
JAVA-BASED REAL-TIME PROGRAMMING

Klas Nilsson

2016-08-29





Preface

This work, which should result in a freely available book, documents how to carry
out safe1, flexible2, portable3 and free4 programming of embedded systems, such
that the software without modifications can run on both small embedded devices
as well as on standard Java platforms. The approach is motivated by and based
on the following insights:

• Efficient development of future software will increasingly be made for embed-
ded systems with network connections and combined real-time and desktop-
like functions. That requires the safe, flexible, and portable software tech-
niques.

• The idea of “write once run anywhere” that was formulated for Internet-
ready software is highly desirable for embedded software. That is, embedded
software must exist in portable form that supports deployment into specific
configurations according to application needs.

• It is most suitable to use an object-oriented and industrially accepted lan-
guage that fulfills the requirements on safety and flexibility. Java is the
most available and portable such language, with possibilities for automatic
translation to the Microsoft .NET platform if needed.

• The standard Java platform does not support real-time execution, but it sup-
ports concurrency and real-time properties are open to each implementation.
By providing run-time solutions for real time, together with compilation to
traditional binary code, Java-based real-time would be very attractable.

• Each piece of software must be written such that it runs on both standard
desktop computers such as Windows and Linux, as well as on existing and
future embedded platforms. A combination of Java and C, supporting li-
braries, and multiple models of execution is then needed.

1Software components stay in their so called sandboxes; execution cannot harm unrelated
data or code. Here this is accomplished by using the Java language and it's built-in safety.

2Execution adopts to the properties of the underlaying runtime system; concurrency cor-
rectness is maintained while real-time performance varies from hard to soft in a flexible manner
according to the properties of the OS, managed by supporting classes.

3Developed applications run without recompilation on any type of computer to which the
Java platform has been ported, and with recompilation on any type of embedded processor. A
C compiler and a set of native functions is then needed for such embedded processors.

4Software development, compilation, deployment, and execution should be possible without
any costs (royalties, fees for libraries, etc.) or delays (purchasing, legal matters, etc.) for licenses
(documents, dongles, etc.); for student use and for agile product development.
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• Apart from device drivers that need to be system specific, software needs to
be written such that it works concurrently correctly and with appropriate
aware timing on the desktop OS, while providing real-time guarantees when
run on a real-time OS.

• Real-time requirements should be expressed, and possible to express, in the
software. Real-time programming is the 'art' of how to do that. Real-time
systems are traditionally built by developing concurrent software, which is
then deployed on a real-time platform. The real-time demands can then be
fulfilled, but only with extra engineering for each new type of system. That
is in many cases not an option, due to market opportunities or since systems
may need to be reconfigured "on the field" to unforeseen configurations.

• The wide-spread use of programmable devices, or devices including embed-
ded software that may need frequent customization, calls for “technically
generally useful” software tools5 and platforms, and free software. The plat-
form must permit specific applications built on top of it to be proprietary
and closed, to protect business-critical know-how (software patent do not
work).

In parallel with this document, free software tools are being developed and made
available on the Internet, by our group and due to other efforts. Commercial
software can then be developed for specific applications and systems, and since
such software is not “technically generally useful” they may very well be propri-
etary. Still, the technology, library and tools presented here may be used free of
charge(even commercially), but additions and changes must remain free (GNU
LGPL).

Note: This document still contains material from other sources without proper
references; this will be taken care of before official release. Details of the licenses
from Sun Microsystems are also under detailed reviewing.

History

To be written (referring to the LTH research in robotics and embedded real-time
systems, and to the developments for the EDA040 course).

This section is subject to special conditions in the GNU license terms.

Licenses and redistribution of copies

This document is (or will be) released under the terms of GNU FDL:

Copyright (c) 2005–2015 Klas Nilsson
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with

5That in turn, as expressed by Richard Stallman (the founder of GNU), implies that such
software (but not the applications using it) must be free.
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no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU Free
Documentation License".

The GNU Free Documentation License is also available at
www.gnu.org/copyleft/fdl.html
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Chapter 1

Introduction

Goal: Understanding of book aims and scope.

Computers, such as microprocessors, are more and more often embedded in
products that the user does not perceive as computers. This is the case for both
consumer electronics (your CD player, mobile phone, etc.), home supplies (your
micro-wave oven, washing machine, etc.), vehicles (the engine control in your car,
airplane fly-by-wire control, etc.), building automation (elevator control, temper-
ature control, etc.), as well as for industrial equipment. We want these things
to be affordable, and we want to be able to trust their operation, in particular
when our life depends on them. Additionally, in some cases, we want to be able
to reconfigure, upgrade, or even program them, possibly by downloading software
components from a trusted supplier via the Internet.

Most people think of a computer as the desktop type of computer (with key-
board and display), but the number of embedded computers is bigger than the
number of all other types of computers, and the difference is increasing. More-
over, the variety of types of processors and operating systems is much larger in
the embedded world, which includes the desktop types and many others. Reasons
for this variety include optimization to reduce the product price and minimization
of energy (from batteries) consumption.

Development of embedded software has for some years mainly been carried out
by hardware-aware programming using the C-language, and in some cases even
in assembly languages. This works well in simple cases when the application de-
mands and the hardware are known at design time, and the size of the (statically
defined) software is small. When applications increase in size and must be rapidly
developed (time to market), and perhaps need to be on-line upgradeable, more
programming support is needed. In particular, for critical applications (safety
critical as in an airplane, mission critical as in space/military/nuclear tasks, eco-
nomically critical if the survival of the company depends on the reliability of
the computer system, etc.) special measures must be taken to limit the possible
(faulty) influences of one software function on another part of the system. There-
fore, we have to abandon programming in C or C++ for large/complex systems.
Instead, we have to base the core development on a more scalable language (and
run-time system) that prevents direct access to memory, for instance via pointers.
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1. Introduction

Java (and partly C#) is such a language. Still, programming in C is appropriate
for device drivers, which do need to directly access the hardware. For similar rea-
sons of scalability, Microsoft had to go from their Win32+MFC C/C++-oriented
standard to the Microsoft®.NET Framework with C# in order to stay competi-
tive in the long run. Here, we will go some steps further, considering also small
embedded systems and severe timing demands.

Java does not solve all problems, and it is not the best possible solution, but
it has the qualities that we need to build higher-level functionality and tools.
Furthermore, it is based on open standards and has the desired support and (free)
availability. However, there is a common misconception in both industry and
academia: The Java language is not suitable for real-time programming. In the
sequel it will be explained why this is not true, and how it can and should be
done.

Given the nice properties of the Java programming language, such as security
and platform independence, we want to exploit the advantages for development
of real-time control software, even for systems subject to severe demands on per-
formance and predictability. Even though Java from the beginning was intended
for programming embedded control devices, some industrially important control
aspects were never dealt with, and the major development and success has been
within Internet programming of interactive applications such as applets.

We will approach the real-time issues via established web-programming and
concurrency techniques, which will reveal a few deficiencies of the standard Java
platform. A real-time package (class library) and a few run-time extensions will
be presented. The usage of these additions to create high performance real-time
control software is then described in a real-time programming chapter which is
central the topic of this book. The reader should then gain additional understand-
ing and programming skill by studying the remaining chapters about scheduling,
processes, and applications.

To illustrate the notions of concurrency, real-time, and control (in the order
mentioned) two simple application examples now follows.

Example 1: The LEGO®-brick machine

Computer control of a machine for manufacturing LEGO-bricks, as depicted in
Figure 1.1, implies two requirements on the software:

1. The temperature of the plastic material should be measured and controlled
periodically to prepare the material for casting with the proper quality.

2. The piston of the cylinder should be controlled sequentially to actually per-
form the casting.

Note that the tasks according to items 1 and 2 need to be handled concurrently,
and each task has to be carried out in real time. Otherwise the machine will not
work.

Item 1 is a simple temperature regulator. Since reading the measured value
(temp) and computing the control signal (doHeat) takes some time, such feedback
control, when done in software, by necessity has to be carried out periodically. In
each period (also called a sample), the controlled system in measured (sampled),
and the computed control signal is sent to the controlled system. For reasons
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of control performance, the time between each sample should not be too long.
For computing (CPU-load) reasons, we want to have as long sampling period as
possible. Hence, a tradeoff between control and computing efficiency has to be
made. This type of control is time driven since it is run with respect to (real)
time without waiting for conditions/events.

Item 2 is an example of sequencing control, which is event driven (execution
advances when certain events occurs and arrives to the software); writing this as a
periodic controller would imply unnecessary sampling and evaluation of the state
of the application. On the other hand, if execution only advances on incoming
events, how should then the temperature control be carried out (in the same
program)?

The reader could try to write one sequential program performing both these
tasks. Note that neither the temperature control nor the sequencing control may
be delayed due to the dynamics of the other part. Furthermore, assume it should
be simple (no reprogramming, only altering a data value) to change the sampling
period of the temperature control.

A better way is to write two pieces of program, for instance two classes that
handle the two control tasks. How should that be done, and what requirements
does that put on the programming and run-time system?

Example 2: Bank-account transactions

A familiar example of concurrently occurring actions on the same data item, is
bank account transactions. Assume that there are two transactions that are to be
carried out at about the same time. One of them, which we call A, consists of
taking out $1000 from the account via a money machine. The other transaction,
which we call B, is to add a salary of $10000 to the account. Depending on the
actual timing, and depending on how the bank computer performs the transac-
tions, we obtain different cases. If one transaction is performed before the other,

~

isOut

temp

isIn

doPush isEmptydoPull

doHeat

Figure 1.1: Schematic figure of a machine for manufacturing of LEGO bricks
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1. Introduction

we have one of the two cases shown in Figure 1.2. Each sequence of operations
expresses the way the computer at the bank performs the requested transactions.

According to proper software engineering practice, the two sequences are prefer-
ably expressed separately as described in the previous example. Furthermore,
assume that the run-time system of our computer is capable of interleaving the
two sequences in such a way that they appear to be done simultaneously. Since
the interleaving is not specified in the individual programs as shown in the figure,
it could result in any order of operations depending on the underlying system,
and it could possibly be different from time to time. For instance, we may for
the above transactions obtain interleavings according to Figure 1.3. Even if au-
tomatic interleaving of code sequences often is desired to handle several tasks in
parallel, we see that we must be able to specify a sequence of operations to be
performed without being interrupted by other sequences manipulating the same
(shared) data. We shall learn several ways to solve this type of problem.

// Case 1: Withdraw first
A: Read 5000
A: Amount = 5000 - 1000
A: Write 4000

B: Read 4000
B: Amount = 4000 + 10000
B: Write 14000

// Case 2: Salary first
B: Read 5000
B: Amount = 5000 + 10000
B: Write 15000

A: Read 15000
A: Amount = 15000 - 1000
A: Write 14000

Figure 1.2: Two bank account transactions done in two different orders. In both
cases, the original amount was 5000 and the resulting amount is 14000 as expected.

// Timing 2:
A: Read 5000

B: Read 5000
A: Amount = 5000 - 1000

B: Amount = 5000 + 10000
A: Write 4000

B: Write 15000

// Timing 2:
A: Read 5000

B: Read 5000
B: Amount = 5000 + 10000
B: Write 15000

A: Amount = 5000 - 1000
A: Write 4000

Figure 1.3: Execution of the two bank account transactions interleaved in two
different ways. With the Timing 1, the resulting amount is 15000, but the result
happens to be 4000 in the second case. Hence, the final results are wrong and
vary from time to time, which is clearly not acceptable.

Book outline

In the next chapter, we will go though the fundamentals of program execution
with special interest in the concurrency issue and in the properties of the Java
language. In Chapter 3, the Java language is used for solving concurrent pro-
gramming problems. Doing that, however, also reveals some deficiencies of the
standard Java platform and classes. Therefore, in Chapter 4, additional classes
supporting real-time programming will be presented. Then in Chapter 5, we will
learn how to do real-time programming using the classes from Chapter 4.
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Chapter 2

Fundamentals

Goal: Review of basic properties of software execution as a preparation for
dealing with concurrency and real-time issues.

Already having some programming experience means that you, dear reader,
have a lot of knowledge about how a computer interprets or executes a computer
program. When you know it, it is all natural, and most programmers are not
aware of the insights they have gained. We are now about to write programs that
behave concurrently even if we only have one processor. Before doing so, it could
be a good idea to take a step back and review the basic properties of program
execution. This is the first thing that will be done in this chapter. Then, different
notions of concurrency in hardware and software will be treated. Finally, we state
the duties of the software systems we are about to develop.

The eager and experienced programmer may skip this chapter, but beware, you
may be a very skilled programmer without having the profound understanding you
think you have.

2.1 Software execution is performed sequentially

To recall the sequential nature of program execution, assume you write an ordinary
program to be run on an ordinary computer having one processor (CPU). A piece
of the code may look as shown in Figure 2.1, so what value will x have after leaving
the loop?

int x = 2;
while (x>1) {

if (x==10) x = 0;
x++;

};
/* What is x now? */

Figure 2.1: Code snippet illustrating sequential execution, trivial to any program-
mer but many beginners actually give the wrong answer 0.
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2. Fundamentals

You know that the resulting value of x will be one. The novice answering
zero believes that the loop-condition is continuously evaluated in parallel with
evaluation of the expressions in the loop. Thus, the fact that the computer treats
our instructions sequentially one after another cannot be considered natural to all
of us; some of us have just learned that this is the way it works. Actually, it is a
severe restriction that only one thing at a time can be done. Even if computers
today are computing quickly enough to do the computations required by a parallel
environment (like our real world).

So, when learning to program, we are first forced into the ‘narrow alley’ of
sequential execution. Compare this with hardware design where each signal or
information flow usually is taken care of by dedicated components ensuring con-
tinuous and timely operation. But for reasons of cost and flexibility, we cannot
implement everything in hardware, so the problem that we are facing now is that
the sequential software execution model does not fit the inherently parallel prob-
lems we want to solve. Even when solving parallel problems, however, some things
are still sequential to their nature (like a sequence of control actions to be carried
out in the correct order). Then, for such parts of the program, the sequential
execution of software will be of great convenience.

2.2 Our physical world is parallel

The object oriented programming (OOP) paradigm, which we want to use for
embedded programming, is based on creating software entities modelling our en-
vironment. Furthermore, since we aim at computer control of physical devices,
some thoughts about the environment to be controlled may be appropriate1.

As we all know, our physical world is inherently parallel. Mathematically,
we need sets of coupled differential equations to describe it. Comparing such
mathematical expressions with the expressions found in programming languages
such as Java, they are not at all expressing the same thing. Basically, this is
related to another beginners problem in programming; the notion of equality.
When an mathematical expression states that x=y+2, that is an equality which
should hold for whatever value x (or y) has. When we in a Java program write
x=y+2, we instruct the computer to take the vale of y, add 2, and to store
that in x. If we in Java write x==y+2, we test if the value of x equals y+2.
The mathematical equality cannot be directly expressed in Java (or in any other
widely used programming language like C, C++, etc.). Again, computers operate
sequential from a programmers point of view.

For a single (scalar) differential equation, we then have an even harder type
of equality. Apart from the previously mentioned problem, we have to compute
derivatives of variables (representing physical states) and then we also get trunca-
tion and quantification effects due to the binary representation of data with finite
wordlength. Therefore, we can only work with approximations of the real world
object, even if its properties would be known exactly.

For a set of coupled differential equations, modelling our real-world objects,
the sequencing effect is an even bigger problem since all equations are to hold in
parallel. Additionally, state changes may occur at discrete times which cannot be

1This section (1.2) aims at deeper understanding or wider perspectives, but can be skipped
by the reader only caring about practical programming issues.
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exactly represented, and our models may include logical relations. To overcome
these problems, the following techniques are used within systems engineering:

1. For less complex dynamics, equations may be solved and only the explicit
solution need to be implemented. For instance, a real-time computer game
for playing “pinball” includes simulation of the ball dynamics, which can be
expressed as a simple type of numeric integration.

2. For systems with low demands on accuracy or performance, we may approx-
imate or even omit the model equations. For instance, for soft-stop control
of elevator motions we may use manually-tuned open-loop control without
any internal model. This is opposed to optimal performance robot motions
which require extensive evaluation of motion dynamics.

3. We may use special purpose languages and execution systems that trans-
forms declarative descriptions to computable expressions, i.e., a combination
of software technology and numerical analysis. For instance, it is well known
within the software oriented part of the control community that object ori-
ented models of dynamic properties requires declarative languages such as
Modelica. Another example is that certain types of logical relations may be
conveniently expressed in Prolog.

The computational difficulties are taken care of at ‘system design time’, which
means that we use high performance workstations to analyze, simulate, and to
determine a control algorithm that is simple to compute in the embedded system.
For instance, based on the equations and a dynamic model of a system (like
dynamic properties of a vehicle) we may use simulation tools to compute the
behaviour (like rotation, position and velocity) when certain actions are applied
(like speed and steering wheel commands), and some control design tool help us
determine a control law expression which can easily be implemented and computed
in the embedded software.

The conclusion from this section is that our real physical world can be quite
troublesome from a programming point of view. Therefore, we should not apply
object orientation and imperative languages (such as Java) outside their concep-
tual limits, and we should design our systems so that algorithmic parts (possibly
needing special treatment as mentioned) are encapsulated in classes in such a way
that they can be developed separately. And fortunately, that separate treatment
can usually be carried out at design time.

We are then left with the much simpler task of standard concurrent and real-
time programming which is the topic of this book. In other words, if we exclude ad-
vanced systems like certain types of autonomous vehicles and self-learning robots,
the parallelity of the physical world is not a problem when programming embed-
ded systems since we only communicate with the environment via a finite number
of input-output (IO) connections with discrete (limited A/D and D/A resolution)
values and in discrete time (sampled when the IO device driver is run).

2.3 Parallel computing

To meet the needs of high-end computing, computer hardware development con-
tinuously tries to improve computing performance. One popular research approach
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2. Fundamentals

for the last twenty years has then been to build parallel computers. That is, com-
puters that contain many processors working in parallel. Today, late nineties,
parallel computers with up to 64 processors (CPUs) of the same type sharing a
common memory has made it to the market. Then, what are the implications
for concurrent programming of embedded systems?First, we should know that
the mainstream industrial development of embedded computers is based on either
single CPUs, or multiple CPUs that are separately programmed because they
contain different (loosely connected) software modules. Modern CPUs are power-
ful enough for at least specific and encapsulated parts of the software functions.
Hence, programming is still carried out on a single CPU basis, possibly using
explicit interfaces between multiple processors.

• The parallellity of real-world models, as described in previous section, shows
up in technical computing. Some types of problems can be decomposed into
computations that can be done in parallel with each other. However, this is
only worthwhile for special problems, and then mainly during system design.
There are no indications that parallel computers requiring special program-
ming techniques will be widely used for embedded computing. Exceptions
may be applications like radar echo processing and computer vision. Such
inherently parallel applications are important and demanding, but it is out-
side the scope of this book since it employs few programmers.

• The ordinary sequential programming model is so established that computer
vendors have to stay with it. Therefore, the parallelity of the hardware is
taken care of by special compilers and run-time systems, still maintaining
an unchanged view to the programmer. There is even a trend that the par-
allelity is fully taken care of by the hardware. Hardware developers talk
about the “sequence control barrier” which means that the hardware paral-
lelity may not violate the sequencing property of the software execution as
described in Section2.1. Thus, even if we should use a PC running Windows
on four CPUs, we do not have to care about that when writing our software.

In conclusion, the sequential execution model described earlier is almost always
valid even when parallel computers are used. Comments about software interfaces
between different processors will be given in a few places in this book, but generally
we should think in terms of using a single CPU.

2.4 Concurrency

Our software applications interact with users and external equipment via in-
put/output interfaces, generally called the IO. The computer receives input data
concurrently from sensors and from user input devices like keyboard, mouse, and
microphone, as depicted in Figure 2.2. From the user we talk about input events,
and from the sensors we talk about samples. Both input events and samples reach
our program in form of some kind of data entity or record. For a mouse click,
for example, the event typically contains the horizontal and vertical coordinates
on the screen and the time when the click occurred. Sampled physical values
for feedback control are usually obtained via dedicated IO interfaces with well
defined timing and buffering; extra delays in terms of unforeseen buffering could
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2.4. Concurrency

Software
application

Computer

Controlled system

Physical dynamics

User

U s e r  i n t e r a c t i o n  l o o p

F e e d b a c k  c o n t r o l  l o o p

Figure 2.2: Input in terms of user commands/actions and sampled measurements
must be concurrently and timely handled by our software. (Re)computed outputs
for user perception and control actuation form two feedback loops.

cause the feedback control to be unstable. There is no clear distinction between
the two loops in Figure 2.2 (for instance real-time games only have one type of loop
and physics is directly available to the user/driver in vehicles), but it is normally
good to be aware of it for engineering purposes. Assume we only know ordinary
sequential programming. Even if we use object oriented design and programming,
with classes and objects defined according to real-world objects, methods are se-
quential and called sequentially so we still have the same situation as commented
in the beginning of this chapter. Physically, all input may occur in parallel, and
we can generally not make any assumptions about the resulting order of the data
that is input to our program. The problem with pure sequential programming is
that the programmer must define in what order computing should be done, but
it is not known in what order input data will arrive, or the program has to waste
CPU time on excessive polling and evaluation of conditions that may influence
the output.

For example, reconsider the LEGO-brick machine. Assume we have imple-
mented the control program as one loop in which all IO and control is carried
out sequentially. Then consider what the changes will be if, say, the sampling fre-
quency of the temperature control is substantially changed. Since the programmer
has to manually do the interleaving of the code for the different activities, changes
in concurrency or timing have severe impact on the source code. As mentioned, a
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more attractive approach would be to have the temperature control expressed well
separated from the sequencing control of the piston, which also would be natural
from an object-oriented programming point of view. The problem is, however,
that object orientation by itself does not support concurrency.

The same type of problems show up in interactive software. For example, an
applet containing a web animation and a button to select if the animation should
be played forward or backward is for the purposes of this treatment equivalent
to the LEGO-brick machine. Animation with a certain frame rate corresponds to
the periodic temperature control, and handling of the push button corresponds
to handling the position sensor. For the purposes of this book, however, we will
mainly consider control applications which are subject to more severe demands in
later chapters. When we know how to cope with both concurrency and real time
for control applications, we will also be able to handle (the simpler) interactive
systems.

Behind the term concurrent programming is the fact that our software has to
handle concurrently occurring external events. But before making a definition of
the term, let us review some alternative approaches to handle the situation.

2.4.1 Event processing

In the simplest case, each input event can be immediately and fully handled
before any following events must be taken care of. Then our program may consist
of only data structures, so called event handlers which perform the processing of
each event, and a so called dispatcher that calls the appropriate event handler for
each incoming event. There would, for example, be one event handler taking care
of mouse clicks which then would result in changes of the data structures, usually
reflected on the screen. The dispatcher is called in a simple loop which thereby is
‘driving’ the application.

The loop retrieving the events (or messages) and calling the handlers is (in
Microsoft terms) called the message pump. When programming user interfaces
using popular class libraries like MFC (Microsoft Foundation Classes), AWT (the
Java-based Abstract Window Toolkit providing an interface to native graphics and
window systems), or JFC (Java Foundation Classes, now known as Swing), the
message pump is hidden inside the class library. Application programming then
means writing the event handlers/listeners and registering them to the system.

Event processing is easy to program but in most applications, and particularly
in control applications like our LEGO-machine, this execution model alone is not
sufficient. The reasons are:

• Our single control loop will consume all available CPU time for the successive
testing (called polling, or busy wait if nothing else is being done). This is
waste of processing power which prevents the computer from simultaneously
being used for other tasks.

• Most control functions, but not this one, need a notion of time to work
correctly. For example, if there would have been disturbances on our mea-
surement signal, or if we would need to predict the temperature some time
ahead, sampling and computing would require proper and known timing
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The straightforward solution now is to convert our control function into a form
suitable for event processing, and to have control events periodically generated
with a certain time period. This is actually a useful method for very small software
systems, like software for so called micro-controllers. For our example application
this means that we should:

1. Remove the loop statement around the control algorithm and the waiting
for next sample to simply get a function computing one new control output
based on one single input event.

2. Connect some external timer hardware generating periodic time events to
the program. This is built into so called micro-controller chips, and available
on (almost) any computer board. The timer should be set up to expire often
enough to obtain good control, but seldom enough not to waste CPU time.
(To find an appropriate value is a control engineering task which is not
covered.)

However, such an interrupt/event-driven technique does not scale up very well.
Imagine a control computer handling many control loops with different sampling
periods, that would require non-standard timer hardware, and the dispatching
of timer events would be troublesome. Further disadvantages will be mentioned
below. Thus, event processing as a general mechanism is mainly useful when
developing user interfaces or computing functions that can run to completion and
return whenever triggered (by time, mouse clicks, etc.). Here we also need other
more powerful concepts.

2.4.2 Time and encapsulation

The main limitation with purely event-driven software is that the processing must
be completed immediately not to delay processing of the subsequent events. When
the required computing takes to long time to complete, we need some means to
schedule to work to be done. For instance, the user pushing a button in a web-
based application may results in a request for information to be downloaded via
Internet. Clearly, we need some means to let the event handler start (or give data
to) an ongoing activity taking care of the loading. That activity then needs to be
interruptible by other events, and possibly by more important ongoing activities
issued by those events.

Another reason that we need ongoing, and interruptible, activities is software
quality. It is fundamental both within OOP and programming in general to keep
information locally whenever possible, and to let the program clearly express the
task to be performed. Consider a control loop such as the temperature control
of the LEGO-brick machine. Putting the control statements (including timing
requirements) in a loop within a method of the control object is clearly better
than having the timing requirements registered in one part of the program and
the control actions coded in another part. So again, we want to be able to express
our computations and control algorithms in an object-oriented manner as we are
used to, and have a run-time system that takes care of scheduling the different
activities.
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In Java applets the event handling is performed in functions like action and
handleEvent, whereas ongoing activities are (or at least should be) done in func-
tions like run. But before we learn how to design and program such functions,
there are some things we should observe.

2.4.3 Programming of parallel sequences
The functionality we are aiming at resembles that of an operating system; several
programs that run at the same time should be scheduled to share the CPU in order
to let each of the programs behave timely. However, the concurrency of complete
programs is another topic handled later in this book. For now, we assume that the
concurrency stems from the parallelism of a single application or program. It is
then a big advantage that separately programmed concurrent activities can share
and operate on the same data structures or objects. Otherwise, we would need
additional files, pipes, sockets, etc. to exchange data, and that would be slower and
much more work to program. Furthermore, assume that our program containing
the concurrently executing activities is the only program we are running. (We
cannot make assumptions about other programs anyway, and when we load our
software into an embedded computer this assumption is normally fulfilled.)

When an ordinary sequential program executes, from entering the main pro-
gram until the final end, there is at each time one specific point of execution. We
refer to that point in terms of a program counter (PC). We have so far realized
that we require the program to be concurrently ongoing, typically executing in
several objects simultaneously. That is, the program has to switch between its
concurrent activities in such a way that, with the time scale of the application at
hand, it appears (to the user and to the controlled system) to run in parallel (on
different CPUs). To achieve this, the run-time system has to provide:

1. A function for creating a new concurrently executing activity, i.e., an addi-
tional PC and the states comprising the context associated with the point
of execution.

2. A scheduler that provides sharing of the CPU in common by interleaving the
executions. This should be without requiring the source code to be cluttered
with statements not modeling the task to be performed.

3. When concurrent activities share the same data or is dependent on each
others computational results, there must be some means of synchronization
and communication.

The need for a scheduler is related to the obligations of the operating system for
running complete programs, but as mentioned, here we are concerned with the
parallel behavior of one program. Assuming that our system is equipped with
such a scheduler, interlacing the different points of execution, we may define the
following requirement for a concurrent program to be correct:

Definition: The correctness of a concurrent program does not only require each
programmed sequence of computation to be correct, the correct result must also
be obtained for all possible interleavings.

In terms of the bank example this means that money should not be (virtually)
lost or created due to the timing of transactions and computer operations. Even if
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that is an obvious requirement, it is actually a quite severe demand when it comes
to verification of the correctness and finding any faults; the task we call test and
debugging. Debugging an ordinary sequential program can be done by running
the program with all possible sets of input data, and one set of input data gives the
same result if the program is run again. For a concurrent program, however, the
interleaving depends on external events triggering different sequences of scheduling
and execution. With a concurrent program, we can usually not expect to obtain
the same execution order twice; an input event occurring just a microsecond later
may result in another interleaving which may course an incorrect program to
crash. That in turn must not happen for a safety critical application. Hence, we
may have severe requirements on correctness but complete testing is almost never
possible.

It is interesting to note that the definition of correctness does not say anything
about time or timing, but timing is both the main reason for introducing concur-
rency and the key aspect for the behavior of an incorrect program. Considering
the difficulties writing and testing concurrent software, our hope now is that we
can find and follow certain rules for development of such software.

2.5 Interrupts, pre-emption, and reentrance

Just like we did not allow the user program to poll the inputs for possible events
(which would be waste of computing power when no new event has arrived), the
same applies to the scheduler or scheduling. The invocation of the scheduler and
its implications for the software application deserve some comments.

2.5.1 Obtaining the time base
As mentioned, we resort to using hardware interrupts to trigger our software
functions, even if the interrupt service routines as such are hidden inside the
operating system and device drivers. Of course, we may have input signals which
do not generate any interrupt, but then we read that value at certain times, usually
periodically when the data is used for feedback control. Therefore, the scheduler
should also be able to handle time requests, such as “sleep one second” which then
should suspend execution for that activity during that period of time.

Hence, our computer must be equipped with some kind of timer interrupt
occurring periodically, thereby providing a time base for the software. Of course,
the time in software will then be discrete (incremented one step for each timer
interrupt) opposed to the true time which is continuous. Discrete time is, however,
inherent to computer control anyway so it suits our purposes well.

Note that if we were only simulating our system, the time variable could be
stepwise increased by the scheduler; when all processing is done for one point of
time, the scheduler simply lets time jump to the next time referred to by the
application. But here we aim at software that interacts with the physical environ-
ment which (by the laws of nature) has time as an independent and continuously
increasing variable. The time variable in our software is the sampled value of the
real time.

The timer interrupt actually turns out to be a general and minimum require-
ment for both desktop and control computers. Additionally, there are some low-
level and system-specific events that require particularly timely service. For in-
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stance, the Windows-95/98 user may review his/her IRQ settings, typically finding
them allocated by the sound card, the game port, the hard disk, etc. (The settings
are found by selecting IRQ in the panel found by clicking on Control panel ->
System -> Device Manager -> Computer -> Properties.) Then note that the first
interrupt (IRQ 00, having the highest priority) is used by the “System Timer”
which then provides the time base for the entire operating system. Giving the
timer interrupt the highest priority, allowing it to interrupt other interrupts, is to
ensure maintenance of the time variable. Otherwise, a too excessive number of
interrupts could not be detected.

In embedded computers there are usually also some kind of time-out or stall-
alarm interrupt connected to the very highest (unmaskable) interrupt level. It is
then the obligation of the so called idle loop (the loop being executed when there
are nothing else to do) to reset that timer so it never expires. But if that should
happen, the CPU is overloaded and the controlled machine must be shut down
because without enough time for the feedback control the system may behave very
badly (crazy robot, crashing airplane, etc.). To prevent this, we will use special
programming techniques in later chapters. In desktop applications, on the other
hand, the user simply has to wait.

2.5.2 Pre-emption

When the scheduler, as a consequence of a timer interrupt, suspends execution
of one activity and lets the program resume execution at another point (where
execution was suspended at some earlier stage), we call it pre-emption. The term
is used also in connection with operating systems; pre-emptive multitasking. Pre-
emption means that execution may be suspended even if there is nothing in the
executing code that explicitly admits the change of execution point. We may say
that the system forces the application to give up the use of the CPU.

The opposite to pre-emptive scheduling is non-pre-emptive scheduling, which
means that execution is only suspended when there is some call of scheduling
functions or resource allocation. For instance, an attempt to open a network
connection may include waiting for name-servers and remote computers to reply.
Even if it is not desirable to wait, we know (and the compiler and run-time system
knows) that execution may very well be suspended. These so called blocking
operations are handled the same when pre-emption is used, but with pre-emption
the suspension may also be enforced.

Different types of pre-emption exist. In general terms, there are three alterna-
tives for the granularity of execution suspension:

1. The most primitive case is when pre-emption is not supported; execution
is only suspended when certain system calls are made. The advantage is
efficiency since the state of the execution is well known by the compiler and
run-time system. For instance, all temporary registers that by the compiler
are assumed to be destroyed by a function call, need not be saved. The
disadvantage is that an application (or function) written without considering
the need for other activities to execute concurrently will not give up the right
to use the CPU, and may therefore lock the system or make response times
too long.
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2. Execution may be interrupted/suspended between each line of source code.
From a programming point of view, it is very convenient to know that each
statement gets fully executed without interrupt. Early-days Basic inter-
preters often worked this way. One disadvantage is that complex statements
may delay change of activity too long. Not to interfere with other interrupt
services, interrupts such as the timer interrupt is served immediately and
ongoing execution may be marked for suspension. Another disadvantage
is then that the checking between each statement costs processing power.
An interesting version of this technique is implemented in the Lund Simula
system which by utilization of the hardware (Sun Sparc) performs the check
at almost no cost. The key drawback is, however, that concurrency requires
support from compiler and run-time system, which means that most avail-
able code (written in C/C++) cannot be used when timing requirements
are severe.

3. Execution may be interrupted/suspended between each machine instruction.
The advantages are that any sequential code (without compiler support)
can be interrupted, and that the interrupt and possible rescheduling will
be started immediately. There will, however, be some delay since we must
save the entire status of the execution (all registers etc.), and that may for
some types of hardware be slower than case 2. Another disadvantage is that
programming gets more complicated since it may be hard to know from the
source code if a statement is atomic or not.

Summing up advantages and disadvantages, and considering the importance of
timely operation also when non-concurrent code is used, alternative 3 is the best
choice. That solution is assumed in the sequel. In the Java case, it is not clear
what we mean by machine level. There are three cases:

• The Java program has been compiled into byte code which is then executed
on a Java Virtual Machine (JVM) hardware. Then, the machine instruc-
tions actually used are the byte codes, and the program may be interrupted
between each byte code which implies that a statement in the source code
may be partially evaluated.

• The Java program, again represented by its byte codes, may be run on a
JVM implemented in software. Internally in the JVM, there may be a so
called JIT (Just In Time) compiler which compiles the byte codes into native
machine code. The JVM may then permit pre-emption between byte codes,
or between machine instructions when performing a byte code, depending
on implementation. In both cases, the Java statements may be partially
evaluated.

• If we know what hardware (and OS) we will run our program on, there is
also the possibility to have a conventional compiler that compiles the Java
source directly into machine code. Also in this case, pre-emption on machine
level implies that expressions may be partially evaluated. For example,
assignment of a double variable may be performed partially, resulting in one
half of the bytes from the old value and one half from the new value for
another thread.
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Thus, from a programming point of view, it does not matter which of these cases
that describe the actual situation. The fact to consider is that our sequential
execution may be interrupted also in the middle of one Java statement. We will,
however, in some situations know that an operation is atomic (one byte code or
one machine instruction depending on the case) and then utilize that to simplify
the program.

2.5.3 Reentrance

Now when we have multiple points of execution in our program, and we realize
that access of shared data requires special care (which will be covered in the next
chapter), a good question is: What about shared functions? In other words: what
happens if the same function is being called concurrently from several points of
execution? We say that we re-enter the function, and if that is permitted and
working, we say that the code/class/function is reentrant.

Lack of reentrance is common problem in badly written C programs. The
reason is the use of static variables, i.e., variables that are allocated on a fixed
place in memory instead of on the stack or on the heap.

In most run-time systems, local variables in functions and blocks are allocated
(pushed) on the stack, which means that they are deallocated (popped from the
stack) when the PC leaves the scope. Data created dynamically, using operator
new in Java or C++, are allocated on the heap which is sometimes called the free
store. But also for heap allocation we usually have the reference to the object
declared locally in some scope which means that it is put on the stack. This is a
proper programming style which means that all data is pushed on the stack of the
caller. If, on the other hand, we use static variables, two callers of one function
will access the same local data (referred to by absolute addresses in the compiled
code of the function).

The real problem is when the one who wrote the function is not aware of con-
current programming. Example: A numerical equation solver was implemented in
C, and then it was packaged together with other routines in a library. To optimize
the code for the hardware at that time, the temporary variables of the algorithm
were declared static. The function was then successfully used for years on an old-
style UNIX machine, where each program only contains one point of execution
(except for the signal handlers). Then, the library was compiled and linked with
applications running on the newer so called multi-threaded UNIX dialects, such
as Sun Solaris, HP-UX 10 and later, and later versions of IRIX from SGI. It was
also used on the Microsoft Win32 platform. In all these cases, when using the
equation solver concurrently from different parts of the application, the results
were sometimes wrong. In this case, the function was correct as a program, but
not correct when used in a concurrent program where some interleavings resulted
in undesired mixing of temporary data from different equations.

Also in Java it is easy to declare static variables, but we should only do that
for so called class variables needed for the structure of our program, and in that
case we should treat them as other types of shared data (which we will return to).
Note that when you write an ordinary function, you cannot know if it later will
be used concurrently. In conclusion, one should learn concurrent programming
before doing any type of professional programming.
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2.6 Models of concurrent execution

The concurrency issues made our simple sequential execution model (from Section
2.1) more complex because we now have several sequences that interact with each
other. With each sequence, there are:

• A PC (the Program Counter) which according to the previous section refers
to the next machine instruction to be executed.

• An SP (the Stack Pointer) which refers to the stack of that particular exe-
cution sequence. On the stack, there are the activation records of all block-
s/functions that are currently entered, as required for reentrant code.

• The machine state (of the CPU or some virtual machine depending on the
implementation of the run-time system) holds part of the status of our exe-
cution sequence.

• If common resources (like shared data) are reserved in one sequence, that
affects the others and should therefore be dealt with somehow.

Continuing our attempt to bring order in the complexity by exploring fundamental
properties, some basic terms will now be described. First we have the following
two definitions:

Definition: A context is the state of an active program execution, which in-
cludes PC, SP, and machine state. From an operating system point of view, exe-
cution may also be associated with permission and user privileges which then may
be included in the context. In such a case we call it a process context or a heavy-
weight context. From this point on, we will use the former minimal definition
which is also called a light-weight context.

Definition: A context switch refers to the change of context typically performed
by some scheduler or operating system.

Since we aim at appropriate programming methods, there is the question about
what support we have from the language and from the programming interfaces
(libraries of available classes). This has a great impact on the way we have to
write our code. For instance, when programming in C, the language itself does
not give any support for handling concurrency which makes the use of special
libraries important (and tricky). In Ada there is language support in terms of
tasks and rendezvous, but using that support has a significant impact on both
design and implementation. A language with extensive support, like Occam, is in
danger of being too special and therefore not being widely used.

2.6.1 Fundamental abstractions
The question now is, to what extend should a general purpose programming lan-
guage support concurrency? As suggested by Buhr in a proposed extensions of
C++, it is appropriate to separate the context from the execution sequence as
such, and the following execution properties should be supported by the language:

Thread - is execution of code that occurs independently and possibly concur-
rent with other execution. The execution resulting from one thread is sequential as
expressed in ordinary programming languages such as Java. Multiple threads pro-
vide concurrent execution. A programming language should provide features that
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support creation of new threads and specification of how these threads accomplish
execution. Furthermore, there must be programming language constructs whose
execution causes threads to block and subsequently be made ready for execution.
A thread is either blocked or running or ready. A thread is blocked when it is
waiting for some event to occur. A thread is running when it is actually executing
on a processor. A thread is ready when it is eligible for execution but is not being
executed.

Execution state - is the state information needed to permit concurrent execu-
tion. An execution state can be active or inactive, depending on whether or not
it is currently being used by a thread. An execution state consists of the context
and the activation state. These are typically stored (internally in the run-time
system) in a data structure, which traditionally has been called process control
block/record (PCR). An inactive execution state is then completely stored within
the PCR, whereas the hardware related parts (registers, interrupt masks, etc.) of
an active execution state are stored in the hardware/CPU. Referring to the con-
text as the main item, we call the change between the active and inactive states a
context switch. The switch includes storing or restoring the hardware state, and
it occurs when the thread transfers from one execution state to another.

Mutual exclusion - is the mechanism that permits an action to be performed
on a resource without interruption by other operations on that resource. In a
concurrent system, mutual exclusion is required to guarantee consistent genera-
tion of results, and it should therefore be supported in a convenient way by the
programming language. Furthermore, for efficiency at run time, it needs to be
provided as an elementary execution property.

In an object-oriented framework, these three execution properties are proper-
ties of objects. Therefore, an object may or may not have/be a thread, it may
or may not have an execution state, and it may or may not have/provide mutual
exclusion. The latter means that it may or may not exclude concurrent access via
call of methods of that object. The next issue is to know: What are the possi-
ble and useful combinations of the execution properties? All eight combinations
(which would make up a 2 by 2 by 2 cube) is depicted in Figure 2.3. The numbers
in that table refers to the following items:

1. This is an ordinary object as known from object oriented programming, or an
ordinary piece of code in the case that object orientation is not supported.
This is the only case that programmers not acquainted with concurrent
programming use. A class programmed in this way can still be useful in an
concurrent environment if its member functions are reentrant, which they
are if only local data is used and the if language/execution supports recursion
(direct or indirect). Since there is neither a thread nor an execution state,
we say that the object is a passive object.

2. It is still a passive object if we add mutual exclusion, but only one thread at
a time may run the code of the object. This abstraction is called a monitor.

3. Having an execution state without having a thread permanently associated
with it forms an abstraction called a coroutine. A coroutine must be used by
a thread to advance its execution state. If you have multiple coroutines but
only one thread, only one coroutine at a time may execute. This is useful to
handle parallellity issues in algorithms or in simulations because there the
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Object properties Implicit mutual exclusion of methods
Thread Exec. state No Yes

Comment

No No Object Monitor Passive objects
No Yes Coroutine ’Co-monitor’ Not in Java

Yes No Not useful
Yes Yes Thread-object Task Active objects

— —

4

2

5 6

7 8

3

1

Figure 2.3: Fundamental properties of software execution. Language support for
an execution property is marked with “yes”. For mutual exclusion to be supported,
it must be implicitly obtained from the types or declarations.

(virtual) time of the model can be held or advanced arbitrarily. That is, the
real time used by a specific thread for its execution is unimportant, and a
single thread using multiple coroutines is appropriate. An implementation
based on coroutines can always be rewritten to work without them, but that
may require more complex data structures and code. In combination with
timer interrupts triggering a scheduler, coroutines can be used to implement
thread objects.

4. Adding mutual exclusion to coroutines is not really necessary in the case
of just one thread, and in the case that a group of coroutines run by one
thread interacts with other threads, this alternative leads to difficult and
error-prone programming. The name co-monitor is not established and this
case is neither used nor commented in the sequel.

5. A thread without an execution state cannot execute on its own, and bor-
rowing another thread for its execution does not provide concurrency. This
case it therefore not useful.

6. Also with mutual exclusion, this case is not useful for the reasons mentioned
in item 5.

7. An object with both thread and execution state is capable of execution of
its own. We call this an active object or a thread object. The problem is
that access to the attributes requires explicit mutual exclusion. That has to
be simple to express in the program in order to make this alternative useful.
Note that even if an active object calls member functions of other (active
or passive) objects, the execution of those functions is driven by the calling
thread, and the stacked activation records are part of the callers execution
state.

8. A thread object with implicit mutual exclusion is called a task. This ab-
straction can be found in the Ada language.

The abstractions supported by different programming languages differs. Con-
currency in the Ada language is based on the task, which in that language is
augmented with a specification of how such objects interact. Modula-2 provides
coroutines with pre-emption which allows a pre-emptive scheduler (supporting
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threads) to be built. Simula provides coroutines that, together with interrupts
checked between each statement, can be used to build a scheduler and thread
support. Neither Simula nor Modula support implicit mutual exclusion, which
means that shared data must be explicitly reserved by calling certain functions
for locking and unlocking. In C and C++, there is no concurrency support at all.

2.6.2 Concurrency in Java
So, what are then the design choices for Java? As with other parts of Java, we
find fair engineering choices rather than new unique features.

• There is no implicit mutual exclusion on object level, but individual methods
(and even blocks) implicitly provide mutual exclusion by the explicit use of
the synchronized keyword. Unfortunately, only code and not the accessed
data is synchronized. Some extra programming discipline is therefore still
required. Compared to having implicit mutual exclusion fully built into the
language, the advantage is that the programmer is more free to tailor his/her
code for specific application needs (such as efficiency).

• The notion of a thread object is supported via the object orientation by
inheritance from the Thread base-class. When inheritance is rather used
for other properties (recall that Java only provides single inheritance), the
interface Runnable can be used to add the thread property to an object.

• Coroutines are not supported. Normally, threads are used to achieve the par-
allel behavior of coroutines. Therefore, large-scale event-driven simulations
may be very inefficient/slow.2 In normal applications, including embedded
systems, thread objects provide almost the same execution efficiency. The
major reasons for omitting the coroutines in the Java language are: 1) The
language can be kept simpler. 2) Most programmers do not know how to
utilize coroutines anyway, particularly not in combination with threads. 3)
Having the programmer to use threads instead means that the run-time
system is free to let activities run in parallel if there are multiple CPUs
available.

• The threads are based on so called native methods, i.e., functions that are
implemented external to the JVM. In the case of thread support, native
methods may be implemented by the operating system. Thread creation,
interaction, and scheduling are then handled by the system functions which
are optimized for the actual hardware used (and run in parallel as mentioned
in the previous item). Of course there is a lack of elegance compared to a
system based on coroutines, having the scheduler implemented as in the
language itself. However, for the majority of applications running on an
operating system such as the Solaris operating system (the Sun UNIX which
supports up to 64 processors), using the native threads boosts performance
(without changing the source code).

2To overcome this (unusual) problem, a superset of the Java language and a dedicated
compiler and run-time system (replacing the JVM) could be developed. By implementing the
language extensions as a translator implemented in Java, generating ordinary Java-code, the
application would still be 100% Java when not optimized.

30 2016-08-29 21:53



2.6. Models of concurrent execution

In conclusion, Java provides passive objects and active objects. A passive object
is either an ordinary object, or it can be an object with no data exposed and all
methods synchronized which then functions like a monitor. There are, however,
no real monitors in the language; the programmer may expose data to concurrent
access and some methods may be left unsynchronized. Active objects are those
with the thread property, but we do not have (and we will not talk about) tasks
since we do not have threads with implicit mutual exclusion. We will therefore
only speak about classes, objects, synchronized methods, and threads. These are
our building blocks for concurrent and real-time programming. There is, however,
very little support for handling timing requirements, which we will return to in
the final chapters.

2.6.3 Processes and interrupts
In the above treatment of programming language support for concurrency, we
neglected two aspects, processes and interrupt service routines. In short, a process
is the type of concurrent execution we have when we run some program under an
operating system such as UNIX or Windows NT, and an interrupt service is the
concurrent execution we have when a hardware interrupt starts a new thread
of execution. These have to do with the interaction between the Java program
and its environment in terms of hardware or other programs. Since this is quite
dependent of the specific environment, it is probably a good idea not to provide
any language support. Instead, we use classes that provide certain programming
interfaces. Here, we will use the term interrupt to denote the execution carried
out to service the actual hardware interrupt.

Both a process and an interrupt contain threading and some kind of execution
state, but a process is more powerful than a thread whereas an interrupt is less
powerful. In more detail:

• A process may contain one or several threads which we then say are internal
to the process. The internal threads share a common address space in which
they can share data and communicate without having to copy or transfer
data via pipes or files. An object reference (or pointer in C/C++) can
be used by several threads, but sharing objects between processes requires
special techniques. The same applies to calls of member functions. All
threads of one process have the same access rights concerning system calls,
file access, etc. Different processes, on the other hand, may have different
access rights.
The concept of a process makes it possible to isolate execution and data
references of one program. By controlling the MMU (Memory Management
Unit) accordingly, an illegal data access (due to dereference of a dangling
pointer in a C program for instance) can be trapped and handled by the
operating system. To the UNIX user, there will be something like a “seg-
mentation fault” message. In Windows 95/98, which lacks this support, one
application programming error may crash other applications or even hang
the operating system.

• An interrupt starts a new execution thread, but it is subject to special
restrictions. First, it must complete without blocking because it may not
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change execution state (switch context). Second, the interrupt may only
start in a static function/method because this type of hardware call does
not provide function arguments such as the implicit this pointer. Third,
an interrupt may run within the context of another thread because the final
restore of used registers and the requirement of “execution until completion”
ensures that the context of the interrupted thread will be restored. The
priorities of interrupts are managed by the hardware.

Thus, whereas threads will be the most common way to accomplish concurrently
executing software entities, an ISR is sometimes more appropriate or even nec-
essary (device drivers), or there may be reasons for using (OS) processes instead
of threads. Device drivers cannot be (purely) implemented in Java, and such
machine-level programming is outside the scope of this book; it is well known
how to do that and there are several hardware/OS-specific manuals/books on the
topic. The issue of multithreading versus multiprocessing is more relevant, in
particular for large complex systems, deserving a more detailed treatment.

2.7 Multi-process programming

Programming languages include constructs for expressing the execution of one
program, while interaction between programs are handled via library calls. Exer-
cises in basic programming courses are solved by writing one program, possibly in
several files that are compiled separately, but linked as one executable unit which
is executed within one OS process. Possibly, event handlers (in terms of event
listeners or callback routines) or multiple threads are used, but it is one program
and one process sharing a common memory space. Note that even if we let dif-
ferent OS processes share memory (via system calls such as mmap in UNIX), we
have no language support for signaling and mutual exclusion; that too has to be
handled via system calls.

Using multiple threads (multi-threaded programming) can, in principle, as
mentioned, be used to create any concurrency. Also for utilization of multiple
CPUs (with shared memory), threads are enough. So, in real-world systems,
what are the reasons for using multiple processes instead of just multiple threads?
In short, reasons for dividing a software application into multiple OS processes
include the following:

1. Different parts of the applications need to run on different computers which
are distributed (not sharing memory).

2. Different parts of the application need different permissions and access rights,
or different sets of system resources.

3. In the Java case, different virtual machine properties (such as GC proper-
ties) can be desirable for different parts of the system, depending on timing
demands etc.

4. If the application consists of (new) Java parts and other (typically old, so
called legacy) parts written in other languages like C, these parts can be in-
terfaces and linked together using the Java Native Interface (JNI). However,

32 2016-08-29 21:53



2.8. Object interaction and encapsulation

if the virtual machine and the legacy code requires specific but different na-
tive threading libraries, this may not be possible (resulting in linkage errors).
This is solved by using multiple processes.

5. Licensing terms for different parts of the application can forbid execution
as one process. For instance, GNU-type of free software (GPL) may not be
linked with proprietary software.

6. A large application including code written in an unsafe language (such as
C/C++) will be more reliable if it is divided into several executable units,
each with its own memory space and with memory accesses checked by the
MMU (memory management unit) hardware. Instead of a ’blue-screen’ due
to an illegal access, just one part of the application may stop. The use of
protected memory is a main reason why large systems have been possible
to develop despite unsafe languages. Still, any program may contain fatal
bugs, but a safe language such as Java ensures that at least the errors are
kept local and exception handling works.

7. Libraries, subsystems, or legacy software in general may not be thread safe.
That is, variables (or attributes or fields) for storage of local data within
a function (or method or procedure) may be declared static. That used to
be a way to speed up programs and to save stack space, but the result is
that the function can only be called by one thread at a time. By obtaining
concurrency only via OS processes, we do not have to require the software
to be thread safe since each process has its own memory allocated by the
OS.

Sometimes you may want to develop classes and active objects which can be run
either as threads or as a processes, without changing the code. Such issues and the
principles of how to design and implement multi-process applications are topics
of Chapter 7.

Note that from a concurrent design point of view, neglecting implementation
issues such as if concurrency should be accomplished by threads or processes, we
usually use the term process to refer to a (concurrently executing) activity. This
is in line with non-technical vocabulary where a process refers to some ongoing
activity that cannot be completed immediately. (Pay attention to how the word
is used in the news, in economy, and in management principles.)

2.8 Object interaction and encapsulation

The interaction (information exchange) between objects may be synchronous or
asynchronous. It can be built into the programming language, and/or it can be
programmed. Synchronous communication can be implemented on top of asyn-
chronous communication, or vice versa.

Here, we consider synchronous communication as more fundamental. With
the execution properties of Java this simply means a method invocation, which
is based on ordinary function calls (works exactly as in C/C++ and most other
languages). Thus, it is built into the language. This is the most computing-
efficient way to achieve object interaction in compiled languages.

33



2. Fundamentals

The asynchronous communication means passing some kind of message with-
out requiring the sender/caller to wait until the receiver/callee replies; the caller
performs its communication asynchronously with the callee. The messages are of-
ten referred to as events. But note, however, most of the event processing done for
instance in Java’s AWT or Microsoft’s MFC actually constitutes synchronous com-
munication because there are no buffers providing the asynchronous behaviour.
It depends on the application demands if we want buffering or not. We will take
a closer look at this issue in later chapters.

In this chapter we have reviewed the properties of software execution, as ex-
pressed in the source code. The issues we are about to study are about software
development, assuming that the underlying (virtual) machine machine (and sys-
tem software) is correct. Assuming also that the compiler is correct (producing
binary code, preferably efficient, that behaves as expressed in the source code),
we might believe that we could do the programming in any (convenient) language.
However, if a program (for instance during testing) works correctly, and is correct
from the concurrency point of view, we cannot know that the program works cor-
rectly in another case, even if it was tested with all combinations of input data.
The reason is that most languages do not prevent programs with undefined be-
havior, which may result in damaged data within the same object or at any other
location within the program, or even outside the program if the OS does not pro-
vide memory protection. Undefined behavior can stem from use of uninitialized
data, dangling pointers, unchecked typecasts, etc. Therefore, in order to be able
to build systems that scale up for complex applications, we should use a language
that only permits well-defined programs. We call such a language safe.

Definition: A programming language is safe if and only if all possible execu-
tions of any program written in that language is expressed by the program itself.

In particular, Java is safe (but native/unsafe code can be called), C# is not
quite safe (safe except where the keyword unsafe is used, or when native code
is called), Ada is unsafe, while C and C++ are clearly unsafe. Every language
must permit unsafe code to be called, otherwise device drivers could not be used.
You may consider it as a deficiency that neither viruses nor device drivers can be
written in Java; some implementation has to be done in some other language. One
could also consider it as an advantage; hardware access (which will not be portable
anyway) has to be written well separated from the rest of the application. Those
(usually small) pieces of software also have to be more thoroughly debugged since
a programming error could crash the entire system without exception handling
of system shutdown working, opposed to safe programs which terminates in a
controlled way with supervisory functions and recovery systems still running. We
use a Java-based approach to embedded systems programming since we need to
trust their behavior.

2.9 Software issues

Based on the properties of software execution in general, and on the, for our
purposes, quite good design choices made in the Java language, we are now ready
to tackle the issue of concurrent and real-time programming. To sum up, we
should be able to develop software such that the following is obtained:

• Correctness from a concurrent point of view; all allowed interleavings as
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expressed in the source code should result in the same correct result inde-
pendent of the underlying scheduler or operating system.

• Correctness from a real-time point of view; the timing requirements are
considered so that control output is computed in time.

• Proper object oriented design and implementation; we use the established
principles of object orientation to improve structure, readability, maintain-
ability, etc. of embedded software.

• Appropriate trade-off between active and passive objects; the thread class
should be used where appropriate but not too excessive for efficiency and
readability reasons.

• Proper protection of shared resources; the concepts of semaphores, synchro-
nized methods, and messages (events) should be used appropriately.

Since software development tends to take a bigger and bigger part of system
development resources, it is very important that we are able to handle the above
items. In a wider perspective, there are different approaches to development
of embedded systems. The focus could be on hardware, control theory, and/or
software issues. All of these focuses are important for industrial development of
control systems. Here we approach the development of embedded software from
a programming point of view, leaving the rest (like selection of computing and IO
hardware, discretizing control algorithms, etc.) for other books.
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Chapter 3

Multi-Threaded Programming

Goal: To know concurrent object-oriented programming using standard
Java.

With understanding of application demands and concepts presented in previ-
ous chapters, we will in this chapter look into the issue of handling concurrency
within one program, utilizing the features of the Java-platform. Acquaintance
with both (sequential programming in) Java and object oriented programming
(OOP) is assumed. The following properties and restrictions should be clear to
the reader:

• One program means one executable unit in which different objects (possibly
concurrently) can address data in a common memory space. The program is
run either as one process using an Operating System (OS) or as an embedded
application linked together with a so called real-time kernel (or RTOS).

• As should be clear from the application examples, the software needs to
respond to concurrently occurring external events. Sequential computing
and handling of sequences of such events, expressed as ordinary sequential
programs, then has to be executed concurrently.

• By simply using the concept of thread objects, we assume that the underly-
ing OS/kernel (which includes a scheduler) schedules the concurrent threads
(normally many) for execution on the available CPUs (normally one). Hence,
the system interleaves the code at run-time based on system calls which have
been programmed according to this chapter.

• For the software to be correct, it should produce the correct result regard-
less of the actual interleaving. That is, the correct result should be obtained
for any interleaving (for given input sequences) that comply with the pro-
grammed system calls. The correct result may depend on time, and different
actions could be taken depending on time, but there is no guarantee con-
cerning the time of execution.

• Specifically, priorities are suggestions for the scheduling (and thereby the
timing) but the correctness may not depend on priorities. Furthermore,
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waiting a specified time (sleep) or until a specified time (sleepUntil) only
means that execution is suspended for at least that long. That permits
the scheduler to have other threads running during the specified amount of
time, but the software alone does not specify any upper limit of the real-time
delay.

These are basically the preconditions for the Java platform. It agrees well with
concurrency for Internet applications; the network exhibits unpredictable timing
anyway. It also agrees with the properties of the most well-known operating
systems such as Unix (Solaris, Linux, etc.) and Windows-NT. With no further
assumptions, our concurrent system is not a real-time system. (By simulating the
environment we can, however, simulate a real-time system and carry out almost
all of the software test and debugging.)

Hence, multi-threaded programming (i.e., concurrent programming based on
threads) should therefore not be confused with real-time programming which we
will cope with in later chapters, just a few further comments here:

In order to obtain correctness from a real-time point of view, a concurrent
program has to be run on a real-time platform. Such a platform must fulfil ad-
ditional requirements concerning CPU-speed, available memory, IO and interrupt
handling, scheduling algorithms, and the input to the scheduler from the applica-
tion software. Even on a non-real-time platform we may obtain a system behaviour
that appears to be real-time. A common approach, for instance when using PCs in
industrial automation, is to only let one or a few well-known programs/daemons/
services run, to have some activities run in some kind of kernel or driver mode,
to tailor the application software for improved handling of sporadic delays (for
instance by temporarily adjusting parameters and decrease performance), and by
using a powerful computer. Still, since the system is not guaranteed to produce a
quite correct result at the right time, it is not real time. But from an application
point of view, the system behaviour can be good enough. Therefore, in a practical
industrial context the borderline between real-time and concurrent programming
is not that clear.

3.1 Threads

For now we assume that our concurrent activities can run independently of each
other, with no need for synchronization and mutual exclusive methods.

3.1.1 Thread creation
At start of a Java Virtual Machine (JVM), the so called main thread starts exe-
cuting the Java program by calling tmethod main of the class given to the JVM.
In case of an applet, the same applies but then the main method is part of the
host application, which in turn calls the applet’s init method. To have another
thread running, a system call has to be done (within the JVM or to the OS, at
this stage we don’t care which).

In most programming languages there is no built-in support for concurrency,
and creating new threads has to be done via a platform and language specific
system/ library call. In the Java platform, we have to create an object of type
java.lang.Thread and call its method start (which is native, i.e., not written in
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Java). The caller of start returns as for any method call, but there is also a
new thread competing for CPU time. The newly created thread must have an
entry point where it can start its execution. For this purpose there must be a
runnable object available to the thread object. A runnable object provides a
method run according to the interface java.lang.Runnable; that interface simply
declares a public void run() and nothing more. It is that run method you should
implement to accomplish the concurrent activity.

What run method to be called by start is determined at thread-object creation
time, i.e., when the thread object constructor is run. There are two alternatives
depending on what constructor that is used, extending a thread object or imple-
menting a runnable object:

• By extending class Thread, Runnable will be implemented since public class
Thread extends Object implements Runnable. In other words, this will be
an instance of Runnable. The default constructor will select this.run as the
beginning for the new thread.
Advantages with this alternative is that you can override also the start
method (to do some things before/after thread creation/termination, call-
ing super.start in between), utility methods of class Thread can be called
without qualification and asking the run-time system for the currently exe-
cuting thread (described in the sequel), and the inheritance is a good basis
for developing further threading subclasses (as done in later chapters).

• By implementing the Runnable interface, the object can be passed to the
Thread constructor which then will use the run of the supplied object as the
beginning for the new thread. The advantage with this approach is that the
(in Java single) inheritance can be used for other purposes, such as inheriting
graphical properties.

In short, as indicated in the second item, which alternative that is most suitable
depends on the primary issue of the software. For instance, a graphical user
interface using the javax.swing classes and only some threading for handling the
network will probably inherit graphical properties and implement Runnable when
needed. For an embedded control application, on the other hand, threading (and
timing) is a primary issue and inheritance from class Thread is a natural choice.

Some programmers prefer to always use the Runnable alternative as their
standard way of doing things, whereas others always create Thread subclasses
(sometimes having an internal thread object when there is a need to inherit from
other classes). In the sequel, threading is the primary issue so we will mostly use
Thread as a base class, but utilizing interface Runnable is covered as well.

3.1.2 Time
Even though concurrent programs do not ensure timing, it is very useful to let
actions depend on real time, i.e., reading the real-time clock which is available
on any useful computing platform. In Java the default time unit is milliseconds,
and the current clock time is obtained by calling System.currentTimeMillis which
returns the time in milliseconds counted from beginning of 1970. Since the return
value is of type long, the y2k type of problem that comes with the finite time
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range is quite far in the future (year 292272993, which should mean no problem
for most applications).

The advantage with currentTimeMillis stored in a built in numeric datatype
(long) is that it can be conveniently used for computations. For human-readable
time Java also provides a Date class which also copes with time zones, locales,
and the like. That is, however, a matter of formatting and for our needs it is the
system time in milliseconds that is relevant.

Assume we want to compute the trend (or numerical derivative) of an analog
input signal. Further assume we have a method inValue that handles the AD
conversion and returns a scaled value as a float, and let us say that we have an
infinite resolution in value. Concerning resolution in time, we have the millisecond
time described above. That time is updated via a clock interrupt routine in the
JVM or OS. Some embedded computers are equipped with a high resolution real-
time clock, but using it would require a native method and loss of portability.
Using only the standard 1 ms resolution, an attempt to compute the trend could
be:
1 float trend() {
2 float x, x0 = inValue(); // [V]
3 long t, t0 = System.currentTimeMillis();
4 while ((t=System.currentTimeMillis())==t0) {/*Busy waiting.*/};
5 x = inValue();
6 return (x-x0)/(t-t0)*1000; // [V/s]
7 }

With an input signal that increases constantly with 1 V/s we would like to obtain
the value 1.0, but already with such a small piece of software it is hard to foresee
the value actually returned. Let us look into a few basic aspects:

• Time quantization: Waiting for the next ms does not mean waiting for 1 ms.
In fact, running on a 100 MHz CPU it may take only 10 nano-seconds (1
CPU cycle) until a new clock interrupt is served and the time (in software) is
incremented. The real time between the readings will then be only the time
to run lines 2 to 5, plus the service time for the clock interrupt, say 0.1 us
giving a relative error of 1000000%! Ignoring the (quite small) computation
time we see that even with the same numerical time values, the difference
in real-time between two time readings (depending on when during the so
called tick period each reading was done) can be up to (but not quite) two
clock ticks.

• Scheduling: It can on the other hand also be the case that the new clock
tick causes another thread to be scheduled and the next reading takes place
one second later. So even with a maximum of two ticks (2 ms) quantization
error, the maximum trend error will be 0.2% Note again, the actual schedule
(and thereby the returned value) is not expressed in the program; it depends
on the system.

• Efficiency: The longer execution is suspended between lines 3 and 4, the
better the estimation of a constant trend gets1. The waiting for the second

1For a changing input value, however, we need a short delay to get a fresh estimation. In real-
time software we need to manage such trade-offs and preferably express the required execution
timing in the source code, or we have to impose requirements on the run-time system. For now
we only deal with time-dependent software which should not be confused with real time.

40 2016-08-29 21:53



3.1. Threads

sampling time above was done by a so called busy wait. In rare situations
this way of waiting for a condition to be fulfilled can be useful, but especially
for longer delays it causes efficiency problems (and also response problems
if real time is considered). A busy wait actually asks for 100% of the CPU
time. A better approach would be to inform the thread scheduling that we
permit other threads to run for a certain period of time. That is the purpose
of the sleep method treated below.

• Time-stamp deficiency: Suspended execution (and incrementing time) be-
tween lines 2 and 3, or between lines 4 and 5, also causes a bad trend error
to be computed. This holds regardless of how small the time increments are,
that is, even with the high resolution clock mentioned above. Also, if we
swap lines 2 and 3, the program should be the same from a sequential com-
puting point of view, but due to the System call it is not; the t can deviate
in different directions which creates trend errors in different directions.

The fact that we care about when an input value was sampled can be looked
upon as if we would like to have a time-stamped value. That is, the value and
the time of sampling it should be correctly packaged in a single object, which
the inValue method (in this case) should return. From a software point of view
we will later work with such objects (of type RTEvent), but creating that object
in this example typically requires native or hardware support depending on the
system and its timing requirements. In a pure Java and concurrent setting, some
improvements can, however, be made. For example the clock can be read before
and after sampling:
1 long timestamp , t0, t1; float x;
2 do {
3 t0 = System.currentTimeMillis();
4 x = inValue();
5 t1 = System.currentTimeMillis();
6 } while (t1-t0 > eps); // eps is small, possibly zero.
7 timestamp = (t0+t1)/2; // Statistical improvement.

The disadvantage is that on a heavily loaded system, with certain scheduling,
it can take a quite long time until the do-loop finishes. Limiting the looping
by using a for-statement instead would be another solution which can easily be
accomplished by the reader.

Despite the ideal setting of this example, we found all these problems. With
measurement noise and input value quantization the situation gets even more
severe.

3.1.3 Sleeping
By replacing the comment /*Busy waiting.*/ in the above example with a call
to sleep(1) (defined in class Thread), the efficiency issue is solved. The purpose
of sleep is to provide a way of informing the scheduler that other threads may
run during that long time from now, and that the calling thread should not be
rescheduled for execution within that time. By calling for instance sleep(500), a
minimum discrete time delay of 500 is obtained, which means (due to the quanti-
zation in time as described above) a continues/real-time delay that is greater then
(but not equal to) 499 ms.
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Assume you want to do something approximately every new second, such as
updating a progress bar while downloading a file from Internet. We may have a
piece of code like

1 long t, t0 = System.currentTimeMillis();
2 while (!transferFinished()) {
3 t = System.currentTimeMillis();
4 displayProgress(t0, t);
5 Thread.sleep(1000);
6 }

If this code is in a subclass of Thread, the Thread qualification before sleep can
of course be omitted. Since sleep is a static method, it can be called without
having an instance of a thread object. In fact, even if you have a thread ob-
ject threadOne, and call threadOne.sleep(1000) from another thread object (or
any object), the calling thread (i.e., the thread of execution, not the thread ob-
ject) will be put to sleep while threadOne is not effected. This is because sleep
first obtains the currently executing thread, which you can also do by calling
Thread.currentThread(), and then that thread (the caller of course) will sleep.
In other words, Thread.sleep(t) is the same as Thread.currentThread().sleep(t),
and a thread can put itself to sleep but cannot put another thread to sleep. If
that should have been possible, certain restrictions on run-time systems and code
optimizations would need to be imposed, resulting in decreased (possible) perfor-
mance.

Note that sleep(1000) above does (in most cases) not give an update every
second; the 1000 is a minimum sleeping time but there is no strict upper limit.
The actual time before execution continues after sleep typically depends on the
processor load. Furthermore, the sleeping for 1000 ms is from the time that called
starts executing in the JVM or OS with interrupts disabled. Any time increments
before then results in that much longer period of time for the update. Most often,
especially in control applications, it is a periodic behaviour that is desired.

We have a similar situation if we in our example wants to call displayProgress
every second. Still we do not impose any upper limit on the waiting for each new
second (which would be a real-time requirement), we just require no long-term
drift as long as the computer is not permanently overloaded. This is accomplished
in the following:

1 long t, t0, diff;
2 t = t0 = System.currentTimeMillis();
3 while (!transferFinished()) {
4 displayProgress(t0, t);

5 t += 1000;
6 diff = t - System.currentTimeMillis();
7 if (diff > 0) Thread.sleep(diff);
8 }

Note that t now is ideal, not reflecting temporary excessive delays. To facilitate
implementation of periodic activities, there should of course have been a method
sleepUntil in class Thread, but there is not. Even if it can be emulated as shown,
an increment of the real time after assignment of diff but before calling sleep
results in a requested sleeping time that is too long. That does not really matter
since we can be delayed after the sleeping anyway. (But from a real-time systems
point of view, it would be preferable to correctly inform the real-time scheduling.)

42 2016-08-29 21:53



3.1. Threads

3.1.4 Race conditions
Knowing how to create multiple threads, let us make a multi-threaded version
of the standard HelloWorld program. Consider the following example (where
exceptions have been omitted for clarity):

class HelloWorld extends Thread {
public static void main(String[] arg) {

System.out.print("Hello ");
new HelloWorldApp().start();
sleep(1);
System.out.println("World!");

}
public void run() {

System.out.print("and goodbye ");
}

}

A few test runs on a 200MHz Pentium-MMX running Windows-NT4 gave:
> javac HelloWorld.java
> java HelloWorld
Hello and goodbye World!
> java HelloWorld
Hello World!
and goodbye
> java HelloWorld
Hello World!
and goodbye
> java HelloWorld
Hello and goodbye World!

Hence, the output from the program varies from time to time. In most cases we
need a well defined output, independent of the timing. For instance, "Hello" and
"World!" could correspond to parts of a ticket printout and the printing of "and
goodbye" could correspond to the result from a data-base access. Then waiting for
the data-base result by calling sleep(1) clearly is the wrong way of waiting since
it makes the correctness of the output dependent on the timing of computing
platform. The problem is, however, that developing and testing the application
on one type of machine does not imply correct output on another (customer)
machine. In particular, if the machine is a robot or a vehicle (instead of a desktop
computer), we certainly need additional rules for how to program.

Note that even if we would know the properties of the execution envi-
ronment (OS, CPU-type, clock frequency, speed and amount of memory, other
applications, level of patches or service packs, etc.), and testing verifies the cor-
rectness of the system, the program as such is not correct from a con-
currency point of view.

3.1.5 Scheduling – Priorities
The number of concurrently executing activities (threads or processes) is in prac-
tice always greater than the number CPUs available, which implies that all work
cannot be worked on immediately. The support for concurrent execution (multi
threading etc.) solves this problem, if we have no demands on timely response.
In other words, for purely concurrent software, we can let the run-time system
schedule our activities in any feasible way that lets all activities run. However,
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if the application requires certain response times or performance, in particular
when the CPU load is high, we may need to tell the run-time system (that is, the
scheduler) what work should be done first, and what activities that can wait.

Consider the (so far most common) case with a single processor, and compare
with every-day life at home, in school, or at work. Being just one person but with
many things to be done, is a situation that all readers should be familiar with.
People differ in their principles of ’what to do first’; they are using different sorts
of scheduling. The same applies to operating systems. In both worlds, the way of
selecting ’what to do next’ is closely related to the externally experienced prop-
erties of the person/system. Doing the right thing first is often more important
than doing it in a superior way.

For now, we restrict the discussion to a single multi-threaded application run-
ning on one JVM. For embedded computers, that corresponds to the software
running on one processor, not necessarily using a JVM since cross compilation is
often more efficient but from a programming point of view that does not matter.
Thus, we need some method to inform the scheduling (in the OS, RTOS, kernel,
or JVM) about the preferences of our application.

Expressing importance

In a company you may hear things like: "This is a high priority project...", "We
have to put priority on...", or "That bug has to be fixed, with the highest priority.".
Likewise, the by far most common way to influence the scheduling in operating
systems is via priorities. Since Java is designed to be portable, providing the
ability to set priorities on threads is a natural and understandable choice.

In the java.lang.Thread class there are set- and get-methods for the priority of
the thread. Additionally, there are three integer constants named MIN_PRIORITY,
NORM_PRIORITY, and MAX_PRIORITY, which can be use to set typical levels of impor-
tance. The actual values of these constants are not defined and the number of
priority levels are not defined either in the Java specification; you can only assume
that

MIN_PRIORITY < NORM_PRIORITY < MAX_PRIORITY.
The rest is up to each platform and Java implementation. On, for instance,

Solaris the constants have values 1, 5, and 10 respectively. Thus, a higher number
means a higher priority. A new thread by default gets the priority NORM_PRIORITY

but that is not required in any standard. A thread created in a Applet, or the main
thread of the applet, can only get priorities in the range 1 to 6 as defined for that
ThreadGroup (refer to the Java API documentation, thread groups are omitted
here) which is to ensure that the host application running the applet (typically
the web browser) will not be disabled (starved in terms introduced later) by an
applet consuming all of the CPU power.

The lack of a well defined meaning of priorities in Java may give the impression
that they are almost useless. We should, however, be aware of:

1. The correctness of our software, except for timing which is what priorities are
for, should never depend on priorities. For instance, it should be considered
as an error to accomplish mutual exclusion by utilizing the knowledge that
one thread will have a higher priority than another. Even if that always
is the case, there is no guarantee that priorities are strictly obeyed on all
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platforms. That is, using an RTOS a higher priority thread always given
precedence in favor of a low priority thread, but on Solaris, Linux, Windows,
and other desk-top and server platforms, you cannot know. Those types of
systems are optimized for overall performance and can in principle not be
trusted for hard real-time systems. So, if embedded software requires a
certain RTOS anyway, additional requirements on the number of priorities
etc. go along the the system requirements. Still, the logical and concurrent
behavior of the system should remain on any Java-enabled platform.

2. An application that depends on scheduling principles and the number of
priority levels can obtain the type of OS and other properties at run time
(e.g., by calling
System.getProperty(“os.name”);), and behave accordingly. A OS-dependent
but portable application simply has to cope with reality (rather than Java
principles).

3. Priorities are managed globally for the software application and they influ-
ence the global properties of the system. However, a certain thread created
in a class library or in a third-party component too often gets a (usually
hard-coded) priority that does not suit the rest of the system. Furthermore,
the desired system properties are not necessarily easy to express using pri-
orities. Response time, control performance, quality of service, etc. are
more related to end-user values. Obtaining priorities from such properties
is outside the scope of this chapter. Another approach would be to have
a real-time platform with built-in timing and/or performance optimization,
perhaps not using priorities at all. The classical approach, found in almost
any OS is to use priorities, and that is also what Java provides. The ability
to run the software on any Java platform is a must. Therefore, additional
supporting classes are needed for implementation of real-time systems, but
for now we stay with multi-threaded programming and the standard and
portable Java features.

The conclusion is that priorities, as defined in Java, are useful for simple tuning of
application performance and responsiveness, but for large-scale real-time systems
we need additional supporting classes but that is a later issue.

3.1.6 Thread interruption and termination
There is much to say about thread termination, but in short there are some simple
rules to follow:

1. Return from the run method terminates the thread. After the run method
(which was called by the thread) returns or runs to its end, control is back
into the system call that started the thread (due to the call of start). That
call then completes by terminating the thread. Thereafter, calling the isAlive
of the terminated thread object returns false.

2. If one thread wants to terminate another thread, that other thread has to be
prepared to commit suicide. Since there is no predefined methods for doing
this, it has to be accomplished by the programmer, either by changing some
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state variable (such as a field/attribute named terminate), or by interrupting
the thread which then (by convention) knows that it should die whenever
interrupted.

3. The interrupt method can be used as “otherThread.interrupt();” to inter-
rupt another thread. However, unlike hardware interrupts, the other thread
is not really interrupted; it continues its execution as usual, except that a
predefined internal state variable has registered the interrupt request.

4. Each thread that should be possible to interrupt has to explicitly test if it has
been interrupted. For this purpose, there is a static method Thread.interrupted()

that returns true if interrupt has been called for the currently running
thread. Note that this method also clears the interrupt flag. To check if
another thread (i.e., not the currently running one) has been interrupted,
isInterrupted() has to be called for that thread object. That does not effect
the interrupted status.

5. If a thread was interrupted when blocked on a blocking system call, such as
sleep, it is scheduled immediately for execution but throwing an InterruptedException.
In this case the interrupted flag is not set, but by catching the
InterruptedException we can determine that the thread was interrupted.
Thus, it is the execution of the catch clause that tells that the thread was
interrupted, and the exception handling decides if the thread should resume
its work or terminate (by returning from run).

6. In accordance with the previous item, if a thread already has been inter-
rupted when a system call (that throws
InterruptedException) is issued, the exception is thrown immediately with-
out blocking.

Due to these rules, the standard way of implementing a thread is to have a run
method looking like:

public void run() {
while (!isInterrupted()) { // !interrupted() OK in most cases.

// here is where the actual code goes....
}

} // End of life for this thread.

After the loop, isInterrupted can be used to check how the loop was exited.
Instead of terminating after an interrupt, you can have an outer loop to re-
store the state and continue execution. Additionally, you may need to catch

InterruptedException, or other Throwable objects such as those of type Error, ei-
ther outside the while loop above or at several places inside that loop depending
on the code. Note, however, you should normally not try to catch and recover from
an InterruptedException thrown from a blocking call that have to do with access
or allocation of shared resources/data, if resources are not left in a consistent
state (bank transaction not half made, etc.). When resuming normal operation
after such a call has been interrupted, there is a big risk that execution continues
as if resources where locked even if that is not the case. Having each method
to pass the exception (instead of catching it locally) to the caller, by appending
throws InterruptedException to its signature, messes up the code too much. In
practice, the result is often empty catch-clauses with an intention to add the code
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later, which then never is done and the application silently compiles and runs,
but interrupting it may result in disaster. The recommended approach there-
fore is to always convert an InterruptedException to an Error. For this purpose,
we will later use the class RTInterrupted which is a subclass of Error with some
enhancements:
try {

argout = methodThrowingInterruptedException(argin);
} catch (InterruptedException exc) {

throw new RTInterrupted(exc.toString());
}

which means that the method containing the above code is not defined to throw
any InterruptedException, and the caller(s) of that method do not need to be
cluttered with try-catch clauses. Recall that the intended use of the Error class is
for throwing severe exceptions that the user is not expected to catch, but he/she
can catch them if that is needed. Hence, throwing an error when a resource
allocation request is interrupted agrees well with the Java API conventions.

A different case is when an independent sequence of operations is to be inter-
rupted. Sequencing on an application level (that is, advancing the state of the
application, not caring about advancing the program counter for each instruc-
tion) is typically done by waiting for time to pass, or on certain conditions to be
true. Interrupting such a thread, and letting the interrupted thread handle the
Exception/Error, can be a perfectly acceptable thing to do:

• If the interrupted sequence is a web-server transaction, closing files and
returning any resources in their initial state should be possible and straight
forward.

• If the operation of an industrial robot is interrupted because it detects a
human worker within its working range, ongoing motions have to stop but
the work-piece should not be dropped, which requires engineered exception
handling and not simply termination of the thread.

Still, it is better to throw an Error which is much more likely to reach the outer
level of error handling despite ’lazy’ (or ’too busy’) programmers. Do like in the
code example above.

Aliveness

Since interrupt is more of an order to commit suicide than actually interrupting,
the interrupted thread may continue for quite a while before it is terminated/dead.
It is sometimes useful to know when the thread really has stopped its execution.
That is done by calling the isAlive method of the thread object. A live thread
object is what we call an active object.

Notice that even if a thread has terminated, the object as such remains (as
the remains :-) but after termination, even when isAlive returns false, it cannot
be brought back to life by calling start again. Thus, a thread object can only be
started once. However, trying to restart a terminated thread is silently accepted
with no errors or exceptions; you have to keep track of the thread status yourself.

If calling isAlive returns true, the thread was alive at the time of the call but
it could be dead right after if it was just about to terminate; we would need to
lock the object and check both aliveness (via isAlive) and termination status (as

47



3. Multi-Threaded Programming

determined by isInterrupted and user code) if we need to be sure that the thread
still is running (accepting new orders etc.). If calling isAlive returns false, the
thread either has not been started, or it has terminated. If a call of start results
in isAlive returning true, it was not started. Otherwise, it was terminated.

Joining

You normally do not call isAlive because normally a thread is started right after
the thread object was created, and if you need to await the thread termination
you preferably suspend execution until that happens (not wasting CPU-time on
polling the aliveness status). For this purpose, there is a method join which blocks
the caller until isAlive of that thread object returns false. Details:

• Calling join of a thread object which already has terminated simply returns
without blocking.

• A thread object calling its own joinmethod (i.e., this.join() or currentThread().join())
will put itself into a state that we could call ’coma’; alive sleeping until the
death, unless interrupted which will permit recovering.

• Joining a thread object that has not been started returns directly (without
errors) since it is not alive (yet).

In practice, in your own code if you are aware of the limitations, thread termination
is not a problem. To specify a time-out for joining a thread, there are versions of
join with time-out arguments.

Inappropriate thread methods

Among the useful and well designed methods of class Thread, there are also some
’features’ that resembles ’bugs’ and should be avoided.

First there is a method destroy which is supposed to actually interrupt and
kill the thread. However, allocated resources could then not be returned since
that (for run-time reasons) has to be done by the thread that is going to be killed.
Since destroy most likely would leave the application in a badly working state,
it should not be called. It is even written in the Java2 documentation: “This
method is not implemented”.

There is also a method stop which in the Java2 API documentation is described
as “inherently unsafe ..., potentially resulting in arbitrary behavior”. Its purpose
is/was to force the thread to stop executing. It is unsafe for the same reasons as
destroy is. Actually calling stop will permit some cleanup and return of resources
to be done, but that exhibits undefined timing and resource management on the
user level cannot (in practice) be handled in a system routine such as stop.

In the beginning of the real-time programming subject, students often want to
use something like stop (or even destroy) instead of dealing with actual execution
and OS properties. It is hard to understand why the Java engineers @sun.com
introduced stop in the first place.

Finally, there are two methods that could have been useful if designed properly:
suspend and resume. The problem is that, as their names suggest, suspending and
resuming execution was accomplished as a mechanism well separated from the
ordinary thread management. With two unrelated ways of suspending execution,
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there was a big risk for a set of threads to be (depending on timing) permanently
blocked. These methods and their deficiencies are outside the scope of this text.

3.1.7 The Thread class
We are now ready to sum up the content of class lava.lang.Thread which in a
abbreviated form can be expressed as shown below(all shown members are public
which is omitted, and deprecated methods are not shown). The task to be carried
out by the thread is implemented in the run method, either by subclassing Thread
or by implementing the Runnable interface which simply states the presence of
the run method:

public interface Runnable {
void run();

}

When implementing Runnable, Thread.currentThread() should be called to get to
the public non-static methods of the class Thread, which in short includes the
following:

public class Thread implements Runnable {

static int MAX_PRIORITY; // Highest possible priority.
static int MIN_PRIORITY; // Lowest possible priority.
static int NORM_PRIORITY; // Default priority.

Thread(); // Use run in subclass.
Thread(Runnable target); // Use the run of ’target’.

void start(); // Create thread which calls run.
void run() {}; // Work to be defined by subclass.
static Thread currentThread();// Get currently executing thread.

void setPriority(int pri); // Change the priority to ’pri’.
int getPriority(); // Returns this thread’s priority.

static void sleep(long t); // Suspend execution at least ’t’ ms
static void yield(); // Reschedule to let others run.

void interrupt(); // Set interrupt request flag.
boolean isInterrupted(); // Check interrupt flag of thread obj.
static boolean interrupted(); // Check and clear for current thread.

boolean isAlive(); // True if started but not dead.
void join(); // Waits for this thread to die.
void join(long t); // Try to join, but only for ’t’ ms.

}

Note that the Thread class does not relate to real time. Instead, the real-time
clock is obtained by calling the System.currentTimeMillis(); which returns the value
of the real-time clock as a long expressed in milliseconds. See the JDK class
documentation for further information.

3.2 Resources and mutual exclusion – Semaphores

Semaphores are of interest as a basic mechanism that is available in one form or
another in all (?) operating systems and real-time kernels. In some industrial sys-
tems, the only available mechanism is semaphores, on which other concepts could
be built. Also historically, the semaphore was the first (introduced by Dijkstra
in 1968) principle for efficiently handling mutual exclusion and synchronization,
solving problems such as the bank account transactions described earlier.
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A Semaphore is a mechanism that can be used for implementation of the fun-
damental abstractions shown in the previous chapter. Such a mechanism requires
certain features from the operating or run-time system, and cannot be purely im-
plemented in, for instance, Java without help from native systems calls. Therefore,
the semaphore methods we are about to introduce should be considered as system
calls (part of the operating or runtime system) with certain properties, not to be
confused with ordinary methods that can be implemented on the Java level.

We may, on the other hand, be able to implement semaphores in Java if we
can use some built-in or native Java feature (synchronized methods in this case)
to accomplish suspension of execution until certain conditions are fulfilled. Al-
ternatively, some way of implementing atomic methods could be available (such
as native methods for disabling and enabling interrupts). An atomic method is
a method that cannot be interrupted by execution of other parts of the software.
Anyhow, no matter how we implement semaphore mechanism, natively or built
on some Java feature, we think of the methods as atomic and with properties
according to the sequel.

3.2.1 Semaphore methods

Recall that semaphores are the primary mechanism in many small embedded
systems, so we need semaphore classes that model the semaphore concept and
supports cross compilation to native code. Linking with native implementations
of semaphores as provided in most real-time kernels then permits full efficiency
also when special hardware is used. To this end, let us first study the concept and
then look into the implementation.

Core operations

A semaphore is basically a non-negative integer-valued counter with two atomic
methods and a queue for blocked/waiting threads. The methods (with return type
void) of interface Semaphore are:

take(); decrements the counter if it is positive, but if the counter is zero, ex-
ecution of the caller is suspended and that thread is put in some kind of
queue waiting for the counter to become positive. Hence, an operation that
increments the counter must check the queue and wake up the first thread.

give(); increments the counter and checks if there are any threads waiting in the
queue. If so, a thread is made ready for execution, which can resume when
the caller of give has completed its (atomic) call of give.

Apart from some initialization of the counter when the semaphore is created/ini-
tialized, these two methods are the only two methods available according to the
original definition. When a blocked thread is placed in the waiting queue depends
on the scheduling of that particular run-time system. Normally, threads are or-
dered according to priority, and equal priority threads are placed in the order they
arrived (FIFO).
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Supporting timeout

In addition to the core methods, for convenience, the following method (return
type boolean) is also defined:

tryTake(long timeout) The same as take, but the caller gives up taking the
semaphore after timeout milliseconds. If the semaphore was taken, true is
returned. Otherwise false is returned.

Using this method requires some care. First, there is no guarantee that the caller
is unblocked exactly after the timeout time, it can be later (but not earlier). The
release time may depend on what other threads that have issued blocking calls
with timeouts, the CPU load, etc. Thus, the same type of problems as with the
Thread.sleep method.

Secondly, the returned boolean value must be taken care of (that is not checked
by the compiler in Java, as in C/C++/C#). If false is returned, perhaps after a
long time of operation, and not considered due to a programming error, shared re-
sources can by accident be accessed without mutual exclusion. The name tryTake,
instead of overloading on take for instance, is selected to emphasis the character-
istics of the operation.

Finally, consider if your design is right if you use the tryTake operation. It
should be used instead of implementing additional timer threads, but not for cyclic
polling of the semaphore value. Some systems provide a way of polling the value
without actually trying to take the semaphore. Since such a method easily could
be misused by unskilled programmers, such a method is not provided here.

Semaphores in other systems

When proposed by Dijkstra, the original name of the take operation was P, from
the Dutch word Passeren, referring to the situation that the thread wants to Pass.
The original name of the give operation was V, from Vrijgeven, referring to the
release (’free-giving’) of the resource. The names P and V are still used in many
systems today.

The most common names for take and give are wait and signal, respectively.
These names are more expressive and relates well to the English terms used for
railroad semaphores. The semaphore concept actually originates from railroad
traffic, where the tracks are the resources. As we will see later, wait is not a useful
name for a semaphore method in Java since it already is a final method (with
another meaning) in class Object.

Looking for appropriate names for the semaphore operations, the best choice
(according to the author) was found in VxWorks, a major RTOS from WindRiver
Systems Inc. That C-based API contained the functions sem_take and sem_give,
both taking a pointer to the semaphore data structure as an argument. In object
oriented terms, the argument is the object (the so called this pointer named as
the object), sem is the name of the class, and the _ by convention corresponds to
method selection in the global namespace in C.

Correspondingly, the tryTake method is available in some systems, and if not,
it can always be implemented using an extra (timer) thread. Typically, there is
one timer thread serving all timeout requests.
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: Executing

: Potential blocking

: Blocked
Thread 

(active obj.)
Semaphore 
(passive obj.)

Figure 3.1: Symbols used for the (UML/OMT-based but enhanced) sequence
diagrams.

3.2.2 Using semaphores

The (atomic) semaphore methods can be used in different ways to solve concur-
rency problems, or semaphores can be used to create other abstractions. Let
us therefore review some generic situations when semaphores can be used. To
illustrate the sequencing and blocking that takes place when threads call the
semaphore methods, we use an UML (or OMT) based notation, with some extra
symbols to emphasize the concurrency and blocking issues. Figure 3-1 explains
the notation used.

Signaling

The counter contained in the standard type of semaphore, according to the de-
scription above, is mainly useful for signaling. That is, when one activity has
some result or resource ready for use by some other activity, the producing thread
signals to the consuming thread. If the producer signals (calling give) several
times before the consumer waits (calling take), the “non-negative integer-valued
counter” contained in the ordinary type of counting semaphore results in that
take needs to be called as many times as give has been called. In other words,
the counter comprises a memory which implies that signaling in advance is not
forgotten. Figure 3.2 shows how a thread T1 signals to a thread T2; T1 can run
in advance whereas T2 can catch up with earlier calls of give but T2 never runs
in advance of T1. This type of semaphore is referred to as a counting semaphore.

Sometimes we do not want the signaled thread, T2 in this case, to catch up
when give has been called multiple times. That can be accomplished by using a
boolean instead of a counter as the state variable of the semaphore. That corre-
sponds to the counter being one binary digit, and such a semaphore is therefore
usually called a binary semaphore.

A less usual type of semaphore is themultistep semaphore, which is useful when
we want successive calls of take to be atomic. For instance, a producing thread
signals whenever a byte of data is put in a buffer, but the consuming thread is
reading a unicode (two bytes per character) string. We then want to call take(2)
to only get unblocked when there are two bytes available. One can always solve
the problem without such a multistep feature, but using a multistep semaphore
can be more convenient and efficient.
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takegive

take

signalT1 T2

give
give

take
take

Figure 3.2: A thread T1 signaling to thread T2 via a counting semaphore. The
counter is assumed to be initialized to zero, resulting in the first call of take

blocking its caller. For each give, one take can be called without blocking.

Mutual exclusion

Perhaps the most well-known usage of semaphores is for mutual exclusion. Any of
the semaphore types used for signaling can be used for mutual exclusion, but there
are reasons for providing a special mutual exclusion semaphore. Such a semaphore
is sometimes referred to as a ’mutex’. We will call it a mutex semaphore. As de-
picted in Figure 3.3, the very same thread that has called mutex.take(), thereafter
having exclusive access to the shared data, should call mutex.give() when the crit-
ical section is left. Any one activity not following this protocol, for instance by
calling give one extra time before take, would damage the whole application.
Therefore, it is a good idea to have a dedicated mutex semaphore class, in which
the take saves a reference to the currently executing thread (entering the critical
section) and give checks that the caller is the same thread (leaving the critical
section). Of course, one could imagine situations when the unlocking should be
taken care of by another thread, just like a person locking a room could hand
over the key o someone else that takes care of unlocking, but that is simply not
permitted.

Another benefit with distinguishing mutex semaphores from signaling ones is
to inform the run-time system (including the scheduler of thread execution) that
a call of take means locking a resource. That information can then be used (as
we will see in Chapter 4) to improve response times.

Rendezvous

During the 1980:s there was a development towards a uniform synchronization
primitive called rendezvous, which is French and means something like ’getting
together at a meeting point’. It was in the Ada language standard in 1983 that
rendezvous was defined as the general synchronization mechanism. With language
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take take

give
give

mutexT1 T2

Figure 3.3: Sequence diagram showing two threads (T1 and T2) using a semaphore
(mutex) for mutually exclusive access to some shared resource. In this case T1
happens to be the first to take the semaphore, resulting in T2 being blocked while
T1 is in the critical section.

support for Tasks (active objects with built-in mutual exclusion) that communi-
cate synchronously (i.e., using rendezvous), the intention was to force concurrent
real-time software to be written in such a way that is was ready for distribu-
tion over several processors. However, some applications are more complicated
to implement using rendezvous, or requires more concurrent activities (thereby
also decreasing performance) than if other mechanisms are used. Therefore, and
perhaps due to programmer preferences, the more recent Ada95 standard also
supports synchronized methods similar to what we have in Java. Still, rendezvous
is useful when data is to be handed over from one thread to another. That is, not
only transferring data between the thread objects (without buffering), but also
making sure that the receiving thread of execution has arrived in a state where
the data has been accepted.

Figure 3.4 illustrates the rendezvous concept and how to implement it using
semaphores. Note that T1 is blocked during synchronization when only T2 ac-
cesses the shared data. The ’sync.’ interval for T2 therefore corresponds to a
critical section, and T2 may not use the shared data before entry.take and after
exit.give. For T1 on the other hand, shared data may be manipulated until en-
try.give is called (which is to be directly followed by exit.take) and after (blocking
ends after) exit.take. Thus, T1 is so to say in the critical section all the time, but
blocked when communication takes place. Since interaction with T2 is required
before T1 can proceed, it is easy to imagine situations when the use of rendezvous
as the only mean for synchronization gets clumsy.

Metaphors for semaphores

With the semaphore classes available, one has to keep in mind when to use what
class (semaphore use cases). It is then useful to have some mental picture of how
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take

give

exit T2

take
give

T1 entry
sy
nc
h .

sy
nc
h .

Figure 3.4: Rendezvous accomplished by two (signaling) semaphores. Synchro-
nization takes place in the interval marked sync.

Industrial track (resources handled along the line)

Track for loading

Track for unloading (incoming trains mutual exclusive)

Buffer signal

mutex

entry exit

Wagon to wagon zone

Figure 3.5: Railroad tracks seen from above, illustrating semaphore usage. The
name of the semaphores refer to the semaphore figures earlier in this section. The
Buffer is a place for storage, permitting one train to unload and continue before
the next train arrives for loading. In the lower right zone there is no such buffer
(or intermediate passive object) so loading has to be done directly from one train
to another, which corresponds to the synchronous mechanism of rendezvous.

the different semaphore classes are to be used. Since semaphores (in real life)
historically come from railroad traffic, a train control example will be used. Note,
however, that this has very little to do with railroad semaphores as such; it is only
our semaphore classes used in a railroad context.

In Figure 3.5 there is a semaphore mutex used to having only one train at a
time on the track for unloading (shared resource), and there is a semaphore signal
used for signaling the availability of items in the buffer between the track for
unloading and loading. The (passive) buffer permit the (active) trains to access
the items independently (asynchronously) of each other, as long as the buffer
is not empty. The zone to the lower right, on the other hand, provides no such
intermediate storage; both trains have to be there to permit items to be transferred
from one train to another, which corresponds to rendezvous implemented by the
semaphores entry and exit. In more detail, trains on the industrial track have
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access to resources along the track but when reaching the transfer zone it gets
blocked until the other train is on the adjacent track. The train entering the zone
for unloading (coming from the track for loading) also has to wait until the other
train is there.

Hence, in terms of software again, with the use of rendezvous you know that
the passed data is actually in use by the other thread when the calling thread
continues execution, whereas using ordinary method calls for data transfer (even
if the method belongs to an active object) the executing thread using the provided
data can be unaffected (for some time after the call).

Disadvantages

When using semaphores, one should also be aware of the drawbacks (both in
general and compared to other techniques introduced later). If semaphores are
inlined in the code wherever mutual exclusion is to be accomplished, it gets hard
to read and maintain the program. If it is not clear where the critical sections
actually are, the risk for shared data not being locked increases. Another case is
statements like if, throw, and return unintentionally results in a resource being
left in a locked state, and the entire application gets locked up or does not work
anymore. A first good rule therefore is to place critical sections as methods in
separate classes.

Another disadvantage is when a thread temporarily has to leave a critical sec-
tion, waiting for some condition to be fulfilled, it can in some cases be rather
complicated to implement. The semaphore concept is as such sufficient for im-
plementation of any multi-threaded program, but the application may be unnec-
essarily complex compared to using monitors or messages as explained below.
Therefore, semaphores are best suited for low-level and small software modules
with special demands on efficiency.

3.2.3 The semaphores package
To support the use of semaphores in Java, a package named
se.lth.cs.realtime.semaphore has been developed. Different classes are providing
implementations for different types of semaphores, such as a class MutexSem for
the mutual exclusion case where it can be checked that give is called by the thread
currently holding the semaphore, and a class CountingSem that for signaling pur-
poses is prescribed to contain a counter. The default implementations are 100%
Java using the synchronized keyword that is further explained in the next section.
That is of course not acceptable for cross-compilation to small embedded systems
since:

• Very small systems often provide only semaphores, so synchronized has to
be mapped to semaphores and not the other way around.

• For low-level software serving interrupts, native semaphores for signaling
from the interrupt routine to threads are indispensable.

Therefore, the default implementation is for the run-anywhere (that is, pure Java)
case. The idea is then to support platforms providing native semaphores by proper
cross-compilation tools (outside the scope of this chapter).
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The Semaphore interface

All semaphores provide the methods give, take, and tryTake. That is expressed
by the interface Semaphore, which is useful when a semaphore object is to be
used without the need to know what type of semaphore it is. These methods are
documented as:

public void give() Increments by 1 the counter represented by this semaphore,
and notify at least one, if any, of the waiting threads. Basically this means
executing the following two lines
++count; // Or set to true (or 1) in case of a binary semaphore.
notify(); // If any threads blocked, release the first in queue.

atomically (synchronized, with interrupts disabled, or in hardware, as ac-
complished in a particular type of system).

public void take() Causes the calling thread to block until the counter that rep-
resents this semaphore obtains a positive value. On return the counter,
named count below, is decremented by one. Basically this means executing
the following code atomically (as for give):
while (count <1) wait(); // wait() suspends until notified.
--count; // Or set to false for a binary sem.

public boolean tryTake(long timeout) Causes the calling thread to block until
the counter that represents this semaphore obtains a positive value (just
like the ordinary take method) or until the timeout time has passed. If,
due to other threads calling give, the semaphore is possible to take, but the
caller of take is not rescheduled for execution until after the timeout time
after its call of take, it is considered as a timeout and hence false is returned
(and the internal state of the semaphore is left unchanged).

Note that the semaphore operations are not ordinary methods; they have to utilize
some type of system call to suspend and resume execution. That is, when take
results in suspended execution as mentioned in the comment above, the thread is
no longer ready for execution and the scheduler of the operating system (or JVM
if so called green threads are used) puts the thread (in terms of data including
the context) in the waiting queue of the semaphore. Hence, the thread consumes
no CPU time while being blocked. The mentioned system call can be a native
semaphore operation (when semaphores are supported by the OS). When using
a JVM, the system call is accomplished by the use of synchronized (explained
below).

Semaphore classes

The classes implementing the Semaphore interface, and their motivation, are as
follows:

BinarySem A Semaphore containing a boolean flag instead of a counter, to support
signaling in cases when waiting threads should not catch up with successive
missed calls of give. In the default Java implementation a boolean is used
to keep the state of the semaphore. Native mappings can use that, or a bit,
or a counter with a maximum value of one as in win32.
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CountingSem Basic type of semaphore containing a counter which is incremented
by one for each call to give, and decremented by one for each returning call
of take. A typical signaling example using this type of semaphore was shown
in Figure 3.2.

MultistepSem Counting semaphore permitting increments and decrements that
are greater than one. Useful when two (or more) successive calls of take
needs to be done without risk for preemption in between.

MutexSem A Semaphore with special support for mutual exclusion. First, the im-
plementation may check that the thread calling give owns the lock (that is,
has taken the MutexSem). Secondly, this type of semaphore is required to
provide so called priority inheritance (see Chapter 4) as a mean to obtain
bounded response times for high priority threads when a low-priority thread
is preempted and then starved when in a critical section.

In principle, not considering real-time requirements and assuming correct pro-
gramming, the MultistepSem could be used in all cases (or the CountingSem in
almost all cases), but providing and using suitable abstractions is valuable in
software development. Proposed usage:

• Declare semaphore attributes and arguments to be of type Semaphore, ex-
cept when the code is tailored to a specific type of semaphore.

• In normal cases, instantiate a MutexSem for mutual exclusion and a Count-
ingSem for signaling.

• In special cases, use the BinarySem for signaling when ’catching up’ is not
desired or for simplified resource reservation, and use the MultistepSem for
signaling multiple steps in an atomic manner or for atomic reservation of
multiple resources.

All Semaphore classes are declared final to permit optimal code and mapping to
native semaphores when cross-compiling to small embedded systems.

Errors and exceptions

When a blocking semaphore operation is interrupted, it results in SemInterrupted
being thrown. When a thread calls mutex.give (where mutex is an instance of
MutexSem) without first having acquired it by calling take, a SemViolation is
thrown. The caller is not expected to catch these, except for properly shut-
down of the application, since continued execution most likely will violate resource
allocation rules and result in concurrency faults. Therefore, SemInterrupted and
SemViolation are subclasses of java.lang.Error. That also gives the benefit that
calls do not have to be surrounded by try-catch. When there are reasons to catch
them, for instance right before thread termination, that is of course possible.
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3.3 Objects providing mutual exclusion – Monitors

The key idea with the concept of monitors is to combine object oriented program-
ming with mutual exclusion. As described in Chapter 2, an object with methods
that are mutually exclusive is called a monitor. Actually, the monitor concept
as initially defined by Hoare in 1974 was only based on abstract data types, but
classes as in Java accomplishes that and more. Monitors do in principle, however,
require the mutual exclusion to be implicit. That would mean, in Java, that the
class defining the monitor should be tagged to comprise a monitor (for instance by
using a keyword monitor preceding the class), which should imply mutual exclu-
sion between all methods and all fields being protected. For performance reasons,
that is not the way monitors are supported in Java. Instead, the following applies.

3.3.1 Synchronized
When threads concurrently call methods of an object, the calls are asynchronous
since they can occur independently without any synchronization. When, on the
other hand, calls are to be mutally exclusive (as for the bank account) we must
restrict concurrent calls so that they are not asynchronous with respect to each
other. In other words, methods need to be called synchronous, which in Java is
accomplished by declaring them as synchronized.

Synchronized methods

All methods that should be mutually exclusive has to be declared synchronized.
Methods that are not synchronized, as well as the data fields (or attributes),
only obeys the usual protection rules and are from a concurrency point of view
depending on programming discipline. It could be considered as a design flaw of
the Java language that a class as such cannot be declared synchronized. Such a
solution could have ment that all methods are implicitly synchronized and only
synchronized methods can access the attributes. But, as mentioned, this is not
the case in Java; you have to be aware about how concurrent access can be made
and implement classes so that they are thread safe (reentrant methods and mutual
exclusion wherever multiple threads can call) if that is required.

A design decision not to make an object/package/library/application thread
safe should be well documented. One such example is the so called Swing graphic
packages (javax.swing.*) which is basically not thread safe; having all those meth-
ods synchronized would be a waste of GUI performance since almost all calls are
made sequentially by a single thread anyway, which is accomplished by converting
the concurrently occurring user actions into EventObject:s that are buffered and
processed one at a time. Event processing is the topic of the next section, here
we consider the case when concurrently executing threads actually need to call
methods of the same object.

Similar to when we use a MutexSem as a lock to provide exclusive access to
an object, we need some kind of lock also when methods are synchronized. In
Java, there is such a lock available in each object, even for the ordinary ones!
The synchronized keyword tells the compiler to generate code that uses the lock.
Thereby, the program gets more easy to read and write. For instance, consider
the bank account in Figure 3.6.
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class Account {
int balance;
Semaphore mutex = new MutexSem();
void deposit(int amount) {

mutex.take();
balance += amount;
mutex.give();

}
void withdraw(int amount) {

mutex.take();
balance -= amount;
mutex.give();

}
}

class Account {
int balance;
synchronized void deposit(int amount) {

balance += amount;
}
synchronized void withdraw(int amount) {

balance -= amount;
}

}

Figure 3.6: The bank account class to the upper left uses a semaphore for locking
the object to accomplish mutual exclusion. By declaring the methods synchro-
nized, as to the lower right, the same thing is achieved but in a simpler and more
readable manner. In Java, there is an implicit lock for every object.

Synchronized blocks

While the use of synchronized methods improves readability (compared to the use
of semaphores), Java also provides a less (compared to proper use of monitors)
structured alternative for locking an object; the synchronized block. Within the
braces the object obj is locked for exclusive use:

synchronized(obj) { /* Exclusive access to obj here.. */ }

Of course, a synchronized block uses the same object lock as the synchronized
methods of that object, thereby making the block and the methods mutually
exclusive. A synchronized method is equivalent to a method with the outermost
block

{ synchronized(this) { /* Method body here. */ } }

The benefit of language support

Both synchronized methods and blocks are very convenient when returning from a
method. Compare this with the use of semaphores which resembles the situation
when the language/compiler does not support synchronization or concurrency, like
in C/C++. Returning a value from a monitor method often requires the return
value to be declared as an additional local variable, called ans in the following
implementation of the class Account, not permitting the account to be overdrawn:
1 class Account {
2 int balance;
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3 Semaphore mutex = new MutexSem();
4
5 void deposit(int amount) { // As in implemented above.... }
6
7 int withdraw(int amount) {
8 int ans = 0;
9 mutex.take();

10 if (amount > balance) {
11 ans = amount - balance;
12 balance = 0;
13 } else {
14 balance -= amount;
15 }
16 mutex.give();
17 return ans;
18 }
19 }

Based on this code, consider the following:

• Having the local variable ans initialized and returned no longer makes the
semaphore operations that clear as a scope for the critical section.

• Line 8 and 9 could be swapped, technically, but what would happen if we
swap lines 16 and 17?

• If the introduced if-statement would be inserted in a larger method, there
is the risk that lines 10 to 15 would have been implemented as

int withdraw(int amount) {
mutex.take();
if (amount > balance) {

balance = 0;
return amount - balance; // Bug one.

} else {
balance -= amount;
return 0; // Bug two.

}
mutex.give();

}

and the resource would have been locked forever after the first call. That
would be an easy to find bug, but what if the return from inside the method
(between take and give) only occurs in a very special case as evaluated in
a more complex if statement? Deadlock in the shipped product after a few
weeks at the customer site?

• If the ans variable would be declared as an object attribute, like the balance
attribute, we have a concurrency error. Mutual exclusion between deposit
and withdraw still works (since ans is used only by the withdraw method) but
concurrent calls of withdraw can give the wrong result. This is because the
withdraw method no longer is reentrant. For instance, one caller (with low
priority) locks the resource and carries out the transaction, while a second
thread (with high priority) preempts the first thread between lines 16 and
17. When resuming, the first thread will return the result of the second call
and the result of the first transaction is lost, that is, if amount>balance.

Making a method or function reentrant by only using local variables (allocated
on the stack of each thread) is standard; we need to understand that no matter if
we use a language supporting synchronized or not. However, with the availability
of synchronized as in Java, we do not need to introduce the ans variable at all.
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Furthermore, returning from a method never results in the resource being left in
its locked state; on return the Java compiler produces the executable code that
unlocks the object.

Basic use of keyword synchronized

There are cases when synchronized blocks are appropriate, but in general we better
follow a few simple rules:

1. For each class, decide if an instance should be an ordinary object (not caring
about concurrency), a thread object, or a monitor. Do not mix threads and
monitors.

2. Monitors should have all public methods synchronized (except the construc-
tors) and no public attributes. Subclasses of monitors should also have to
declare all methods synchronized since synchronized is not inherited.

3. If you need to make an ordinary class thread safe, you could create a monitor
by defining a subclass, but then you have to override all methods in order to
declare them as synchronized. Methods that are final is a problem. Instead
of subclassing, it is usually better to write a wrapper class being a monitor
containing the ordinary object.

4. Do not use synchronized blocks, which are contradictory to proper object-
oriented design of concurrent software and to the monitor concept as such.

The reason for rule A is that the actions of a thread is defined via a method (run)
which from a purely object-oriented point of view is a method like any other,
with access to all attributes of the object. Mutual exclusion between the internal
thread (executing the run method) and the external threads (calling the moni-
tor methods) would require the run method to be synchronized as well. Another
alternative could be to only access the attributes of the object via synchronized
methods. However, the concurrency correctness would then heavily depend on
programming discipline; neither the compiler nor the run-time system can com-
plain about the run method accessing the attributes (run is nothing special from
a language point of view). The public, protected, and private, keywords have to
do with visibility between ordinary objects; they have nothing to do with concur-
rency. In case of mixing threads and monitors we get no help from the compiler
as when we use synchronized methods to access protected attributes. The lack
of support for the Task abstraction could be considered as a deficiency of Java,
but as will be argued later, the task is not a suitable abstraction for the design of
object oriented concurrent (or real-time) systems anyway.

Use and misuse of keyword volatile

To further descriebe the special need for concurrent software to be well-structured
the following code snippet contains a synchronized method in a thread object. By
breaking rule A above we may say that we have one error, and there is a risk that
mutual exclusion will not work, but what other problems can result?
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/*
* Find four faults, concerning concurrency , in this class.
*/

import I.robot.dest; // Import static robot destination class Dest.

public class PathCoord extends Thread {
private double x,y;
public synchronized int dist() {return Math.sqrt(x*x+y*y);}
public void int run() {

double path = 0.0; // Path coordinate , locally on thread stack.
while(!isInterrupted()) {

path = Dest.step(path); // Local data and reentrant method.
x = Dest.fx(path); // Calling one thread-safe method,
y = Dest.fy(path); // and calling another one.
Dest.nextStep(x,y); // Use x,y and wait for next sample.

}
}

}

Even if this program is run on 64-bit machine (with the doubles being atomically
assigned, more on that below), it can happen that a valid value x is not consistent
with a valid value y (together defining an invalid coordinate outside the path for
the destination of the robot motion). This is a concurrency error due to preemp-
tion (between or in the calls of fx and fy, since run as usually is not synchronized),
independently of the types of x and y, and despite that fx and fy each are thread
safe. Hence, this is a concurrency fault and the outcome of running the software is
dependent on the execution timing and scheduling. In combination with breaking
the rule not to mix threads and monitors, we may say this constitutes two errors
in this class. However, there are also two other concurrency problems that are
common in embedded software since most programmers also in industry are not
aware of this:

1. There is the risk that x or y gets corrupted when the program is not run on
a 64-bit machine (where a double is stored in a single machine word), which
is the normal case for embedded software. One remedy is to use the atomic
classes that are part of Java from J2SE 5.0, but that is not easily applicable
in other programming languages (and therefore not further treated here).

2. Even if we would use single precision (float) for x and y, thereby avoiding the
problem of item 1 without using atomic classes (that decrease performance),
and even if we never get a context switch at the critical point (e.g., due to
the priorities and scheduler/OS used) between the calls of fx and fy, the
result of another thread calling dist could still be wrong or outdated! The
reason is that data can remain in registers of the CPU, as resulting from an
optimizing compiler since we have not provided any information about the
data being shared by multiple threads. The remedy here is to declare the
attribute volatile like:

private float volatile x, y;

Problems arise when data shared by multiple threads is not volatile or is not
protected with proper mutual exclusion (such as synchronized that results in
the runtime system being informed and the contant of the cash is written to
memory). Without volatile, a variable updated by one thread may remain
in a register while another thread reads from the primary memory according
to the address of the variable, and consequently the old value is obtained
instead of the one updated by the other thread.
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Even if there is really only one error in the PathCoord class above (the mix-in of
the monitor in the thread), we have now listed four different faults that can be
the result. Note that these problems all disappear if access object attributes by
methods that are synchronized, and also note that the first four problems illus-
trated in the class PathCoord are the same if we use monitors or semaphores for
mutual exclusion, and the problems are the same in Java as in C/C++. Thus, in-
dependently of which of these languages you use, implement monitors and mutual
exclusion as described2, and do not mix active objects and monitors.

Synchronization details

As with any set of basic rules, there are some cases when the experienced pro-
grammer for good reasons, or the beginner for bad reasons, may want to break
the rules. Before doing that, be aware of the previos section and the following:

1. As a way of doing manual performance optimization, small get and set
methods (belonging to a monitor with other methods synchronized) are often
not declared synchronized. However, the way it is done is (as far as the
author has seen) mostly wrong, resulting in very-hard-to-find bugs when
the program is run on some platforms. Therefore, keep the following in
mind:

• Only access data that is consistent all the time. Even if getting an
integer can be done atomically, that attribute may have an inconsistent
value due to computations in the synchronized methods. In a non-final
class with non-private attributes, you cannot know what subclasses will
do.

• Only access a single single-word value (built in type or object reference)
by a non-synchronized monitor method, and if not declared volatile,
make sure that the updated value is obtained (by other system calls
resulting in memory being updated, or by only permitting a single-
threaded write during startup or similar). Even if you figure out that
several attributes can be changed due do the logic of other methods,
the risk is too high that errors are introduced, for instance when the
class is extended or enhanced. An acceptable single-word access could
be an object reference that is final (set in constructor) but needs to be
frequently obtained by other threads.

• Attributes (except those of types double or long that need synchro-
nization to be portable in any case) accessed without synchronization
should be declared volatile. According to the Java language specifi-
cation, all types except long and double are atomically accessed. For
object references it is of course crucial that the address value does
not get corrupted, which would break the built-in safety (the so called
sandbox model) of Java. The only data-type you can assume being

2When accomplishing mutual exclusion in Java via a proper monitor with synchronized
methods, or when a program written in C uses semaphore functions from some library of the
system, professional programmers are usually aware of the preemption aspect represented by the
described concurrency fault (first error) of the PathCoord class. As a (positive) side effect the
other possible runtime errors also disappear.
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atomically accessed in native code on all platforms is the byte, so im-
plementation of native methods (and virtual machines and Java native
compilers) requires some care, in particular for CPUs with word length
less than 32 bits.

• Comment your assumptions and decisions when you are doing this type
of (what you think is) clever programming.

Hence, be careful when skipping synchronization; such optimization is better
done by compilers and class loaders.

2. When developing software libraries or components that should stand also
improper usage, such as a synchronized block locking a monitor outside the
monitor class, you better use a private lock object which is locked by a
synchronized block in each monitor operation. A monitor then looks like:

public class RobustMonitorExample {
private Object lock = new Object();
// More attributes are declared here ....

public void methodOne(int x) {
synchronized(lock) {

// Attributes are accessed here....
}

}
}

This way, other objects cannot interfere with the synchronization. Again,
the unfortunate Java design decision to support synchronized blocks but
not synchronized classes with appropriate semantics causes extra trouble
when developing reliable software. Still, the situation is better than in other
major languages. Recall this item when reading about wait and notify below.
Another example will be the non-native Java implementation of semaphores.

3. Do not synchronize on public attributes. That is, if you (against the general
guideline) synchronize on an attribute like the lock in the previous item,
that attribute should be private or final. Otherwise, that object reference
may change from one synchronization point to another, thereby removing
the synchronization. Locking cannot be ensured if the look can replaced by
anyone.

4. Do not remove synchronization by subclassing (unless it is a final class and
you really know what you are doing). If a base class declares a method as
synchronized, the subclass should do so too. There is nothing in Java enforc-
ing such a practice, and you might want to optimize methods in a subclass
by omitting synchronized, but the risk for hard-to-find concurrency errors
normally is too high considering the interplay between monitor methods.

5. If synchronization is needed between multiple monitors, such as intercon-
nected buffers, they of course need an object in common to synchronize on.
An alternative would be to merge the different monitors to form one mon-
itor with all the functionality included, but suitable monitor classes may
be available already; just the signaling and mutual exclusion between them
need to be added. Using synchronized blocks to synchronize on some shared
lock object (such as one of the monitors if that code has been prepared for
it) is clearly preferable compared to rewriting the application.
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As mentioned in the last item, the need for synchronization between objects can
be due to the need for signaling (which we earlier accomplished by semaphores).
When an object has been locked by synchronized (for a method or a blocks), there
can be conditions that need to be fulfilled before the operations on the shared data
can be fulfilled. Java provides the following support for that situation.

3.3.2 Conditions – wait and notify
Consider a buffer with operations put and get. To accomplish mutual exclusion
during manipulation of the buffer, those methods are typically declared synchro-
nized. However, both in this case as well as in many other types of monitors,
certain conditions may need to be fulfilled before an operation can be completed.
For instance, there must be something in the buffer to fetch before get can be
performed, and the buffer may not be full in order to let put be carried out. If
such conditions can be evaluated before any shared data is manipulated we could
simply cancel the operation and make a new call when the status has changed,
but we also require:

• When waiting for a certain condition to be fulfilled, that thread should be
blocked to prevent waste of CPU time (polling or busy wait, possibly leading
to starvation of other threads, is not allowed).

• When the condition is fulfilled we need a way of waking up the blocked
thread(s).

• When a thread continues execution after being blocked on some condition,
it has to compete for the resource again since we have to ensure that only
one thread at a time is executing inside the monitor (i.e., inside the critical
region).

To accomplish these features, each Java object is equipped with a wait/notify
mechanism in terms of the methods wait, notify, and notifyAll according to (see
Figure 3-7):

wait() The thread executing within the monitor (inside a synchronized method
or block) gives up the exclusive access, stepping out to the ’back yard’
containing the condition queue. The runtime system puts the blocked thread
in the condition queue, where it typically is inserted in priority order with
the thread with the highest priority first. The saved context of the blocked
thread, referring to the stack of the thread and thereby to the state of
execution, of course contains the state of the half made monitor operation.

notify() Threads waiting in the condition queue will remain there until notified
by some other thread, or until a timeout occurs as explained later. Threads
that inside the monitor change any data that affects conditions that the
threads in the condition queue might waiting for, should call notify to wake
up one of the blocked threads. If the condition queue is empty, notify does
nothing. It depends on the runtime system which of the blocked threads
that are selected for notification, but here we assume the normal case that
it is the first in queue thread, which in turn is the one with the highest
priority.
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synchronized(.){

}

wait
notify

Exclusive area

Monitor queue

Condition queue

Thread about
 to enter

waiting for exclusive access

Thread just left monitor

awaiting fulfilled condition

Thread with exclusive
access to monitor data

Scheduling

Figure 3.7: The monitor concept, including the wait-notify mechanism as a back
yard. The crosses are revolving doors, that is, the door turns in the direction of
the bent arrow and threads can only pass in the direction shown by the straight
arrow.

After the thread is notified and ready for execution, it has to compete for
CPU time with all other threads to advance its execution point at all. When
execution advances, the thread also has to compete (again!) with other
threads for exclusive access to the monitor, and if not successful it is blocked
and placed in the monitor queue (in priority order we assume, even if not
specified by Java).

notifyAll() All the threads in the condition queue are notified, and thereby made
ready for execution. They are then all subject to scheduling as explained
for notify. Since scheduling is not part of the Java specification, and since
knowing what threads that might be using the monitor requires global in-
formation, the reliable and portable way of notification is to always call
notifyAll instead of notify; the use of notify is purely for optimization and
performance tuning (to prevent excessive context switches that can be the
case when many threads first are unblocked and then all but one calls wait
again when the condition again is not fulfilled).

Note that even if the compiler lets you call these methods anywhere in the program
(since they are public methods of class Object), they only work if the calling thread
first has locked the object via synchronized. Otherwise, an IllegalMonitorStateException

is thrown.
Be aware of the big difference between calling wait (i.e., Object.wait) and

calling sleep (i.e., Thread.sleep) from inside a monitor, that is, from inside a syn-
chronized method or block. Calling wait results in other threads being permitted
to enter the monitor, like temporary unlocking to let some other thread change
the state of the monitor as desired. Calling sleep means that the monitor is locked
during the sleep time, and no other threads are allowed to enter during that time.
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Basic use of wait and notify

A notified thread is moved from the condition queue to the monitor queue where
it has to compete with other threads, as decided by the underlaying runtime
system (here we assume priority ordered queues). When the thread holding the
lock/monitor leaves, the first thread in the monitor queue is unblocked (put in
the ready queue) and is subject to CPU time scheduling. Implications:

• No matter how low priority or what OS, a thread that got into the monitor
will complete its monitor operation (critical section) if given CPU time and
if not calling wait. We say there is no resource preemption.3

• Due to preemption (that is, execution preemption, not to be confused with
the resource preemption), the thread holding the monitor will remain there
if higher priority threads are scheduled for execution instead.

• There is nothing saying that a thread that has been notified, which means it
has been in the exclusive are already, is given access again before any of the
newly arrived threads in the monitor queue. This depends on the scheduler,
however, and is not specified by Java.

The major point now is that when a thread is continuing after wait, the condition
that was waited for still cannot be assumed to actually be fulfilled. As an example,
assume one thread calling obj = buffer.fetch() to get the next object from a buffer,
and that the buffer turned out to be empty. A consumer thread calling fetch should
of course be blocked until some other (producer) thread puts another object in the
buffer by calling buffer.post(obj). Correspondingly, a producer thread calling post
is to be blocked until the buffer is not full. Assuming the simplest case with only
one producer and one consumer, an straightforward but fragile implementation
could be according to Figure 3-8. In a more general setting, with more threads
involved or the buffer functionality being extended, the following problems arise
(see Figure 3-7):

1. Even if the notifying thread calls notify only when the condition to proceed
is OK for the waiting thread, the condition may again not be true when
the waiting thread is continuing! Assume we have one producer P and two
consumers C1 and C2, using the Buffer like:

• C1 tries to fetch an object, but gets blocked on since the buffer is empty.
• P posts an object to the buffer, and since the buffer was empty that

results in a notification of C1 that is moved from the condition queue
to the monitor queue.

• Before C1 is scheduled for execution, that is, before C1 actually enters
the exclusive area, C2 (having a higher priority) continues (for exam-
ple after a sleep that was completed after a clock interrupt) and tries
to enter the monitor. If this happens before P has left the exclusive
area, both C1 and C2 are blocked in the monitor queue. (C1 about to
continue after wait, but C2 first in the queue due to higher priority.)

3In the original version of the monitor concept, proposed by Hoare in 1974, the notified
thread did actually preempt the thread owning the monitor. Therefore, notify was only to be
called as the last thing within the monitor operation. No such system is known to exist today.
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class Producer extends Thread {
public void run() {

prod = source.get();
buffer.post(prod);

}
}
class Consumer extends Thread {

public void run() {
cons = buffer.fetch();
sink.put(cons);

}
}

class Buffer {
synchronized void post(Object obj) {

if (buff.size()==maxSize) wait();
if (buff.isEmpty()) notify();
buff.add(obj);

}
synchronized Object fetch() {

if (buff.isEmpty()) wait();
if (buff.size()==maxSize) notify();
return buff.remove();

}
}
// This Buffer is badly implemented!

Figure 3.8: Classes, with attributes and initialization left out for brevity, im-
plementing producer-consumer communication via a bounded buffer based on
java.util.ArrayList. The if (...) wait(); makes the buffer fragile: additional calls
of notify (e.g., in other methods) or additional threads could course the buffering
to fail.

• When P leaves the monitor, there are one object in the buffer. C2 enters
the exclusive area, gets the object, and when leaving C1 is moved to
the ready queue of the scheduler and is allowed to enter the monitor
(owning the lock).

• Since C1 is continuing after wait, according to the shown implemen-
tation assuming that the buffer is not empty, C1 tries to get the next
object. There are no such object, and the buffer (and the application)
fails4.

2. It can be difficult to keep track of what condition other threads are blocked
on, or it can be hard to verify correctness or revise the code. In the referred
buffer example it may appear to be simple, but does the buffer work cor-
rectly even for maxSize equal to one?
If we would add another method awaitEmpty that should block until the
buffer is empty (useful during application shutdown), or an additional method
awaitFull that should block until the buffer is full (useful for special handling
of overflows), when and how many times should notify then be called? Tak-
ing care of all cases by the appropriate logic (such as counters for threads
blocked on this or that condition) leads to unnecessary complex code that
is hard to understand and maintain.
Remedy: Use notifyAll instead of notify, and let other threads reevaluate
their conditions (assuming the remedy for item 1 is used). The exception
from this rule is when optimizing for well known and performance critical
parts of the application.

3. How do we ensure concurrency correctness and predictability on any (Java-
compatible) platform? As an example, assume we have two consumer threads
(C1 and C2) and five producer threads (P1 to P5), and assume these use
our buffer according to the following:

4Programming in Java, application failure typically means an ArrayOutOfBoundException
or a NullPointerException that can be caught and handled, or at least we know what and where
it went wrong. Using an unsafe language such as C++, the system can crash (at a later stage)
without messages.
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• The buffer (Buffer in Figure 3-8) is given a capacity of four (maxSize==4).
• Both C1 and C2 call fetch, and hence they get blocked since the buffer

is empty.
• P1 puts an object in the buffer by calling post, which calls notify. One

of C1 and C2, say C1, is moved to the monitor queue while the other
consumer remains in the condition queue.

• Before C1 gets scheduled for execution, the other producers (P2 to
P5) try to post an object. Since the buffer was not empty, C2 was
not notified. This is either a bug or C1 has to notify C2 somehow.
However, the last producer, say P5, then also gets scheduled before C2
and post blocks since the buffer now is full.

• We now have two threads in the condition queue, one consumer blocked
on buffer empty and one producer blocked on buffer full, and one of
them will most likely be stuck there for a long time (possibly forever if
it was the producer and if that thread was to serve the next application
event). This holds even if we would have implemented the Buffer using
while instead instead of if according to item 1, but the remedy of item
2 works.

Items 2 and 3 are similar in that they both motivate the use of notifyAll instead of
notify. The difference is that while we according to item 2 actually may be able to
optimize and use notify, fully tested to be logically correct on one JVM/OS, item
3 points at the concurrency problem that implies the risk of application failure
sometimes on some platforms.

Another problem is that at any place within your program, where a reference
to your monitor is available,

synchronized(monitor){monitor.notifyAll();}

can be called and interfere with your methods. The same of course applies to notify
and wait. The remedies above help also in this case. For optimized libraries,
however, private notification objects can be used, like the private lock object
described in the above section about Synchronization details.

A radical remedy would be to always notify all threads whenever anything has
changed. For instance, the Buffer class in Figure 3-8 could be implemented like
in the left version in Figure 3-9, where the suggestions from the above items have
been considered. Decreased performance comes from notifyAll (which is a system
call that is more expensive than checking ordinary data) being called even if there
for sure is no thread in the condition queue, and there are no logic separating
between the full and empty cases. A reasonable trade-off (using notifyAll to avoid
the described problems) is shown to the right in Figure 3-9.

In short, as rules of thumb for programming:

1. Always use while in front of wait:
while (!okToProceed) wait();

2. Instead of notify(): use notifyAll();

3. Tune performance when needed, using notify() or condition objects ex-
plained below.

Keep Figure 3-7 in mind when you develop your monitor methods.
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class Buffer { // Inefficient!!
synchronized void post(Object obj) {

while (buff.size()>=maxSize) {
wait();

}
buff.add(obj);
notifyAll();

}

synchronized Object fetch() {
while (buff.isEmpty()) {

wait();
}
return buff.remove();
notifyAll();

}
}

class Buffer { // Well done.
synchronized void post(Object obj) {

while (buff.size()>=maxSize) {
wait();

}
if (buff.isEmpty()) notifyAll();
buff.add(obj);

}

synchronized Object fetch() {
while (buff.isEmpty()) {

wait();
}
if (buff.size()>=maxSize) notifyAll();
return buff.remove();

}
}

Figure 3.9: Two alternative implementations of the Buffer class. Declarations,
initializations, and exception handling is omitted as in Figure 3.8. In the left
version, all methods always call notifyAll (does not need to be last), possibly
resulting in performance problems. In the version to the right, robustness and
performance should be acceptable.

Timeout on waiting

There are situations when waiting for a condition to be fulfilled may not take
more than a certain amount of time. After that time we want to get a timeout.
For this purpose, there are two versions of wait accepting timeout arguments:

wait(long timeout) The thread executing within the monitor temporarily leaves
the monitor, waiting for a notification as normal. If notify is not called within
timeout milliseconds, we give up waiting and return to the caller anyway.
The timeout is minimum value; it can be longer as an implication of the
actual scheduling of involved threads and the internal timer. A timeout
equal to zero is equivalent to calling wait without any timeout argument. A
negative timeout results in an IllegalArgumentException.

wait(long timeout, int nanos) The same as previous wait but with the timeout
time set to 1000000*timeout+nanos nanoseconds. Again, this is a minimum
time that depends on the actual scheduling, if the resolution of time in our
runtime system is high enough. However, with ms resolution or lower, the
nanos are rounded to the nearest ms (!) which implies that the minimum
timeout time can be up to 0.5 ms shorter than requested, but not shorter
than the timeout since that value is rounded upwards if the clock resolution
is lower than 1 ms.

Note the difference between calling java.lang.Thread.sleep(delay) from within a
monitor, and calling java.lang.Object.wait(delay). The former keeps the monitor
locked during waiting/sleeping, whereas the latter lets other threads access the
monitor during the delay time. It is, however, difficult to ensure that wait(delay)
actually delays for at least delay ms since notify in other methods (for example
in unknown subclasses) can interfere. Therefore, a delay within a monitor should
be implemented similar to:
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synchronized monitorSleep(long timeout) throws InterruptedException {
long tf = System.currentTimeMillis()+timeout;
while ((timeout=tf-System.currentTimeMillis())>0) wait(timeout);

}

Also note that if timeout milliseconds elapsed from the call of wait until the calling
thread executes the instruction following wait, we cannot distinguish between if:

1. The wait was called and timeout ms later we continued after a timeout.

2. The wait was called and before the timeout time some other thread called
notify, but due to scheduling more than timeout ms elapsed before the state-
ment after wait was executed.

3. Other threads were scheduled for execution right before wait was actually
called, then during the wait some other thread called notify, but due to the
initial delay more than timeout ms elapsed.

Thus, even if it is only in case 1 that the runtime system issued a timeout, we
can obtain waiting for that amount of time due to the (platform dependent)
scheduling. In code this means, dt can be greater than timeout even if wait was
completed due to a notification:

long t0 = System.currentTimeMillis();
wait(timeout);
long dt = System.currentTimeMillis()-t0;

Is this a problem? Normally not; it does usually not matter if we were notified
or not, it is the inferred delay that matters for the calling thread. Hence, if
dt>timeout it is considered as a timeout. On the other hand, if the state of
the monitor stated that our thread was waiting, and some other thread calling
notifyAll determined that it issued the notification on time (before a timeout
occurred) and subsequently acted according to that, the possible cases 2 and 3
above may imply a need for some more monitor logic. That is, if it logically is not
a timeout, only checking if dt>timeout after the previous code fragment is not
sufficient; concurrency correctness may require some more monitor logic to cope
with all possible interleavings, as always.

Interrupted waiting

When a thread that is blocked on wait (with or without timeout), or on sleep as
described on page 45, the blocking is interrupted and an InterruptedException is
thrown to the calling thread. The appropriate handling of such an interrupted
wait is typically known/defined in the calling thread outside the monitor methods.
Hence, it must propagate to the caller, so the obvious choice would be to let every
potentially blocking monitor methods be declared to throw an InterruptedExcep-
tion. However, in particular when there are several levels of calls, this soon gets
very messy. Furthermore, the monitor method cannot complete its operation if
the condition is not fulfilled, and it cannot simply return before the operation
is completed either (both these alternatives would violate the correctness of the
monitor).

So, the only reasonable alternative is to throw a Throwable object that we
do not need to catch or declare. Java provides two alternatives for doing that:
throwing an RuntimeException which is an Exception, or throwing an Error. To
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emphasis that the normal user code is not supposed to catch an interrupted wait
(since it in most cases needs to propagate to the outermost level of the thread),
throwing an Error is the appropriate solution. That is, we throw an instance of
RTInterrupted, which is a subclass to java.lang.Error. This solution corresponds
to the SemViolation as described on page 58 for semaphores.

The implication is that we normally call wait according to:
{ //.....

while (!ok) {
try {

wait();
} catch (InterruptedException exc) {

throw new RTInterrupted(exc);
}

}
}

Note that when an InterruptedException is thrown, the interrupted-flag of that
thread is cleared. Hence, it is only the fact that we get to the catch clause
that tells us that the thread is interrupted, and after the catch it is only the
thrown RTInterrupted that carries the interrupt information when the call stack
is popped.

If we use a framework that is predefined to catch InterruptedException specif-
ically, an RTInterrupted can of course be converted back to an InterruptedExcep-
tion by catching the error and throwing a new InterruptedException (or get-
ting the original exception by calling getCause, see the exception-chaining of
java.lang.Throwable in JDK1.4 and later).

Sometimes interrupting a thread is used to actually interrupt a command or
action in an almost expected way. That is, instead of cluttering the code with
a lot of tests if the operation is to be aborted, we can let execution continue
until it reaches a blocking call and then utilize the thrown RTInterrupted. For
instance, a robot performing its task according to a sequence of instructions can
be interrupted by the operator who issues another task or simply stops the robot
due to some fault. The thread that handles operator input can then interrupt
the ongoing robot work, and since computers are faster than mechanics the work
thread will be blocked on getting a new order or on the completion of last order. By
catching InterruptedException and converting it to an RTInterrupted in whatever
monitor it occurs, we can then catch the RTInterrupted and terminate the thread
like:

class RobotDuty extends Thread {
public void run() {

try {
while (doWork(Master.nextInstruction())) {};

} catch (RTInterrupted) { Master.workAborted();} // Acknowledge.
} // No more work; end of duty!

}

Terminating the thread (and creating a new one for the next work) like in this
example is convenient for handling sessions that have a finite life time, such as
processing a batch recipe in a chemical industry, or carrying out an e-business
transaction; the state of the session is kept by the thread, and both the activity
and the state gets garbage-collected when the session is finished. In feedback
control, on the other hand, we usually create the threads that execute during the
entire lifetime/uptime of the system; the state of the controlled system needs to be
maintained also over mode changes and the like, and the control can be sensitive
to delays during creation of new threads.
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3.3.3 More on monitor programming
The following applies to the use of standard Java packages, whereas enhanced
support for monitors will be introduced in Chapter 4.

Static monitors – locking class variables

Executing synchronized code results in the synchronized object being locked.
That is, mutual exclusion is provided for the object (not the class) and concurrent
access to different objects of the same class is, of course, still permitted. However,
there may be attributes that are shared between all objects of a certain type, so
called static attributes or class variables. Mutual exclusion then requires special
care. Even if the object provides mutual exclusion on its attributes, for instance
by having all attributes private and all non-static methods synchronized, the class
variables are still not locked. The reason is that the class as such is another object
which needs to be locked separately, either by a static synchronized method or by
a synchronized(static_attribute){} block. In the same way, since a static method
has no reference to ’this’ object, a static method does not provide mutual exclusion
for any non-static methods. Hence, locking for classes (static attributes) and
objects are different things, implying that a inside a synchronized method locking
either the class or the object, you have to put a synchronized block for explicitly
locking the other, if both the class and object need to be locked at the same time.

Monitors versus semaphores

The monitor concept can be accomplished in different ways. In Java, monitors
are not exactly supported, but synchronized methods (and a few simple rules) let
us conveniently accomplish monitors. In practice, we may say that Java provides
monitors, as well as possibilities to avoid (by omitting synchronized) the overhead
of object locking when we (for sure) can deduce that the program will be correct
even without locking. Anyhow, having synchronized built into the programming
language is of great value. In languages without such support, we have to use
library functions in combination with programming conventions.

Monitors and semaphores have equal expressive power; a program using on of
the mechanisms can always be rewritten using only the other mechanism, but it
can be hard in practice.

• Since a semaphore class is easily implemented by a monitor (providing the
methods take and give) it is usually straight forward to rewrite the program
using only monitors. However, if an interrupt routine (a static method
without arguments that is connected to a hardware interrupt) is to call give
(e.g. to signal that data is available in a hardware buffer), we cannot use an
implementation that is based on synchronized (since an interrupt cannot be
blocked even if the synchronized object is locked).

• Implementing monitors using semaphores is troublesome when wait/notify is
used. The problem is that the waiting thread has to take one semaphore (to
be used for signaling when the condition is fulfilled) and give one semaphore
(the mutex to let other threads access shared data) atomically as one oper-
ation. The solution is to let each thread have its own signaling semaphore.
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Clearly, both semaphores and monitors are needed, but in different situations.

Polling locking state

Since JDK1.4, class java.lang.Thread contains a method
static boolean holdsLock(Object obj)

that returns true if and only if the current thread holds the monitor lock on the
specified object. Do not use this method, except for special cases such as test-cases
where the locking of objects need to be verified. In particular, keep in mind that
even if holdsLock returns one value, the opposite could be the case one machine
instruction (of that thread, and a few context switches) later. Just like there (on
purpose) are no methods for obtaining the state of a semaphore (without trying
to acquire it), to avoid bad solutions on concurrency problems, you should not
design your application such that holdsLock is needed.
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3.4 Message-based communication – Mailboxes

Instead of the low-level characteristics of semaphores, the desire to support concur-
rency in an object oriented way led to monitors; passive objects used to implement
collaboration between active objects. In many cases, however, we can benefit from
having such passive objects with additional functionality for:

Buffering: Often threads work in producer-consumer like situations when trans-
mitted objects need to be buffered in some type of queue. That lets threads
work more asynchronously with respect to each other. That is, even if there
are some temporary blocking when posting/fetching objects into/from the
queue (to accomplish mutual exclusion during the assumably short queuing
operations), a buffer overall lets the threads operate more independently of
each other.

Activity interaction: Traditionally, before the email era, messages were sent
via mailboxes (passive objects providing buffering) and distributed to the
mailbox of the addressee. If the sender and receiver are close to each other
(like threads in the same JVM), and the sender knows (has a reference to)
where the receiver is, the overhead of distribution (cost of the stamp and
mail delay) can be avoided by putting the message directly in the receivers
mailbox. Anyhow, even if the messages (transmitted objects) are buffered
in a passive object (the mailbox), the aim is to send it to some other active
object (person), which deserves special support.

Distribution: If the sender and the receiver of a message are not close to or not
aware of each others location, it is desirable to have some mail distribution
system. Even if the topic of distributed systems is outside the scope of this
chapter, communicating via messages makes us prepared for the situation
when each message has to be sent via ordinary mail; the message can look
the same, only the mailing differs. If we would call the receiving active object
directly, the addressee would need to be available at that particular time.
Therefore, communicating via messages can be a good generic solution.

Encapsulation: Data protection (using private or protected in Java) ensures
encapsulation of sequential programs, which means that objects will be en-
sured to function independently of each other. For real-time programs that
is not enough; when methods of another object is called from a time-aware
thread (looking at the clock frequently), the caller “gives up it’s own will”
and commits itself to performing the instructions given in the (hidden) im-
plementation of the called method, which can result in blocking for a long
time. Hence, threads give up their timely behavior unless communication is
performed differently.

To improve on these aspects, communication via messages (instead of via methods
and shared data) will be introduced in this section. Originally and traditionally,
this was referred to as mailboxes.

From one point of view, a so called mailbox is nothing but a special type of
monitor, so we do not need any additional support from the language (no new
keywords like synchronized which supports monitors). From another point of view,
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when the above aspects are important, message based object interaction can be
considered to be fundamental, so let us start with some considerations about the
abstraction we deal with.

3.4.1 More on object interaction

Method calls in a language/system providing only passive objects are by defini-
tion a synchronous type of communication. That is, passive objects work syn-
chronously since they share the same thread of execution. In other words, this
type of communication between objects is synchronous since the called object
remains in its well defined state during the data transfer.

During a method call, the caller enters the scope of the method within the
scope of the called object, performing exactly what the method states. In a
single-threaded system this is fine; data access via methods provide encapsulation
and data abstraction. When all objects are executed by the same thread, we
actually do not think of any thread at all. Data is transferred via arguments and
return values, in both directions between the objects, which is straightforward
and efficient in single-threaded applications.

To support multi-threaded applications, the programming language could pro-
vide active (concurrently executing) objects, and models other than method calls
for data transfer between objects. In fact, within object-oriented programming
in general, communication between objects are (as in the language Smalltalk) of-
ten referred to as message passing. In Java, object interaction stems from the
traditional (computationally efficient) C/C++ approach with method calls which
are basically the same as function calls in C. Hence, in Java as well as in most
other languages, asynchronous communication should be accomplished by a class
implementing some type of mailbox or buffer supporting the principle of message
passing.

Thinking about real-life actors, sending a message is a natural way of trans-
ferring information, in particular when the sender and the receiver are acting
concurrently but not synchronized (that is, performing actions independently of
each other). The message need to be temporarily stored (buffered) somehow af-
ter being sent until being received. Today, information is most often stored and
transmitted electronically. On the Internet, messages between humans are mainly
accomplished by e-mail, but in technical systems we also use many other message
principles depending on application and development needs.

3.4.2 Events and buffers

Assuming the sending and receiving thread belong to the same program, which is
the case in this entire chapter, the sender and receiver can refer to shared objects.
Thus, the buffer we need can be a monitor. We may compare with messages within
user interaction packages such as the AWT. Such messages are called events since
they represent an application event, but they are not buffered except before being
fed into the application. Additionally, the AWT InputEvents are time-stamped so
the graphics classes and the application can react accordingly to when the event
(such as a mouse click) occurred physically, which can be quite different from
when the event is processed (in particular on a heavily loaded system).
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For instance, assume two mouse clicks should be considered a a double-click
if there is less than 1 s between them, and that the user clicks twice with the
second click 0.9 s after the first. Then if there is a 0.2 s delay right after pro-
cessing/registering the first click, the second click will be processed 1.1 s after the
first one. Using the time-stamps it can still be deduced that the user actually
double-clicked.

Similar situations appear in feedback control where the delay (difference be-
tween current time and event time) results is so called phase lag, which in turn
results in bad damping or even instability. Since our aim is both concurrent and
real-time programming, time-stamping our messages (at the time of creation) will
always be done.

Events as messages

The emission of an event object denotes some explicit change in state or execution
of an application. Since the JDK1.0 there is the class java.awt.Event which was
used as the base class for all the events in the old AWT1.0 containment-based
event model. That model was to a large extent implemented by inheritance. It was
convenient when programming small applets, but did not scale up at all to larger
application which implied extensive traversals of the containment hierarchy for
each event (such as a mouse click). The java.awt.Event is kept only for backward
compatibility and should not be used.

Since JDK1.1, the so called delegation-based event model is used, both in the
AWT (java.awt) as well as in Swing (javax.swing) and Java Beans (java.beans).
The base class for events in all these packages is the (application independent)
java.util.EventObject. The delegation model means that event handlers register
themselves as listeners (synchronous subscribers) to certain events, and the emit-
ter of the events calls some event-processing method according to the interface for
that particular type of event. For instance, clicking with the mouse on a button
in the GUI (Graphical User Interface) results in an InputEvent into the Java GUI
package (e.g. AWT) where the associated java.awt.Button object calls the method
actionPerformed(event) of the event listeners that implement the ActionListener
interface and have been registered via the Button.addActionListener(listener)
method.

For programming of embedded systems in general we should of course not
depend on any graphics-related packages or classes (since embedded processors
usually do not provide a GUI, and they are subject to restrictions on available
memory) for the core operation of the system. (Compare with Linux which is very
small without the graphics, compared to a full installation with window managers
and the like.) We will, however, make use of the delegation-based event model;
you subscribe on the events you want to receive so the sender does not have to
perform any mass distribution which would be a waste of resources.

In the packages mentioned above, emitting an event is usually referred to as
firing it. To fire an event will be referred to as synchronously calling the event
listeners, whereas to post an event will be referred to as asynchronously buffer
the event for later processing by the receiving thread. This agrees, although
not stated explicitly, with conventions used in various graphics packages, even if
posting is normally handled internally and the user code is assumed to process
each fired event in a single-threaded manner (to improve performance and to

78 2016-08-29 21:53



3.4. Message-based communication – Mailboxes

reduce complexity/concurrency). That requires that all listeners can process their
events instantly, otherwise the entire GUI would ’freeze’ during that period of
processing or waiting. For the situation when waiting actually have to be done,
for instance waiting for a download of a file to be completed after a download
button has been pushed, concurrent GUI-based processing can be requested and
managed via the javax.swing.SwingUtilities and javax.swing.Timer classes. In
SwingUtilities, you have to use the methods invokeLater and invokeAndWait,
which take a Runnable argument. That Runnable is run concurrently with the
built-in GUI event-dispatching thread, but in such a way that it does not interfere
with the swing/AWT and the user’s event processing code, which concerning the
GUI mainly stays single-threaded.

In multi-threaded programming threads need to operate asynchronously (al-
though synchronizing when accessing shared data), so the emitting thread needs
to post the events/messages to some buffering object where the receiving thread
can fetch the events/messages.

For threads running in different virtual (or physical) machines, sending a mes-
sage from one thread to another cannot be accomplished by simply passing a
reference to an event object between the threads. Recall that object references
(which are pointers within the address space of the OS-process) have a meaning
only within the program. For multi-threaded programs (within one JVM/OS-
process) on the other hand, we can build upon the EventObject class mentioned
above. To prepare for real-time programming, however, we need a new base class
with some additions for real-time event objects.

Real-Time Events – RTEvent

The class se.lth.cs.realtime.event.RTEvent is the EventObject base class for real-
time events. Real-time here basically means that events are time-stamped, whereas
true real-time properties have to do with the properties of the executing threads
and their scheduling. Hence, real-time events will be needed by real-time threads
(introduced in a later chapter), but they are also useful for multi-threaded pro-
gramming and for the communication between concurrent and real-time threads,
so introducing the RTEvent class here for message-based concurrency is natural.

Every RTEvent comes from a source object referred to in the EventObject base
class. Additional IDs, such as sequential numbers or the kind of event within a
certain type, are expected to be defined in subclasses together with other user
attributes. The time stamp is, however, fundamental to real-time systems as a
mean to denote the freshness of the data. It is therefore an attribute here and the
motivation for this class.

The source attribute, typically being a thread object, is not supposed to keep
any reference to the event after posting it. Therefore, methods of this class should
not need to be synchronized. To support detection of kept references, for instance
when the event is sent again, there is a field owner which is set to the same as
source when the event is created. When an event is transferred, for instance via
a buffer, the ownership changes to the buffer and then to the receiving thread.
Using available classes, the user should not need to care about the ownership, it is
checked to detect certain programming errors. Sometimes, however, it is desirable
to keep a set of event objects that are sent several times, for instance every time
a certain state transition occurs. In such cases the specific event subclasses are
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supposed to set the (protected) owner field to null, which disables the checking of
ownership.

Refer to the online class documentation for further details. In short, the
se.lth.cs.realtime.RTEvent class looks as follows (some fetures omitted for clar-
ity):

public abstract
class RTEvent extends EventObject {

protected long timestamp; // Creation time in ms.
protected volatile transient Object owner; // Responsible thread.

public RTEvent(); // Use current Thread & TimeMillis.
public RTEvent(Object source); // Set source, default timestamp.
public RTEvent(long ts); // Set timestamp , default source
public RTEvent(Object source, long ts); // Override both defaults.

public final Object getOwner()
public double getSeconds()
public long getMillis()
public long getNanos()

}

There is also a setOwnermethod, but that method is declared final and has package
visibility so it is of no interest for user code. Still, the user can in RTEvent subclasses
freely modify both the timestamp and owner attributes. For instance, owner can
be set to null, and the timestamp can be modified according to an improved
estimation of a sampled input data value. The owner does not need to be a
thread object, which is useful when, e.g., regulator objects in a control system are
driven by some external thread; the event-emitting (but passive from a Java point
of view) control block can still be the registered owner5 of the object.

The owner attribute is declared volatile to permit thread-safe access event from
methods not being synchronized. Both source (from java.util.EventObject) and
owner are declared transient since those attributes have no meaning outside the
program (JVM) where they were created. Instead, for instance when serialized to
a stream of bytes and sent over a network, they both get the value null.

Real-Time Event Buffers – RTEventBuffer

The class RTEventBuffer6 is designed to accomplish message-based communication
with buffering and using RTEvent objects as messages. To avoid confusion with
other types of buffers in other Java packages or in operating systems, the following
should be clear:

1. Traditionally, demands on flexibility have been modest for real-time and
embedded systems, and programming (in C) without support for object ori-
entation has been standard. Messages for communication are then in most
cases statically defined by some struct type. The size of the message can
then be obtained by calling sizeof, no additional subclasses are available (or

5 The concept of ownership is taken from the OSE operating system from ENEA.se
6This buffer and the event class RTEvent are part of the se.lth.cs.realtime.event package. Like

for the se.lth.cs.realtime.semaphore package, the classes as presented in this chapter are part of the
Lund Java-based Real-Time (LJRT) library that in more detail will be the topic of the next
chapter. The classes introduced in this chapter add basic utilities for concurrent programming,
without changing the model of Java threads and without adding real-time support. These classes
are straightforward to use on any Java platform, whereas the complete LJRT library adds more
fundamental features.
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will be available during runtime), the data is not subject to relocation by
some memory manager (GC), and therefore the message can be handled
and copied as a sequence of bytes. With some restrictions, the same holds
for programming in C++. A message can then be referred to by a pointer
to the memory location, but to improve robustness for large complex sys-
tems the message data is normally copied for transfer to some other part of
the software. The reason is that manual memory management in terms of
programming rules and so called reference counting does not scale up very
well.
For multi-threaded programming in Java, we do not know the object size or
where the object is stored in memory, and we do not have to copy messages
for reasons of memory management (since Java provides GC). Posting an
event object therefore means passing the (one word) reference to that object,
which also saves the time for the copying.

2. The RTEventBuffer is not useful for communication between OS processes:
they normally work in different address spaces and object references cannot
be shared, and hence objects are to be represented by data that is copied to
the buffer. The actions to convert a Java object to a sequence of bytes are
referred to as serialization. That is supported in Java, partly in terms of the
interface java.io.Serializable, but that is outside the scope of this chapter.

3. Buffers used for concurrent (but not real-time) programming are often un-
bounded, as for java.util.Vector. That is, they expand in size when full,
or a java.lang.OutOfMemoryError is thrown. Our aim at real-time aware
concurrency, to prepare for even hard real time later, motivates some care
concerning resources, such as memory. Even if we for flexible real-time sys-
tems do not know exactly how many bytes our application needs, we need
some bounds on the used resources. For buffering, this means that we work
with bounded buffers as the default. If, in some cases, there should be a
need for unbounded buffers, it is simple to override post or fetch methods
to expand the buffer size on demand.

Other reasons for our own buffer implementation include: shrinkage without los-
ing buffer content, support for RTEvent and object ownership, design suitable for
embedded/native implementation on small-memory systems, and licensing issues
for such systems. For the purpose of subclassing, the internals of the buffer is
useful to know; the se.lth.cs.realtime.event.RTEventBuffer is implemented as
follows.

Storage and synchronization Since the buffer is to be used mainly as a FIFO
queue, with a bounded size that is normally kept constant, it is best repre-
sented by an array. That is of course not visible from the outside, but to
subclasses it is. When the index needs to advance beyond the maximum
index of the array it flips over and continues at index zero. Therefore this
type of buffer is also called ring buffer, as depicted in Figure 3-10. The
methods of the buffer could be considered being synchronized, that is, the
buffer is thread safe. To prevent interference with wait/notify internally
from external code synchronizing on the buffer object, the synchronization
of the buffer methods are accomplished by
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Figure 3.10: Ring buffer as an array with size 12, currently filled with 7 objects
(referenced from the gray elements).

synchronized(lock){...}

where the lock is declared as
protected Object lock = new Object();

That monitor lock can then be replaced in subclasses or in the constructor, if
the operation of the buffer needs to be synchronized with some other objects
(such as an other buffer).
The actual buffer/array is, as shown in Figure 3-10, declared as
protected RTEvent[] buffer;

Construction A new buffer is created by the following constructors, where the
default maxSize is some system dependent DEFAULT_SIZE (currently 64 in
our system), and the default lock object is allocated and internally. The
parameters maxSize and lock overrides the defaults:

public RTEventBuffer()
public RTEventBuffer(int maxSize)
public RTEventBuffer(int maxSize, Object lock)

Posting The methods for posting events to the buffer are named doPost, tryPost,
or simply post. The doPost method simply blocks the caller until the posting
is completed. The tryPost gives up if the buffer is full, either immediately
if no timeout is given or after the specified timeout (in ms). The method
post is the generic one that is subject to replacement in subclasses, whereas
the other methods are declared final for reasons of efficiency.
The post method by default simply calls doPost and returns null. The re-
turn (of type RTEvent) value is useful when subclassing and changing post to
call one of the tryPost methods, which return null when the event was suc-
cessfully posted. The event supplied as an argument to tryPost is returned
if not posted (due to the buffer being full). Returning the unposted event
simplifies the calling code. The public posting methods are:

RTEvent post(RTEvent e)
final void doPost(RTEvent e)
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final RTEvent tryPost(RTEvent e)
final RTEvent tryPost(RTEvent e, long timeout)

Fetching The corresponding methods for fetching messages look as follows, where
the tryFetch methods return null if no event object was obtained.

RTEvent fetch()
final RTEvent doFetch()
final RTEvent tryFetch()
final RTEvent tryFetch(long timeout)

Control and status The following non-blocking methods can be used to check
if the buffer is empty or full.

boolean isEmpty()
boolean isFull()

For a single producing or consuming thread these methods can be useful,
but in the general case with outer threads involved the returned state may
of course be invalid already when execution continues on the next line (due
to preemption, etc.), so using the try-methods are usually preferred.
Sometimes state or mode changes are to take place based on the state of
the buffer, and the responsible thread is to be blocked until the buffer con-
dition is fulfilled. The following await-methods are blocking. Examples
of use include: await all event consumed before terminating the applica-
tion, await producer started before starting operator or networking interface,
await buffer filled with event trace, and await consumer started, respectively:

void awaitEmpty()
void awaitNotEmpty()
void awaitFull()
void awaitNotFull()

The fetchAll is to get all buffered events leaving the buffer empty. The
event that was the next to be fetched is returned as the first element (index
0), followed by the other events in FIFO order with the most recently posted
event as the last element. An empty array (not null) is returned if the buffer
was empty. Calling flush also results in an empty buffer.

RTEvent[] fetchAll()
void flush()

There are set and get methods for the maximum size of the buffer. Note
that if the maximum size of the buffer is decreased to less than the current
size (obtained via currentSize), the caller of setMaxSize is blocked until the
size actually has decreased to the new maximum size (due to other threads
fetching messages).

int currentSize()
public int getMaxSize()
void setMaxSize(int newSize)

Other protected fields Apart from the protected buffer array and object lock
described above, the following are the other fields for subclass usage. First
there are the indexes for reading respectively writing as shown in Figure 3-
10, as well as the current size:
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int currSize;
int postAt;
int fetchAt;

There are two fields for keeping the maximum size. It is the maxSizeW that is
the requested maximum size. The maxSizeR can temporarily during shrink-
age (resizing equal to true) of a too large buffer be greater than maxSizeW,
but they will have the same value during normal operation (when resizing
equals false).

int maxSizeR;
int maxSizeW;
boolean resizing;

Threads that are interrupted during (or prior to) blocking are thrown an
RTInterrupted error.

Referring to buffer input or output

Sometimes it is desirable to have an object that represents only one end of a
buffer. For the RTEventBuffer, utilizing Java interfaces, this is accomplished by
one interface for input containing the post methods, and one interface for output
containing the methods for fetching events. Thus,

class RTEventBuffer implements RTEventBufferInput , RTEventBufferOutput

where these interfaces are defined as
interface RTEventBufferInput {

RTEvent post(RTEvent e);
void doPost(RTEvent e);
RTEvent tryPost(RTEvent e);
RTEvent tryPost(RTEvent e, long timeout);
RTEvent tryPost(RTEvent e, long timeout, int nanos);

}

interface RTEventBufferOutput {
RTEvent fetch();
RTEvent doFetch();
RTEvent tryFetch();
RTEvent tryFetch(long timeout);
RTEvent tryFetch(long timeout, int nanos);

}

Refer to the RTEventBuffer above for a description of the methods. Using these
interfaces you can for instance have the output of a buffer managed as a shared
resource in a monitor, while the input can be directly available for posting events
(from several threads since the RTEventBuffer by itself is a monitor). Within
such a monitor holding an RTEventBufferInput, a potentially blocking call such
as doFetch should only be used with great care since the blocked thread will lock
also the outer monitor.

In general for producer-consumer situations, the input and output interfaces to
the buffer simply provide a convenient way of passing one end of the buffer to the
producer or the consumer. Of course an object (a monitor or an ordinary object)
given an RTEventBufferInput can check if it is an instance of RTEventBuffer (which
it does not need to be since any object can implement the same interface), and if so,
cast to RTEventBuffer and use also the post methods. Hence, these interfaces are
provided for convenience for certain programming situations involving cooperating
objects, but as usually, misuse can be made cumbersome but not completely
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prevented. Recall, however, that multi-threading mainly is about cooperating
concurrency.

3.4.3 Threads and event-based communication
A mailbox, here accomplished by an instance of RTEventBuffer7, can be declared
and referred to in different ways:

• The mailbox(es) can be made globally available, for example created in the
main program and passed as argument to the constructors of the different
sending/receiving objects( typically threads), or statically defined attributes
of some class known to other classes at compile time. With such globally
defined mailboxes, they are visible in the software design, as entities of their
own.

• We can also view the provided buffering as a property of some object, and
have the mailbox as an attribute internal to the class that provides the
methods that make use of the buffering. Typically the enclosing class will
be of type Thread and act as the receiver of the events (although the sender
can be unaware of that if sending is accomplished by some other method of
the receiving thread. With such object-internal mailboxes, the buffering is
part of the internal design of that class.

Thus, the the main difference here is a design choice: should mailboxes be exposed-
to or part-of the objects that make use of them? Following common object-
oriented design rules, this depends on what we see as entities within our design.
If the buffers form the core of the application it may be preferable to have them
exposed. However, in most cases the buffers are introduced to decouple the ex-
ecution, that is, to make object interaction asynchronous but still based on the
methods at hand. Hence, the normal case is to hide the mailbox as an attribute
inside the object. There is a subclass of Thread that provides that feature, namely
class se.lth.cs.realtime.JThread.

The featured Java Thread class – JThread

To support the most common case that the mailbox in terms of an RTEventBuffer

is handled locally within the receiving thread, and encapsulated by the methods
of that thread, the class JThread contains the following (see volatile on Page 64):

public class JThread extends java.lang.Thread {
/** The event inbut buffer. */
protected volatile RTEventBuffer mailbox;

/**
* Put the time-stamped event in the input buffer of this thread.
* If the buffer is full, the caller is blocked.
*/

public RTEvent putEvent(RTEvent ev) {
mailbox.doPost(ev); // Subclasses may use tryPost.
return null; // Subclasses may return resulting event.

7The upcoming new release of the LJRT classes will include both the RTEventBuffer and other
buffer classes with different properties and different implementations. The Java-doc pages pro-
vide the valid description for programming using the available buffers, while the (not complete)
description here covers the general ideas of events and buffers.
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}
// etc. etc.

}

The J in JThread is to stress the fact that this type of thread still is a (concurrent)
Java thread (that is, not specified to be real time as will be the case in following
chapters).

To simplify programming in the case that the same thing should be repeated
over and over again, there is a default run method that calls perform according to
the following:

public void run() {
while (!isInterrupted()) {

perform();
}

}

When implementing the thread behavior, in run or perform, the the doFetch and
tryFetch methods are useful, like is this exemplifying perform method:

class MyEventProcessor extends JThread {
public void perform() {

serverObject.process(mailbox.doFetch());
}

}

In addition to the methods of the base class Thread as shown on Page 48, this
means that the class JThread provides the following simple to implement but
convenient methods:

RTEvent putEvent(RTEvent ev) // Generic event input
void terminate() // Interrupt and join
static void sleepUntil(long wakeUpTime) // Sleep until that absolute time
void perform() // Override to define cyclic work
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Part II

Exercises and Labs
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Exercises and Labs

3.5 Exercise 1 – Semaphores

Answer the questions below:

1. Sometimes, multiple threads in a program write to the same file concurrently.
One example is a console window such as the Java console in Netscape. A
common problem is that the interleaving of output from different threads
is unpredictable and may result in a non-readable result. Show, by using
a Semaphore, how the output from a sequence of print or println calls of
Java’s System.out can be ensured to be printed without getting mixed with
output from other threads8.

2. Review the program RTsemBuffer and complete the code in the Buffer .get-
Line method. The requirement is that only one thread at a time may write
or read the buffer data attribute. Additional threads should be blocked by
a semaphore.

3. In exercise 1 the problem of mutual exclusion was solved by requiring the
calling threads to use the semaphore in a proper way. In exercise 2 the
semaphores were handled internally in a class responsible for the common
data structure. Comment on the differences between these two approaches.
Which might be the easier and safer way of programming? Why?

4. In the program provided for exercise 2, there is a semaphore free. Assume
you want to provide buffering of up to 8 lines without blocking the callers.
How should the program be changed?
Hints: Consider the alternative constructor (taking an argument) of the class
CountingSem. Also, a so called ring-buffer is an efficient type of circular
buffer that can easily be implemented by an ordinary array.

5. What will happen if you swap the order of the calls free.take(); mutex.take();
so that you instead do mutex.take(); free.take();?
Hint: consider a full buffer.

8Even if the printout from one thread only consists of a single println call, certain types of
real-time systems do not ensure that a single line is not interrupted by more urgent printouts. We
then have a problem similar to the one above, but for individual characters. It is also common
that embedded systems (that is, systems with built-in computers) have such textual output on a
simple serial port. That port is then a shared resource and we could use a semaphore to protect
it just like in exercise 1. Another solution to the problem is to introduce an additional thread
which is the only one that may use the output port.
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Program RTsemBuffer

import se.lth.cs.realtime.semaphore.*;

/**
* Simple producer/consumer example using semaphores.
* The complete example, including all classes, is put in one outer class.
* That lets us keep it all in one file. (Not good for larger programs.)
*/

public class RTsemBuffer {
/**
* Static stuff which permits the class to be called as a program.
*/

public static void main(String args[]) {
// Since this is a static function , we can only access static data.
// Therefore , create an instance of this class; run constructor:
new RTsemBuffer();

}

/**
* Constructor which in this example acts as the main program.
*/

public RTsemBuffer () {
Buffer buff = new Buffer();
Producer p = new Producer(buff);
Consumer c = new Consumer(buff);
c.start();
p.start();
System.out.println("\n\n"+"RTsemBuffer: Threads are running ...");

try {
p.join();
// Give consumer 10s to complete its work, then stop it.
Thread.sleep(10000);
c.interrupt(); // Tell consumer to stop.
c.join(); // Wait until really stopped.

}
catch (InterruptedException e) {/* Continue termination...*/};
System.out.println("\n"+"RTsemBuffer: Execution completed!");

}
} // RTsemBuffer
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/**
* The producer.
*/

class Producer extends Thread {
Buffer theBuffer;
Producer(Buffer b) {

super(); // Construct the actual thread object.
theBuffer = b;

}

public void run() {
String producedData = "";
try {

while (true) {
if (producedData.length()>75) break;
producedData = new String("Hi! "+producedData);
sleep(1000); // It takes a second to obtain data.
theBuffer.putLine(producedData);

}
}
catch (Exception e) {

// Just let thread terminate (i.e., return from run).
}

} // run
} // Producer

/**
* The consumer.
*/

class Consumer extends Thread {
Buffer theBuffer;
Consumer(Buffer b) {

super();
theBuffer = b;

}

public void run() {
try {

sleep(10000); // 10s until work starts.
while (true) {

System.out.println(theBuffer.getLine());
}

}
catch (Exception e) {/* Let thread terminate. */};
} // run

} // Consumer
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/**
* The buffer.
*/

class Buffer {
Semaphore mutex; // For mutual exclusion blocking.
Semaphore free; // For buffer full blocking.
Semaphore avail; // For blocking when no data is available.
String buffData; // The actual buffer.

Buffer() {
mutex = new MutexSem();
free = new CountingSem(1);
avail = new CountingSem();

}

void putLine(String input) {
free.take(); // Wait for buffer empty.
mutex.take(); // Wait for exclusive access.
buffData = new String(input); // Store copy of object.
mutex.give(); // Allow others to access.
avail.give(); // Allow others to get line.

}

String getLine() {
// Exercise 2 ...
// Here you should add code so that if the buffer is empty, the
// calling process is delayed until a line becomes available.
// A caller of putLine hanging on buffer full should be released.
// ...

}
}
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3.6 Exercise 2 – Lab 1 preparation

In this exercise you will design a real-time system for an alarm clock application
using threads, semaphores and provided hardware interfaces. In lab 1 you will
implement your design (the implementation usually takes longer than two hours
so be sure to start well in advance of the lab occasion). Study the provided
specification, description of the handout code and hardware emulator and answer
the following questions (express your design in class diagrams and Java code where
necessary):

1. What parallel activities are needed, i.e., which thread objects do you need?

2. What common data need to be shared between threads? Where is the data
to be stored?

3. What operations on data are needed for each thread? Where should this
logic be stored?

4. Where will data be accessed concurrently from different threads, i.e. where
do you need to provide mutual exclusion?

5. Are there other situations in the alarm clock where semaphores are needed
for synchronization?
Hint: study the ClockInput class.

6. If you in a thread wait for the next second by simply calling sleep(1000),
what will the effect on the clock time be? Is this ok for alarm clock time
updating? Can it be improved?

Specification
1. The displayed clock time should be updated every second (by calling the

ClockOutput.showTime method). Note: when the user has selected set alarm
or set time, the hardware/emulator shows the set time and an update of the
clock time will have no effect on the clock display. Still, the clock time
should be updated every second regardless of mode.

2. It should be possible to set the clock time and the alarm time. The hard-
ware/emulator internally handles the actual setting/editing of the time value.
When the user selects another mode, the set value is written to the Clock-
Input object and give is called for its semaphore. For example, the user
selects set alarm and edits (using number keys or arrows) the alarm time.
Nothing needs to be done by the control software. Then the user selects
set time and the alarm time is written to the ClockInput object and give is
called. Note: give is called for each key press or interaction with the alarm
clock. It is therefore necessary to filter signals according to the comment in
ClockInput.getValue.

3. When the clock time is equal to the alarm time, and the alarm on tick
box is selected, the alarm should beep once a second for 20 seconds. The
ClockOutput.doAlarm() method provides one beep. The sound should be
turned off if the user pushes any button while the alarm is sounding.
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4. The program should be written in Java, using the Thread class. Signalling
and mutual exclusion shall be achieved through semaphores.

5. Optional: Implement an AlarmClock.terminate() method. The terminate
method should result in termination of all your threads, before returning to
the caller.

6. Optional challenge: Assume that the time counting should be performed
in the hardware giving an interrupt each second. Write another class with
a method static void oneTick() that can be called as an interrupt routine.
That class should also implement the Runnable interface in such a way that
the run method simulates the time interrupts by calling oneTick each second.

Handout code
The handout code consists of two Java packages called done and todo. The done
package contains the emulator (as an applet) as well as hardware interfaces (Clock-
Input and ClockOutput). The todo package will contain your real-time system.
todo right now contains one class, AlarmClock, that contains a sample implemen-
tation that beeps upon key presses. You will modify and extend todo with classes
as you deem necessary for your implementation.

AlarmClock class

package todo;
import done.*;
import se.lth.cs.realtime.semaphore.Semaphore;
import se.lth.cs.realtime.semaphore.MutexSem;

public class AlarmClock extends Thread {
private static ClockInput input;
private static ClockOutput output;
private static Semaphore sem;

public AlarmClock(ClockInput i, ClockOutput o) {
input = i;
output = o;
sem = input.getSemaphoreInstance();

}

// The AlarmClock thread is started by the simulator. No
// need to start it by yourself , if you do you will get
// an IllegalThreadStateException. The implementation
// below is a simple alarmclock thread that beeps upon
// each keypress. To be modified in the lab. A recommendation
// is to use this thread to start up your system similar
// to RTsemBuffer in exercise 1.
public void run() {

while (true) {
sem.take();
output.doAlarm();

}
}

}

Looking inside the simulator for a moment, what is happening at startup is that
the simulator creates an instance of your AlarmClock class and starts a new thread
on the resulting object. The new thread starts executing in the AlarmClock.run()
method.
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Simulator excerpt: AlarmClock startup code

ClockInput butt2ctrl; // Interface to user actions via hardware/software.
ClockOutput ctrl2disp; // Interface to display hardware/software.
AlarmClock control; // The actual alarm-clock software.
// ...
control = new AlarmClock(butt2ctrl , ctrl2disp);
control.start();

In the same manner, when the applet is stopped (corresponding to hardware
reset), there is a call control.terminate(); which you need to override, if you want
to fulfil the optional specification item 5.

The following classes are the ClockOutput and the ClockInput that describe
the interface between the control software and the clock hardware/emulator.

Excerpt from the ClockOutput class

public class ClockOutput {

/**
* Wake-up clock user.
*/

public void doAlarm() { ... }

/**
* If the display is currently used to display the time, update it.
* If user is using display for setting clock or alarm time, do
* nothing.
*/

public void showTime(int hhmmss) { ... }
}
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Excerpt from the ClockInput class

public class ClockInput {

/**
* Semaphore that signals when the user have changed any setting.
* Get-method to access the semaphore instance directly.
*/

public Semaphore getSemaphoreInstance() { ... }

/**
* Get check-box state.
*/

public boolean getAlarmFlag() { ... }

/**
* Return values for getChoice.
*/

public static final int SHOW_TIME = 0;
public static final int SET_ALARM = 1;
public static final int SET_TIME = 2;

/**
* Get radio-buttons choice.
*/

public int getChoice() { ... }

/**
* When getChoice returns a new choice, and the previous choice
* was either SET_ALARM or SET_TIME, the set-value of the display
* is returned in the format hhmmss where h, m, and s denotes
* hours, minutes, and seconds digits respectively. This means,
* for example, that the hour value is obtained by dividing the
* return value by 10000.
*/

public int getValue() { ... }
}
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Using the emulator

First, you must click somewhere on the image of the clock to give the applet
keyboard focus (light blue area). Clicking the check box or another window will
steal keyboard focus again.

• Hold Shift to set clock time (button 1).

• Hold Ctrl to set alarm time (button 3).

• Hold Shift+Ctrl to toggle alarm on or off.

• Use direction keys for buttons 2-6.

The tow lines on the LCD display should be fairly obvious. The first line displays
the current clock time. The second line displays the alarm time. When the alarm
is set the separators in the alarm time turn into colons, otherwise they remain as
underscores. When the alarm is beeping the separators will flash with the beeps
of the alarm.

Below the buttons is a small status field which displays the alarm status with a
check box and the current input mode with three radio buttons. The radio buttons
may not be manipulated directly, but the check box can be used to modify the
alarm status (on/off).

When either of the modes Set Time or Set Alarm is active the user may increase
the digit under the cursor (indicated by an underscore) by pressing the up button
(2), decrease the digit under the cursor with the down button (5), shift cursor left
with the left button (4) and shift cursor right with the right button (6).
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3.7 Lab 1 – Alarmclock

In this lab you are going to implement your alarm clock system designed in the
previous exercise. The target system is an embedded board equipped with LCD
display and six buttons. You will develop the software in three steps:

• Implementing the alarm clock in Java using semaphores, executing it on a
Java emulator

• Compile the Java code to C and execute on a PC simulator

• Cross-compile to the embedded board and execute on the actual hardware

Java is the choice language in the course, but really small embedded systems
may not have the resources for executing Java directly. However, almost all small
system are capable of executing C code. To try out such a development process,
we therefore translate the code to C through a tool and compile it, first towards
PC and linux for testing, and then towards the real hardware.

Preparation
It is generally a good idea to start programming before the lab occasion. Java
handout code is available on the course homepage as a zipped Eclipse workspace.
Remember that the emulator should be run as an applet.

Notes

Notes on compiling and running C code on the PC and the embedded system is
made available at the lab occasion and/or via the course homepage. However,
here follows some general remarks about the Java to C translation process to help
you with the design of the Java program.
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The Java to C translator cannot cope with the entire Java language and frame-
work. Also, from an embedded systems point of view it is best to import as little as
possible to minimize memory requirements. Avoid * when importing, just import
the classes that are needed.
For the lab a very small subset is necessary:

• Thread

• System.currentTimeMillis()

• LJRT semaphores

– se.lth.cs.realtime.semaphore.Semaphore
– se.lth.cs.realtime.semaphore.MutexSem
– se.lth.cs.realtime.semaphore.CountingSem

Some advice on what to avoid:

• Generics do not work.

• Try not to use more than two threads.

• Avoid parseInt, etc. for converting time values. Use integer arithmetic
instead.

• Avoid recursive calls. Each thread has a very limited stack size.

• System.out.* is not implemented. Comment out your debug output before
translating to C.

A comment on LJRT

The curious reader might wonder why we use an inhouse package to provide
synchronization primitives. The explanation is that the LJRT package (Lund Java
Real-Time) was specifically developed to support Java to C translation for small
embedded systems. During translation the LJRT Java primitives are replaced
by their C counterparts. The translation tool we use was developed as part of a
doctoral real-time thesis presented a few years back.

Getting approved
To pass you need to show your solution to the lab supervisor. You should be able
to explain what you have done and motivate your design. A working Java solution
free of real-time problems is compulsory. Common problems that are not allowed
is potential for data corruption and excessive use of CPU. In case you run into
problems with the Java to C translation it is up to the lab supervisor to decide
when you have done enough to pass. You are (in this lab) only allowed to use
take and give operations on the semaphores, tryTake is forbidden.
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3.8 Exercise 3 - Monitor and Wait/Notify

In this exercise you will re-implement the Buffer class from exercise 1 as a monitor
and you will write a monitor for a queue application.

Buffer
Implement the getLine method below. Note that the counting semaphores have
been replaced with attributes used together with the Java signalling mechanism
wait/notify.

class Buffer {
int available; // Number of lines that are available.
final int size=8; // The max number of buffered lines.
String[] buffData; // The actual buffer.
int nextToPut; // Writers index.
int nextToGet; // Readers index.

Buffer() {
buffData = new String[size];

}

synchronized void putLine(String inp) {
try {

while (available==size) wait();
} catch (InterruptedException exc) {

throw new RTError("Buffer.putLine interrupted: "+exc);
};
buffData[nextToPut] = new String(inp);
if (++nextToPut >= size) nextToPut = 0;
available++;
notifyAll(); // Only notify() could wake up another producer.

}

synchronized String getLine() {
// Write the code that implements this method ...

}
}

A note on InterruptedException

When we in a synchronized method wait for some condition to become true,
that is, when we call wait, we are forced to (by the compiler) to take care of an
InterruptedException by

• having the method declared to throw that exception, or

• catching the exception and completing the method under the actual situa-
tion, or

• catching the exception and terminating the program, or

• catching the exception and generate an unchecked exception like ‘divide by
zero’, or

• catching the exception and throwing an instance of (a subclass of) Error.

Having examined these alternatives we recommend (in most cases) to throw an
Error. The purpose of the standard Error class in Java is to throw unchecked
exceptions that the ordinary programmer is not expected to handle, and when a
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monitor operation fails there is normally nothing else to do than to enter some
type of fail-safe or recovery mode (or simply a thread exit in simple applications).
To simply throw an se.lth.cs.realtime.RTError facilitates this.

Queue system
A queue system consists of the following hardware:

• A ticket-printing unit with a button that customers press in order to get a
numbered queue ticket.

• Buttons at several counters. A clerk pushes the button to announce that
he/she is free to handle a customer.

• A display showing counter number and queue number for the next customer
to be served.

Develop the control program for the queue-handling system. The thread classes
for input and output have already been written. Your task is to develop the
monitor class that the threads use. The hardware is encapsulated in an available
static class HW. To solve the task you need to answer some questions before
implementation:

1. What data is needed in the monitor?

2. Which conditions must be fulfilled to permit each monitor operation to
complete?

3. Which events may imply that the conditions have been fulfilled?

4. An impatient clerk could possibly press its button several times. How do
you handle that?

5. Write the monitor!

Input to the control system consists of signals from the customer and clerk buttons.
Output consists of the numbers to the display. Reading input is blocking which
prevents use of polling. Instead, you need one thread for each of the inputs. This
agrees with the rule to have one thread for each independent external sequence of
events. It is also specified that the display may not be updated more often than
each 10 seconds. Therefore, it is most convenient to have a dedicated thread for
updating the display. Thus, we have the following threads:

• CustomerHandler : Waits for a customer to push the button, calls the mon-
itor method customerArrived in the monitor, and then a queue ticket is
printed for the customer.

• ClerkHandler : Waits for the clerk to push his/her button, then calls the
monitor method clerkFree. Each instance handles one specified clerk.

• DisplayHandler : Calls the monitor method UpdateDisplay which returns
values for display update. To give customers time to react, there must be
at least 10 seconds between each update.
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Specification of the monitor (for simplicity of the exercise, exceptions need not be
caught):

class YourMonitor {
private int nCounters;
// Put your attributes here...

YourMonitor(int n) {
nCounters = n;
// Initialize your attributes here...

}

/**
* Return the next queue number in the intervall 0...99.
* There is never more than 100 customers waiting.
*/

synchronized int customerArrived() {
// Implement this method...

}

/**
* Register the clerk at counter id as free. Send a customer if any.
*/

synchronized void clerkFree(int id) {
// Implement this method...

}

/**
* Wait for there to be a free clerk and a waiting customer , then
* return the cueue number of next customer to serve and the counter
* number of the engaged clerk.
*/

synchronized DispData getDisplayData() throws InterruptedException {
// Implement this method...

}
}

Implementation of the threads in the system. Note that most of the application
logic is deferred to the monitor, very little is left in the thread code. This is in
general a good design principle.
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class CustomerHandler extends Thread {
YourMonitor mon;

CustomerHandler(YourMonitor sharedData) {
mon = sharedData;

}

public void run() {
while (true) {

HW.waitCustomerButton();
int qNum = mon.customerArrived();
HW.printTicket(qNum);

}
}

}

class ClerkHandler extends Thread {
YourMonitor mon;
int id;

ClerkHandler(YourMonitor sharedData , int id) {
mon=sharedData;
this.id=id;

}

public void run() {
while (true) {

HW.waitClerkButton(id);
mon.clerkFree(id);

}
}

}

class DispData {
int ticket;
int counter;

}

class DisplayHandler extends Thread {
YourMonitor mon;
DispData disp;

DisplayHandler(YourMonitor sharedData) { mon = sharedData; }

public void run() {
while (true) {

try {
disp = mon.getDisplayData();
HW.display(disp.ticket, disp.counter);
sleep(10000);

} catch (InterruptedException e) { break; }
}

}
}
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3.9 Exercise 4 - Deadlock analysis and lab 2 preparation

A) Semaphores

Consider the following two thread classes S and T referring to the shared resources
A, B, C, D, and E which are allocated using semaphores.

class S extends Thread {
public void run() {

// ....
A.take();
B.take();
useAB();
A.give();
C.take();
useBC();
B.give();
C.give();
// ....

}
}

class T extends Thread {
public void run() {

// ....
C.take();
D.take();
useCD();
A.take();
useACD();
A.give();
D.give();
E.take();
useCE();
C.give();
E.give();
// ....

}
}

1. Draw a resource allocation graph. Is the system safe concerning deadlock,
that is, can we conclude that there is no risk for a deadlock?

2. Review the program and the graph from 1 again. Assume there is exactly
one thread of type S and one thread of type T. Explain why the system
cannot deadlock!

3. Assume that there are two threads of type S, and still one T thread. Can
deadlock occur in this case?

4. Change one of the threads in such a way that there will be no risk for dead-
lock no matter how many threads there are of each type. Note that the same
computations should be carried out and still with full synchronization. In
case of several solutions, can any solution be considered to be more efficient
than others? In what sense?

B) Monitors

A Java program consists of three concurrently executing threads T1, T2, and
T3. They communicate with each other using four shared objects A, B, C, and
D. The shared objects contain methods declared synchronized as well as other,
non-synchronized, methods (such as A.s()). Relevant parts of the program and
the design of the monitors are shown below (subset of the total program only).
Each thread and shared object is assumed to know references to the (other) shared
objects A, B, C, and D named a, b, c, and d, respectively.
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class T1
extends Thread {
void run() {

b.z();
a.x();

}
}

class T2
extends Thread {
void run() {

b.r();
c.y();
b.w();

}
}

class T3
extends Thread {
void run() {

d.u();
}

}

class A {
synchronized void x() {

c.y();
}

void s() { // NOT SYNCHRONIZED
// ...

}

synchronized void t() {
// ...

}
}

class B {
synchronized void z() {

// ...
}

synchronized void r() {
a.s();

}

synchronized void w() {
d.v();

}
}

class C {
synchronized void y() {

b.z();
}

}

class D {
synchronized void u() {

a.t();
}

synchronized void v() {
// ...

}
}

Hint: Entering a synchronized method can be interpreted as take, leaving as give.

1. Draw a resource allocation graph for the system above.

2. Can the system experience deadlock?
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Lab 2 preparation

Background
Concurrent programming, i.e. writing programs consisting of a number of co-
operating threads executing in parallel, is a valuable technique in many situations.
It is not only suitable for implementing embedded real-time systems such as a
controller for an industrial process, but can also be used for example in interactive
programs where it is desired that the user interface is still responding while the
program is busy with some lengthy task. It is also a good technique when it comes
to writing simulation software as we will see in this laboratory exercise.

Apart from illustrating how threads can be used in simulation software, the
goal of the laboratory exercise is also to give you hands-on experience with how
a monitor works and how to design one.

Exercise
A concurrent program simulating how a lift in an office building is used is to be
written. The program shall contain a thread which controls the movement of the
lift and a number of identical threads each simulating a person travelling with the
lift. A monitor should be used for thread synchronization. Discuss how the lift
and person threads should be synchronized with each other:

• Which monitor attributes are accessed/modified by which threads?

• What condition must be true for a person to be allowed to enter the lift?

• What condition must be true for a person to leave the lift?

• What condition must be true for the lift to start moving to another floor?

• Which monitor operations are suitable in order to guarantee proper synchro-
nization of the various threads? What, and how much, must be performed
as a part of each monitor operation?

Hint: The system should consist of a person thread class, a lift thread class, a
monitor class according to the specification below, and a main() method which
creates instances of the thread classes, the monitor class and starts the simulation.
Remember, it is good design praxis to put most application logic in the monitor.
Also, it is good praxis to minimize the number of methods in the monitor, avoid
getters and setters and provide methods suited for what each thread needs (usually
one or two methods). Assume one thread for each person travelling in the lift
simulation, i.e. 20 persons equals 20 person threads. When a person has reached
his/her destination the thread should be re-used for another person travelling.

Specification
The following model is to be used:

• Each person thread is activated after a randomly chosen delay (we suggest
that the delay is in the range 0-45 seconds). When activated, the person
thread determines between which floors it is to travel. The initial and target
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floors are to be chosen randomly. Make sure that the target floor is different
from the initial floor! The thread then continues by performing the travel
using the lift. After completing the travel, the thread is again to be delayed
a randomly chosen time after which a new travel is performed.

• The lift thread simulates the lift moving up and down through the lift shaft
stopping at each floor to let travellers enter and exit the lift. It stops at
each floor regardless of whether there are persons waiting for entering or
exiting the floor or not. The lift continuously moves between the bottom
floor (floor 0) and the top floor (floor 6). The lift is assumed to have room
for a maximum of four (4) persons at any time.

• The lift thread and the person threads need to synchronize their actions.
For example, no person should enter the lift unless it has stopped on the
same floor as the person is located. It is of course also necessary to verify
that the lift is not already occupied, et cetera. Therefore, a shared monitor
object containing shared attributes should be used.

The attributes protected by your monitor should include the following:
int here; // If here!=next, here (floor number) tells from which floor

// the lift is moving and next to which floor it is moving.
int next; // If here==next, the lift is standing still on the floor

// given by here.
int[] waitEntry;// The number of persons waiting to enter the lift at the

// various floors.
int[] waitExit; // The number of persons (inside the lift) waiting to leave

// the lift at the various floors.
int load; // The number of people currently occupying the lift.

Your monitor methods need to keep the state appropriately updated.

Visualization

In order to illustrate the simulation as it is running, the LiftView graphics class
is available:

/** Class for opening a window displaying seven floors and a lift shaft.
* methods for animating a lift basket and persons travelling using the lift.
*/

public class LiftView {
/** Constructor. Displays the simulation window. */
public LiftView();

/** Draws a lift basket containing load persons on floor number floor. If
* the number of persons in the lift is less than it was the last time
* drawLift was called, an animation showing a person leaving the lift is
* displayed. Should be called whenever the number of persons in the
* lift is changed. */

public void drawLift(int floor, int load);

/** Draws persons number of persons waiting for the lift on floor floor.
* Should be called whenever the number of waiting persons is changed. */

public void drawLevel(int floor, int persons);

/** Shows an animation moving the lift basket from floor number here to
* floor number next. The number of persons drawed in the lift is the same
* as the number of persons passed to drawLift the last time it was
* called. */

public void moveLift(int here, int next);
}
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There are some additional requirements on when the above methods may be called.
The drawLift and drawLevel methods must be called every time the number of
persons in the lift or waiting persons on a floor, respectively, are changed. It is
not possible to follow the simulation on the screen otherwise.

The LiftView class is not entirely thread-safe, i.e. strange things can happen
if two threads call methods in the class simultaneously. You will therefore be
forced to consider a LiftView object a shared reseource to which access must be
synchronized. The following rules apply:

• Two threads must not simultaneously call drawLevel.

• Two threads must not call drawLift simultaneously.

To speed up the simulation and make the animation more realistic you should
allow drawLevel to be called at the same time as a call to moveLift is in progress.
Calling moveLift should thus not block other threads.

Miscellaneous

It is not allowed to share thread and monitor classes. This is often a good design
praxis when building embedded systems.

Random numbers can be generated using the Math.random() method which
returns a random number between 0 and 1 (not including 1.000...). To generate
a random delay between 0 and 45 seconds you can for example write:

int delay = 1000*((int)(Math.random()*46.0)); // sleep need milliseconds

Note that we have to multiply with 46 instead of 45 in order to make it possible
to receive 45 as the result.

It is highly recommended that you write your program and attempt to remove
any compilation errors before the laboratory session. Testing the program and
removing errors can require a lot of time in some cases.
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3.10 Lab 2 – Lift

In this lab you are going to implement the lift simulation prepared in the previous
exercise.

Preparation
It is generally a good idea to start programming before the lab occasion. The
handout code is available on the course homepage as a zipped Eclipse workspace
(it is part of the same zip you downloaded for lab 1).

The handout code contains only the visualization class (LiftView), the rest
you must implement yourself. The LiftView class contains a main method with a
test case.
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public static void main(String[] args) {
LiftView lv = new LiftView();
lv.drawLift(0,3);
lv.drawLevel(5,4);
try {

Thread.currentThread().sleep(1000);
} catch(InterruptedException e) { }
lv.moveLift(0,1);
lv.drawLift(1,2);

}

You are not supposed to modify this main method. You should write your own
main in your own class.

1. Implement the simulation.

2. When your program is working, make the following modification: Change
it such that the lift is halted when no persons are either waiting for the lift
to arrive or are located within the lift itself. The lift should thus not move
unnecessary. The lift should be started again when a person arrives at a
floor.

3. Save a copy of the program to show the supervisor at the lab occasion.

4. Possibly implement an optional extension to the simulation. Suggestions for
further modifications to the lift simulation:

• The lift could be intelligent and change direction before reaching the
top or bottom floors if possible.

• A person should avoid getting onboard the lift if it is headed in the
wrong direction.

• Discuss the problems these modification causes. What strategies should
the person and lift threads utilize? What new shared variables are
required in the monitor?

Getting approved
To pass you need to show your solution to the lab supervisor. You should be able
to explain what you have done and motivate your design. A working Java solution
free of real-time problems is compulsory. Common problems that need be taken
care of are race conditions (the visualization seem to be "jumping"), potential data
corruption and excessive use of CPU (busy wait). The solution must use monitors
and the wait/notify signalling mechanism. Thread classes are not allowed to act
as monitors.
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3.11 Exercise 5 - Mailbox and lab 3 preparation

Washing machine
Your task is to develop the control software for a washing machine. The machine
is equipped with water level and temperature sensors. In addition, four buttons
allow the user to select a washing program (1, 2, 3) or stop the machine (0).
Output signals from your software will control the following:

• A valve for letting water into the machine.

• A drain pump for draining the machine.

• A heater for heating the water.

• A motor for rotation of the barrel. The motor has the modes left spin, right
spin, fast spin (centrifuge), and stop.

Exercise
During the exercise session, the general design of the control software is discussed,
including threads and communication mechanisms. The handout code contains a
skeleton design that you need to understand and build on for your implementation.
A complete system should be implemented before the lab session.

• Which concurrent activities (i.e., threads) do you need? Think about which
inputs the system should handle, and how it should handle them.

• Is there any thread that is more time-critical than the rest (and should be
given a higher priority)?

• Is it appropriate to introduce more threads to accomplish a clearer and more
understandable design?

• Will the CMLA requirements be easy to verify (by quickly inspecting the
code) in your implementation?

• Which threads need to communicate? Draw a simple diagram to show your
design. What information (which classes) should be communicated?

Mailboxes should be used to send events for thread synchronization and commu-
nication.

Specification
The machine shall have three washing programs with the following behavior:

Program 1 Color wash: Lock the hatch, let water into the machine, heat to
60◦C, keep the temperature for 30 minutes, drain, rinse 5 times 2 minutes
in cold water, centrifuge for 5 minutes and unlock the hatch.

Program 2 White wash: Like program 1, but with a 15 minute pre-wash in
40◦C. The main wash should be performed in 90◦C.
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Program 3 Draining: Turn off heating and rotation. After pumping out the
water (if any), unlock the hatch. Note: the user should select this program
as soon as possible after 0 (stop).

In addition, the machine shall have a special program for immediately stopping
it:

Program 0 Stop: All motors, as well as any filling/draining of water, should be
turned off immediately.

The main difference between 3 and 0 is that 0 can used as an emergency stop.
Program 3 can be used to end a washing after interrupting it (with 0) or after a
power failure. The program selector should require the user to always stop the
machine (i.e., press 0) before switching from one program to another.

Additional requirements

• The temperature must not exceed the ones stated above (60, 40, and 90◦C)
but may sporadically drop down to 2◦C below.

• An electromechanical relay controls the power to the heater. To avoid wear-
ing out the relay, it should not be switched on/off too often.

• While washing, the barrel should alternate between left and right rotation.
The direction should be changed once every minute.

Requirements for CMLA certification

To market the washing machine in the EU, the control software must be reviewed
and certified by a special committee, CMLA (Comité de Machines à Laver Au-
tomatiques), in Brussels. The special requirements from CMLA are listed below.
Since the review is a costly and time-consuming process, it is very important that
the software is written in a way that allows the CMLA requirements to be verified
easily. In other words, it should be easy to convince oneself that the requirements
are fulfilled by simply inspecting the code.

CMLA states the following requirements, motivated by environmental and
safety reasons, for a washing machine to be certified:

1. The drain pump must not be running while the input valve is open.

2. The machine must not be heated while it is free of water.

3. There must not be any water in the machine when the hatch is unlocked.

4. Centrifuging must not be performed when there is any measurable amounts
of water in the machine.

Handout code
The hardware for the new washing machine is developed in parallel with the
control software. To make it possible to test the control software early (and save
some water), a software simulation of a washing machine has been developed.
The simulator is available in the done folder of the handout code. Your control
software should be implemented in the todo folder.
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Hardware access interface

The abstract class AbstractWashingMachine describes the properties of a wash-
ing machine and provides operations for manipulating the (possibly simulated)
hardware. Your control software will only communicate with the AbstractWash-
ingMachine class, not the concrete subclasses implementing the actual hardware
interface and the simulation.

package done;

/**
* Abstract description of a washing machine. Specialized
* into simulations and actual hardware implementations.
*/

public abstract class AbstractWashingMachine {

/**
* Read the water temperature.
* @return Temperature in Centigrades (0-100).
*/

public abstract double getTemperature();

/**
* Read the water level in the machine.
* @return A real number between 0 and 1, where 1 indicates an
* absolutely full (i.e. overflowing) machine and 0
* indicates a (practically) empty one.
*/

public abstract double getWaterLevel();

/**
* Check if the front door is open.
* @return True if the door is locked, false if it is open.
*/

public abstract boolean isLocked();
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/**
* Turns the heating on/off.
* @param on True means "heat on", false means "heat off".
*/

public abstract void setHeating(boolean on);

/**
* Open/close the water input tap.
* @param on True means "open tap", false means "close tap".
*/

public abstract void setFill(boolean on);

/**
* Start/stop the water drain pump.
* @param on True means "start pump", false means "stop pump".
*/

public abstract void setDrain(boolean on);

/**
* Lock/unlock the front door.
* @param on True means "lock door", false means "unlock door".
*/

public abstract void setLock(boolean on);

/**
* Control the turning motor.
* @param direction SPIN_OFF, SPIN_LEFT , SPIN_RIGHT , or SPIN_FAST.
*/

public abstract void setSpin(int direction);

public abstract void start();

/**
* Set button listener. The listener’s processButton() method will be
* called whenever a button is pressed.
*/

abstract void setButtonListener(ButtonListener l);

/**
* Stop spin.
*/

public static final int SPIN_OFF = 0;

/**
* Slow left spin.
*/

public static final int SPIN_LEFT = 1;

/**
* Slow right spin.
*/

public static final int SPIN_RIGHT = 2;

/**
* Fast left spin.
*/

public static final int SPIN_FAST = 3;
};

Simulation startup excerpt

The simulator main method is located in the Wash class. The simulator basi-
cally instantiates a simulation object, registers a ButtonListener that calls the
WashingController upon keypresses, and starts a simulation thread.

package done;

import todo.WashingController;

public class Wash {
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public static void main(String[] args)
// ...
// Create a washing machine simulation and a controller
AbstractWashingMachine theMachine

= new WashingMachineSimulation(theSpeed, freakShowProbability);
// ...
theMachine.setButtonListener(new WashingController(theMachine , theSpeed));
theMachine.start();
// ...

}
}

WashingController

The WashingController is implemented by you in the todo folder. Note that a
reference to the hardware access interface is provided for you in the WashingCon-
troller constructor.

package todo;

import se.lth.cs.realtime.*;
import se.lth.cs.realtime.event.*;
import done.*;

public class WashingController implements ButtonListener {

public WashingController(AbstractWashingMachine theMachine , double theSpeed) {
// Create and start your controller threads here

}

public void processButton(int theButton) {
// Handle button presses (0, 1, 2, or 3). A button press
// corresponds to starting a new washing program. What should
// happen if there is already a running washing program?

}
}

Washing program

Each washing program is implemented as a transactional thread, i.e. the thread
starts up, accomplishes its task, and dies when done. The WashingProgram class
acts as a superclass to your washing programs and handles InterruptedException so
you do not need to. It also stores references to your controllers (temp, water, spin)
so you can access them as myXController in your washing program subclasses.
The washing program is implemented in the abstract method wash called from
the run method.

public abstract class WashingProgram extends RTThread {

/**
* @param mach The washing machine to control
* @param speed Simulation speed
* @param tempController The TemperatureController to use
* @param waterController The WaterController to use
* @param spinController The SpinController to use
*/

protected WashingProgram(AbstractWashingMachine mach,
double speed,
TemperatureController tempController ,
WaterController waterController ,
SpinController spinController) {

super();

myMachine = mach;
mySpeed = speed;
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myTempController = tempController;
myWaterController = waterController;
mySpinController = spinController;

}

/**
* This run() method does two things.
* <OL>
* <LI>Call the wash() method implemented in the subclass.
* <LI>If wash() was interrupted , turn all off machinery.
* </OL>
*/

public void run() {
boolean wasInterrupted = false;
try {

wash();
}
catch (InterruptedException e) {

wasInterrupted = true;
}
catch(RTInterrupted e) { // Thrown by semaphores

wasInterrupted = true;
}

if (wasInterrupted) {
System.out.println("Washing program aborted.");
myTempController.putEvent(

new TemperatureEvent(this, TemperatureEvent.TEMP_IDLE , 0.0));
myWaterController.putEvent(

new WaterEvent(this, WaterEvent.WATER_IDLE , 0.0));
mySpinController.putEvent(

new SpinEvent(this, SpinEvent.SPIN_OFF));
}

}

/**
* Called by run() to perform the actual washing stuff.
* Should be implemented by the subclass. Does not need to
* catch InterruptedException.
*/

abstract protected void wash() throws InterruptedException;

/**
* The machine to regulate
*/

protected AbstractWashingMachine myMachine;

/**
* Simulation speed
*/

protected double mySpeed;

/**
* The temperature controller
*/

protected TemperatureController myTempController;

/**
* The water controller
*/

protected WaterController myWaterController;

/**
* The spin controller
*/

protected SpinController mySpinController;
}
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WashingProgram3

The WashingProgram3 class is an example of a washing program implemented for
the washing machine.

package todo;

import done.*;

/**
* Program 3 of washing machine. Does the following:
* <UL>
* <LI>Switches off heating
* <LI>Switches off spin
* <LI>Pumps out water
* <LI>Unlocks the hatch.
* </UL>
*/

class WashingProgram3 extends WashingProgram {

/**
* @param mach The washing machine to control
* @param speed Simulation speed
* @param tempController The TemperatureController to use
* @param waterController The WaterController to use
* @param spinController The SpinController to use
*/

public WashingProgram3(AbstractWashingMachine mach,
double speed,
TemperatureController tempController ,
WaterController waterController ,
SpinController spinController) {

super(mach, speed, tempController , waterController , spinController);
}

/**
* This method contains the actual code for the washing program. Executed
* when the start() method is called.
*/

protected void wash() throws InterruptedException {

// Switch of temp regulation
myTempController.putEvent(new TemperatureEvent(this,

TemperatureEvent.TEMP_IDLE ,
0.0));

// Switch off spin
mySpinController.putEvent(new SpinEvent(this, SpinEvent.SPIN_OFF));

// Drain
myWaterController.putEvent(new WaterEvent(this,

WaterEvent.WATER_DRAIN ,
0.0));

mailbox.doFetch(); // Wait for Ack

// Set water regulation to idle => drain pump stops
myWaterController.putEvent(new WaterEvent(this,

WaterEvent.WATER_IDLE ,
0.0));

// Unlock
myMachine.setLock(false);

}
}

Example controller

All controllers are be implemented as periodic threads. Note the usage of the
simulation speed parameter to adjust the period. The perform method will be
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called periodically. It is important that you do not implement any lengthy actions
or block/sleep in this method.

public class WaterController extends PeriodicThread {
// TODO: add suitable attributes

public WaterController(AbstractWashingMachine mach, double speed) {
super((long) (3000/speed)); // TODO: replace with suitable period

}

public void perform() {
// TODO: check if there are any messages in the mailbox (tryFetch).
// Take action depending on the last received message.

}
}

Messages

The washing program communicates with the controllers through messages. Sub-
classes of the main message (RTEvent) class suitable for the washing mashine are
available in the todo folder.
/**
* This event is sent by the temperature and water level control
* processes to the washing programs. Indicates that the previous order
* has been carried out.
*/

public class AckEvent extends RTEvent {
public AckEvent(Object source) { ... }

}

/**
* This event is sent by washing program processes to the water level
* controller process. It is an order to reach and hold a given level.
*/

public class WaterEvent extends RTEvent {

/**
* @param mode Regulation mode (WATER_IDLE , WATER_FILL , WATER_DRAIN)
* @param target Water level to reach and hold
*/

public WaterEvent(Object source, int mode, double level) { ... }

/**
* @return Water regulation mode (WATER_IDLE , WATER_FILL , WATER_DRAIN)
*/

public int getMode() { ... }

/**
* @return Target level
*/

public double getLevel() { ... }

/** Regulation off, turn off all pumps */
public static final int WATER_IDLE = 0;

/** Fill water to a given level */
public static final int WATER_FILL = 1;

/** Drain, leave drain pump running when finished */
public static final int WATER_DRAIN = 2;

}

/**
* This event is sent by washing program processes to the temperature
* controller process. It is an order to reach and hold a given
* temperature.
*/

public class TemperatureEvent extends RTEvent {
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/**
* @param mode Temperature regulation mode (TEMP_IDLE , TEMP_SET)
* @param target Target temperature to reach and hold
*/

public TemperatureEvent(Object source, int mode, double temp) { ... }

/**
* @return Temperature regulation mode
*/

public int getMode() { ... }
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/**
* @return Target temperature
*/

public double getTemperature() { ... }

/** Temperature regulation off (no heating) */
public static final int TEMP_IDLE = 0;

/** Reach and hold the given temperature */
public static final int TEMP_SET = 1;

}

/**
* This event is sent by washing program processes to the spin
* controller process. It is an order to set a particular spin.
*/

public class SpinEvent extends RTEvent {

/**
* @param mode Spin regulation mode (SPIN_OFF, SPIN_SLOW , SPIN_FAST)
*/

public SpinEvent(Object source, int mode) { ... }

/**
* @return Spin regulation mode (SPIN_OFF, SPIN_SLOW , or SPIN_FAST)
*/

public int getMode() { ... }

public static final int SPIN_OFF = 0;
public static final int SPIN_SLOW = 1;
public static final int SPIN_FAST = 2;

}
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The se.lth.cs.realtime package
The realtime package provides a message passing runtime system used by the
classes above. All threads contain a mailbox attribute. Threads check their own
mailboxes using doFetch/tryFetch (blocking/non-blocking) methods. They post
messages to other threads using the putEvent method on the other thread.

RTThread

Superclass of all thread classes. Used for transactional threads. Note the mailbox
attribute and the interrupt method.

public abstract class RTThread implements Activity , RTEventListener ,
RTEventSource {

/** The event input buffer. */
protected volatile RTEventBuffer mailbox;

/**
* Put the time-stamped event in the input buffer of this thread. If the
* buffer is full, the caller is blocked.
*
* @return null, but subclasses are free to return an event if desired to
* inform about blocking or results.
*/

public RTEvent putEvent(RTEvent ev) {
mailbox.doPost(ev);
return null;

}

/**
* Interrupts this thread. Thus an interruption -flag is set, which may
* raise an InterruptedException in the interrupted thread; otherwise the
* flag can be checked via interrupted or isInterrupted.
*/

public void interrupt() { ... }

/**
* Tests if the current thread has been interrupted. The interruption -flag
* is reset.
*
* Note that interrupted is a static method, while
* isInterrupted is called on this Thread instance.
*
* @return true if the current thread has been interrupted;
* false otherwise.
*/

public static boolean interrupted() { ... }

/**
* Tests if this thread is alive. A thread is alive if it has been started
* and has not yet died.
*
* @return true if this thread is alive; false otherwise.
*/

public final boolean isAlive() { ... }
}

PeriodicThread

The PeriodicThread is used when an activity needs periodic execution. The per-
form method will be called at periodic intervals. The PeriodicThread inherits
from RTThread via CyclicThread, and thus have a mailbox.

public abstract class CyclicThread extends RTThread implements Runnable { ... }
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public class PeriodicThread extends CyclicThread {

/**
* Allocates a new PeriodicThread object.
*
* @param period the period of the new thread, in milliseconds.
*
* @exception IllegalArgumentException if the period is not positive.
*/

public PeriodicThread(long period) { ... }

/**
* To be overridden. The perform method will be called at periodic
* intervals.
*/

protected void perform() {}
}

Mailbox - RTEventBuffer

Mailboxes are implemented in the RTEventBuffer class. A thread should only
fetch messages posted to its own mailbox.

public abstract class RTEventBuffer implements RTEventBufferInput ,
RTEventBufferOutput , Synchronized {

/**
* Returns the next RTEvent in the queue, blocks if none available.
*
* @return a non-null event.
*/

public abstract RTEvent doFetch();

/**
* Returns the next available RTEvent in the queue, or null if the queue is
* empty. In other words, this method always returns immediately , even if
* the queue is empty (non-blocking).
*
* @return an RTEvent if any available , null otherwise
*/

public abstract RTEvent tryFetch();

/**
* Adds an RTEvent to the queue, blocks caller if the queue is full.
*
* @param e the event to enqueue
*/

public abstract void doPost(RTEvent e);
}

Message - RTEvent

Messages are implemented as subclasses of the RTEvent class.
public class RTEvent extends EventObject {

/**
* Constructs an <code>RTEvent </code> object with the specified
* source object and a time stamp from the current system time.
*
* @param source The object where the event originated.
*/

public RTEvent(Object source) { ... }

/**
* Obtain source of the event. This method is inherited from EventObject.
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*
* @return the object which is the source of this event.
*/

public final Object getSource() { ... }
}

The source argument allows the message to remember which thread sent the mes-
sage. Typical usage:

1. Thread A posts to a thread B and receives a reply (A is the source of the
message):

public class A extends RTThread {
B b;
public A(B b) { this.b = b; }
public void run() {

b.putEvent(new RTEvent(this));
RTEvent ack = this.mailbox.doFetch();

}
}

2. Thread B receives a message and replies (note that B does not need to know
about A):

public class B extends RTThread {
public void run() {

RTEvent msg = this.mailbox.doFetch();
((RTThread)msg.getSource()).putEvent(new RTEvent(this));

}
}
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Miscellaneous
The simulation is based on the following data:

Volume: 20 l (filled up to 10 l)
Power: 2 kW
Water input flow: 0.1 l/s
Water output flow: 0.2 l/s
Rotation speed: 15 rpm (slow), 800 rpm (fast)

A complete wash typically takes 1h - 2h to complete. To facilitate testing the
simulation has a speed parameter which can be used to speed up the simulation.
Speed=1 corresponds to actual time, and e.g. speed=10 makes the simulation go
10 times as fast. Although the prewritten simulation software takes the speed
parameter into account, you still have to use it yourself in some parts of your
code. For instance, the washing times (15, 30, and 45 minutes) must be scaled in
the control software to get a consistent simulation.

Terminating washing programs from WashingController

When the user presses button 0, the current washing program should be termi-
nated. You can do this by calling the interrupt()method on that washing program.
This method will, in turn, result in an InterruptedException being thrown in your
washing program.

Allowing your washing program to be terminated

Your washing program may be terminated at any point. This will result in an In-
terruptedException being thrown from, for example, a waitEvent call to the event
queue in your washing program. You should not catch the InterruptedException
in your washing programs. Instead, use the WashingProgram class as a superclass
and write your washing program in the wash() method. That method propagates
the InterruptedException to the run() method of the WashingProgram superclass,
which handles that exception. InterruptedException may be thrown in a few other
situations, as you may know, such as sleep calls. You should handle these the same
way, that is, not at all.
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3.12 Exercise 6 - Scheduling analysis

Scheduling
Consider a system with the following threads:

T C
A: 4 1
B: 5 2
C: 8 1

where T denotes the desired period and C is the worst-case execution time (WCET).
Apply Rate Monotonic Scheduling (RMS) to obtain the priority for each thread.

1. Is the system schedulable, i.e., will the computer meet its deadlines? (The
deadline for each thread is equal to T.) What will the worst case response
time be for each thread?

2. The system is extended with an additional thread:
D: 20 2

Will the system still be schedulable? What about the response times?

3. The D thread is exchanged by a thread E with the following execution time
properties:
E: 12 1.2

Analyze the schedulability also in this case.
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Scheduling with blocking
Consider a system with threads A, B, C, and D according to exercise 1b. These
threads communicate via three monitors; M1, M2, M3. The used monitor opera-
tions and their worst-case execution time are depicted in the following figure:

A
M1

B D

C

M3

M2

a(); 0.1 b(); 1.0

t(); 0.5

       s(); 0.1

y(); 2.0

       c(); 0.5

x(); 1.0

Our real-time kernel (or JVM) provides dynamic priority inheritance.

1. Compute the maximum response time including the blocking that may oc-
cur. Is there any thread that can have difficulties to ensure that its deadline
is met? What about robustness in the case that some given execution time
should be a little longer than specified?

2. The thread D was rewritten to do half the work each sample and to be run
twice as often; the timing requirements were changed from 20, 2 to 10, 1.
Furthermore, the monitor operation y was split up into four smaller parts
y1(), y2(), y3() and y4(), each with execution time 0.5. What does this
imply for the scheduling of the system?

3. Due to the special demands from the control carried out by thread A, that
thread needs to fulfill a shorter deadline of 2 (instead of 4, which still is
the period) time units. Propose a restructuring of the system so that the
deadlines are met, without changing the monitor operations.

126 2016-08-29 21:53



3.13. Lab 3 – Washing machine

3.13 Lab 3 – Washing machine

You will implement the control system for the washing machine, prepared in
exercise 5.

Preparation

It is generally a good idea to start programming before the lab occasion. The
handout code is available on the course homepage as a zipped Eclipse workspace
(it is part of the same zip you downloaded for lab 1).

The todo folder contains skeletons for most of the classes that you need to
implement.
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Getting approved
To pass you need to show your solution to the lab supervisor. You should be
able to explain what you have done and motivate your implementation. A work-
ing Java solution free of real-time problems is compulsory. Common problems
that need to be fixed are race conditions (the washing machine burns up, etc.),
potential data corruption and excessive use of CPU. You must use mailboxes for
thread communication in your solution. Other primitives, such as semaphores and
monitors are not allowed.

Miscellaneous
OwnerError

The OwnerError is thrown when a putEvent (or similar) is called within a RT-
Thread object using a different thread than the one associated with the object.
Typically you get this error when starting washing programs using program.wash()
instead of program.start() within WashingController .processButton(), i.e. you let
the simulation thread run the washing program instead of starting a new washing
program thread.

128 2016-08-29 21:53


