handles transfor-

mation on one level, which for the deletion 

algorithms case would be one character 

deletion, such spelling errors would not get 

any word suggestions. Anyhow for each of 

these 100 spelling mistakes we collected 

the disambiguation accuracy (DA) from 1 

to 5 (DA1-DA5) for both the MS words 

spelling checker and for our own. DA1 is 

true only if the correct word is located as 

priority one, DA2 is true if the correct 

word is located as priority one or priority 

two and so on. E.g. if we typed the wrong-

ly spelled word “typsit”, while we meant to 

write “typist” and the spelling correction 

return a list of suggestions with “typist” in 

priority three, the DA1 and DA2 would be 
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false while DA3, DA4 … , DAn would be 

true. The goal is of course to get the cor-

rect word as high as possible up in the 

priority list. The results and comparison 

are presented in the next section.  

 

6    Discussion and Results 

From table 1 we can see the results from 

the experiment described in section 5. The 

Disambiguation Accuracy 1-5 is listed for 

MS Word and for our implementation us-

ing bigrams (n-1) and using trigrams (two 

bigrams added together (n-1 and n+1)), see 

section 4. Between each DA columns, a 

frequency column is in place. This column 

tells us how many percent of the prioritiz-

ing were done using unigram frequency. 

We recall that when the bigram or trigram 

frequency is lower than 2, a unigram fre-

quency is used for prioritizing instead.  

 From the table we can see that our 

implementation gives better results than 

MS Word‟s. Using our model 95 percent 

of the word suggestions has the correct 

word as the highest priority (DA1) against 

only 67 percent for MS Word. As we move 

down to lower priorities (DA2-DA5) we 

can see that the DA for the two spelling 

checkers balance out. From DA5 we can 

see that MS Word have a score of 94 per-

cent, which means that the correct word 

were not present in the suggestion list for 6 

percent of the misspelled words. This does 

not mean that MS Word was not able to 

find the correct word using its correction 

algorithms, but that it prioritized it lower 

than position 5 (MS Word only includes 

the five highest priorities).  

 

 
Table 1: Disambiguation accuracy and frequency 

from experiment 

 

 
Table 2: Column chart of Disambiguation Accuracy  

 

 Even though the results collected 

are quite good, it is important to remember 

that the two implementations use com-

pletely different prioritizing models. Spel-

ling checkers i.e. Microsoft Word‟s use a 

prioritizing model which is similar to the 

one described in Kernighan et al. (1990). 

This model builds on a model referred to 

as a noisy channel model. This model basi-

cally depends on that the user of the sys-

tem knows which word that he or she are 

writing but that some “noise” is added dur-

ing the word creation in the form of typos 

or spelling errors. Typos here refers to that 

the typist of the system presses the wrong 

button on the keyboard during the building 

of a word. The system also has a probabil-

istic matrix of all probabilities of what 

keyboard character A the typist meant to 

press when wrongly spelling a word by 

pressing character B. The most obvious 

prioritizing strategy here is that the charac-

ters closest to a character A has a higher 

priority than one in a different part of the 

keyboard.  This model works well for the 

most “common” spelling errors, which 

include hitting the wrong character by 

pressing one of its neighbors instead. From 

the experiment we included both common 

and not so common spelling errors. The 

most common spelling errors, i.e. pressing 

a neighbor character when misspelling a 

word, gives good result for both spelling 

checkers. When it comes to not so com-

mon spelling errors, MS Word fails. Here 

are some examples from the experiment 

where MS Word failed to compete with 

our model:  
Example 1: Wrongly spelled excerpt 

“contracts oir the” where oir is the wrong-

ly spelled word for “or”. MS Word set the 

correct word “or” as priority three in the 



word suggestion list, our model set “or” to 

priority one. 

Example 2: Wrongly spelled excerpt 

“control orve the” where orve is the 

wrongly spelled word for over.  MS Word 

did not include “over” to the word sugges-

tion list (D1-D5), our model set “over” to 

highest priority.    

From these two examples we can see 

where the model used by MS Word fails. 

Basically this is because such spelling er-

rors are not of those this model builds on. 

It builds on favoring the most common 

spelling errors and does not take into hand 

the natural context of the sentence where 

the suggested words are meant to be in-

serted. 

  

7    Conclusion 

Looking at the results from section 6 we 

can conclude that the results from our spel-

ling checker has good results compared to 

those of MS Word‟s. The difference be-

tween the two models is that for our solu-

tion we use corpus data analysis to create 

priority lists with words that are natural in 

the context of the sentence with highest 

priority. MS word uses a “noisy channel” 

like model. This model basically use prob-

abilistic matrixes consisting of probabili-

ties of which button on the keyboard the 

typist meant to press when constructing a 

misspelled word by pressing a certain 

“wrong” character. 

 By using corpus analysis data, as 

used in our solution, we have a higher pos-

sibility of having words high in the priority 

list that are natural in the context of the 

sentence. On the other side this depends on 

what kind of spelling mistakes the user has 

typed. Using the “noisy channel” like 

model, used by MS Word, most common 

spelling errors are recorded and usually 

have the correct words high in the priority 

list. This leads us to the question whether 

or not it is really necessary to have a dif-

ferent model, one that is natural to the con-

text of the sentence the word suggestions 

are supposed to be inserted into.  

Using the corpus analysis model al-

so give high priority to the correct word for 

spelling errors that are “not so common”. 

Put in another way spelling errors includ-

ing keyboard characters that are far away 

from the character the typist should have 

pressed. Since the corpus data model 

brings equally good results for the most 

common spelling errors and expands with 

also giving good results for not so common 

spelling errors, this model is preferable as 

long as we can keep its execution time 

within acceptable limits. This model also 

gives us assurance that the words that are 

natural in the context of the sentence are 

given high priority. 
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