
A Geometry-based Soft Shadow Volume Algorithm

using Graphics Hardware

Ulf Assarsson Tomas Akenine-Möller

Chalmers University of Technology
Sweden

Abstract

Most previous soft shadow algorithms have either suffered from
aliasing, been too slow, or could only use a limited set of shadow
casters and/or receivers. Therefore, we present a strengthened soft
shadow volume algorithm that deals with these problems. Our crit-
ical improvements include robust penumbra wedge construction,
geometry-based visibility computation, and also simplified com-
putation through a four-dimensional texture lookup. This enables
us to implement the algorithm using programmable graphics hard-
ware, and it results in images that most often are indistinguishable
from images created as the average of 1024 hard shadow images.
Furthermore, our algorithm can use both arbitrary shadow casters
and receivers. Also, one version of our algorithm completely avoids
sampling artifacts which is rare for soft shadow algorithms. As a
bonus, the four-dimensional texture lookup allows for small tex-
tured light sources, and, even video textures can be used as light
sources. Our algorithm has been implemented in pure software,
and also using the GeForce FX emulator with pixel shaders. Our
software implementation renders soft shadows at 0.5–5 frames per
second for the images in this paper. With actual hardware, we ex-
pect that our algorithm will render soft shadows in real time. An
important performance measure is bandwidth usage. For the same
image quality, an algorithm using the accumulated hard shadow im-
ages uses almost two orders of magnitude more bandwidth than our
algorithm.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, Shading, Shadowing, and Texture

Keywords: soft shadows, graphics hardware, pixel shaders

1 Introduction

Soft shadow generation is a fundamental and inherently difficult
problem in computer graphics. In general, shadows not only in-
crease the level of realism in the rendered images, but also help
the user to determine spatial relationships between objects. In the
real world, shadows are often soft since most light sources have
an area or volume. A soft shadow consists of an umbra, which is
a region where no light can reach directly from the light source,
and a penumbra, which is a smooth transition from no light to full
light. In contrast, point light sources generate shadows without

Figure 1: An image texture of fire is used as a light source, making
the alien cast a soft shadow onto the fractal landscape. The soft
shadow pass of this scene was rendered at 0.8 frames per second.

the penumbra region, so the transition from no light to full light
is abrupt. Therefore, this type of shadow is often called a hard
shadow. However, point light sources rarely exist in the real world.
In addition to that, the hard-edged look can also be misinterpreted
for geometric features, which clearly is undesirable. For these rea-
sons, soft shadows in computer-generated imagery are in general
preferred over hard shadows.

Previous algorithms for soft shadow generation have either been
too slow for real-time purposes, or have suffered from aliasing
problems due to the algorithm’s image-based nature, or only al-
lowed a limited set of shadow receivers and/or shadow casters. We
overcome most of these problems by introducing a set of new and
critical improvements over a recently introduced soft shadow vol-
ume algorithm [Akenine-Möller and Assarsson 2002]. This algo-
rithm used penumbra wedge primitives to model the penumbra vol-
ume. Both the construction of the penumbra wedges and the visi-
bility computation inside the penumbra wedges were empirical, and
this severely limited the set of shadow casting objects that could be
used, as pointed out in that paper. Also, the quality of the soft shad-
ows only matched a high-quality rendering for a small set of scenes.
Our contributions include the following:

1. geometry-based visibility computation,

2. a partitioning of the algorithm that allows for implementation
using programmable shaders,

3. robust penumbra wedge computation, and

4. textured and video-textured light sources.

All this results in a robust algorithm with the ability to use arbitrary
shadow casters and receivers. Furthermore, spectacular effects are

obtained, such as light sources with textures on them, where each
texel acts as a small rectangular light source. A sequence of tex-
tures, here called a video texture, can also be used as a light source.
For example, images of animated fire can be used as seen in Fig-
ure 1. In addition to that, the quality of the shadows is, in the ma-
jority of cases, extremely close to that of a high-quality rendering
(using 1024 point samples on the area light source) of the same
scene.

The rest of the paper is organized as follows. First, some pre-
vious work is reviewed, and then our algorithm is presented, along
with implementation details. In Section 5, results are presented to-
gether with a discussion, and the paper ends with a conclusion and
suggestions for future work.

2 Previous Work

The research on shadow generation is vast, and here, only the most
relevant papers will be referenced. For general information about
the classical shadow algorithms, consult Woo et al.’s survey [Woo
et al. 1990]. A more recent presentation covering real-time algo-
rithms is also available [Haines and Möller 2001].

There are several algorithms that generate soft shadows on pla-
nar surfaces. Heckbert and Herf average hard shadows into an ac-
cumulation buffer from a number of point samples on area light
sources [Heckbert and Herf 1997]. These images can then be used
as textures on the planar surfaces. Often between 64 and 256 sam-
ples are needed, and therefore the algorithm is not perfectly suited
for animated scenes. Haines presents a drastically different algo-
rithm, where a hard shadow is drawn from the center of the light
source [Haines 2001]. Each silhouette vertex, as seen from the light
source, then generates a cone, which is drawn into the Z-buffer. The
light intensity in a cone varies from 1.0, in the center, to 0.0, at the
border. Between two such neighboring cones, a Coons patch is
“drawn” with similar light intensities. Haines notes that the umbra
region is overstated.

For real-time rendering of hard shadows onto curved surfaces,
shadow mapping [Williams 1978] and shadow volumes [Crow
1977] are probably the two most widely used algorithms. The
shadow mapping (SM) algorithm generates a depth buffer, the
shadow map, as seen from the light source, and then, during ren-
dering from the eye, this depth buffer is used to determine if a point
is in shadow or not. Reeves et al. presented percentage-closer filter-
ing, which reduces aliasing along shadow boundaries [Reeves et al.
1987]. A hardware implementation of SM has been presented [Se-
gal et al. 1992], and today most commodity graphics hardware (e.g.,
NVIDIA GeForce3) has SM with percentage-closer filtering imple-
mented.

To reduce resolution problems with SM algorithms, both adap-
tive shadow maps [Fernando et al. 2001] and perspective shadow
maps have been proposed [Stamminger and Drettakis 2002]. By
using more than one shadow map, and interpolating visibility, soft
shadows can be generated as well [Heidrich et al. 2000]. Linear
lights were used, and more shadow maps had to be generated in
complex visibility situations to guarantee a good result. Recently,
another soft version of shadow mapping has been presented [Brabec
and Seidel 2002], which adapts Parker et al’s algorithm [1998] for
ray tracing soft shadows so that graphics hardware could be used.
The neighborhood of the sample in the depth map is searched until
a blocker or a maximum radius is found. This gives an approximate
penumbra level. The rendered images suffered from aliasing. An-
other image-based soft shadow algorithm uses layered attenuation
maps [Agrawala et al. 2000]. Interactive frame rates (5–10 fps) for
static scenes were achieved after seconds (5-30) of precomputation,
and for higher-quality images, a coherent ray tracer was presented.

The other classical real-time hard shadow algorithm is shadow
volumes [Crow 1977], which can be implemented using the stencil

light source

silhouette edge

Figure 2: Difficult situations for the previous wedge generation al-
gorithm. Left: The edge nearly points towards the light center, re-
sulting in a non-convex wedge. Right: The edge is shadowed by one
adjacent edge that is closer to the light source, making the left and
right planes intersect inside the wedge. Unfortunately, the two tops
of the cones cannot be swapped to make a better-behaved wedge,
because that results in a discontinuity of the penumbra wedges be-
tween this wedge and the adjacent wedges.

buffer on commodity graphics hardware [Heidmann 1991]. We re-
fer to this algorithm as the hard shadow volume algorithm. In a first
pass, the scene is rendered using ambient lighting. The second pass
generates a shadow quadrilateral (quads) for each silhouette edge,
as seen from the light source. The definition of a silhouette edge is
that one of the triangles that are connected to it must be backfacing
with respect to the light source, and the other must be frontfacing.
Those shadow quads are rendered as seen from the eye, where front
facing shadow quads increment the stencil buffer, and back facing
decrement. After rendering all quads, the stencil buffer holds a
mask, where zeroes indicate no shadow, and numbers larger than
zero indicate shadow. A third pass, then renders the scene with full
lighting where there is not shadow. Everitt and Kilgard have pre-
sented algorithms to make the shadow volume robust, especially for
cases when the eye is inside shadow [Everitt and Kilgard 2002].

Recently, a soft shadow algorithm has been proposed that builds
on the shadow volume framework [Akenine-Möller and Assarsson
2002]. Each silhouette edge as seen from the light source gives
rise to a penumbra wedge, and such a penumbra wedge empirically
models the visibility with respect to the silhouette edge. However,
as pointed out in that paper, the algorithm had several severe lim-
itations. Only objects that had really simple silhouettes could be
used as shadow casters. The authors also pointed out that robust-
ness problems could occur in their penumbra wedge construction
because adjacent wedges must share side planes. Furthermore, ro-
bustness issues occurred for the edge situations depicted in Fig-
ure 2. The latter problems were handled by eliminating such edges
from the silhouette edge loop, making it better-shaped. The draw-
back is that the silhouette then no longer is guaranteed to follow the
geometry correctly, with visual artifacts as a result. Their visibility
computation was also empirical. All these problems are eliminated
with our algorithm. Our work builds upon that penumbra wedge
based algorithm. The hard shadow volume algorithm has also been
combined with a depth map [Brotman and Badler 1984], where 100
point samples were used to generate shadow volumes. The overlap
of these were computed using a depth map, and produced soft shad-
ows.

Soft shadows can also be generated by back projection algo-
rithms. However, such algorithms are often very geometrically

complex. See Drettakis and Fiume [1994] for an overview of exist-
ing work. By convolving an image of the light source shape with a
hard shadow, a soft shadow image can be generated for planar con-
figurations (a limited class of scenes) [Soler and Sillion 1998]. An
error-driven hierarchical algorithm is presented based on this ob-
servation. Hart et al. presented an algorithm for computing direct
illumination base on lazy evaluation [1999], with rendering times of
several minutes even for relatively simple scenes. Parker et al. ren-
dered soft shadows at interactive rates in a parallel ray tracer using
“soft-edged” objects at only one sample per pixel [1998]. Sloan et
al. precompute radiance transfer and then renders several difficult
light transport situations in low-frequency environments [2002].
This includes real-time soft shadows.

3 New Algorithm

Our algorithm first renders the scene using specular and diffuse
lighting, and then a visibility pass computes a soft visibility mask in
a visibility buffer (V-buffer), which modulates the image of the first
pass. In a final pass, ambient lighting is added. This is illustrated in
Figure 3.

specular +

diffuse

image

visibility

mask

modulated

spec + diff

image

ambient

image

image with

soft

shadows

Figure 3: Overview of how the soft shadow algorithm works. Our
work focuses on rapidly computing a visibility mask using a V-
buffer, as seen from the eye point.

The V-buffer stores a visibility factor, v, per pixel (x,y). If the
point p = (x,y,z), where z is the Z-buffer value at pixel (x,y), can
“see” all points on a light source, i.e., without occlusion, then v =
1. This is in contrast to a point that is fully occluded, and thus
has v = 0. A point that can see x percent of a light source has
v = x/100 ∈ [0,1]. Thus, if a point has 0 < v < 1, then that point is
in the penumbra region.

Next, we describe our algorithm in more detail, and the first part
uses arbitrary light sources. However, in Section 3.2.2 and in the
rest of the paper, we focus only on using rectangular light sources,
since these allow for faster computations.

3.1 Construction of Penumbra Wedges

One approximation in our algorithm is that we only use the shadow
casting objects’ silhouette edges as seen from a single point, often
the center, of the light source. This approximation has been used
before [Akenine-Möller and Assarsson 2002], and its limitations
are discussed in Section 5. Here, a silhouette edge is connected
to two triangles; one frontfacing and the other backfacing. Such
silhouettes can be found by a brute-force algorithm that tests the
edges of all triangles. Alternatively, one can use a more efficient
algorithm, such as the one presented by Markosian et al. [1997].
This part of the algorithm is seldom a bottleneck, but may be for
high density meshes.

For an arbitrary light source, the exact penumbra volume gen-
erated by a silhouette edge is the swept volume of a general cone
from one vertex of the edge to the other. The cone is created by
reflecting the light source shape through the sweeping point on the
edge. This can be seen in Figure 4a. Computing exact penum-
bra volumes is not feasible for real-time applications with dynamic

light source

silhouette edge

light source

silhouette edge

(a) (b)

Figure 4: a) The penumbra volume generated by an edge. b) The
penumbra volume can degenerate to a single cone, i.e., one end
cone completely encloses the other end cone.

environments. However, we do not need the exact volume. In Sec-
tion 3.2 we show that the computations can be arranged so that the
visibility of a point inside a wedge can be computed independently
of other wedges. It is then sufficient to create a bounding volume
that fully encloses the exact penumbra volume. We chose a penum-
bra wedge defined by four planes (front, back, right, left) as our
bounding volume [Akenine-Möller and Assarsson 2002] as seen in
Figure 5d. It is worth noting that the penumbra volume will de-
generate to a single cone, when one of the end cones completely
enclose the other end cone (see Figure 4b).

To efficiently and robustly compute a wedge enclosing the exact
penumbra volume, we do as follows. A silhouette edge is defined
by two vertices, e0 and e1. First, we find the edge’s vertex that
is closest to the light source. Assume that this is e1, without loss
of generality. The other edge vertex is moved along the direction
towards the light center until it is at the same distance as the first
vertex. This vertex is denoted e′0. These two vertices form a new
edge which will be the top of the wedge. See Figure 5a. Note
that this newly formed edge is created to guarantee that the wedge
contains the entire penumbra volume of the original edge, and that
the original edge still is used for visibility computation. As we will
see in the next subsection, points inside the wedge but outside the
real penumbra volume will not affect visibility as can be expected.
Second, the front plane and back plane are defined as containing
the new edge, and both these planes are rotated around that edge so
that they barely touch the light source on each side. This is shown
in Figure 5b. The right plane contains e′0 and the vector that is
perpendicular to both vector e1e′0 and the vector from e′0 to the light
center. The left plane is defined similarly, but on the other side.
Furthermore, both planes should also barely touch the light source
on each side. Finally, polygons covering the faces on the penumbra
wedge are extracted from the planes. These polygons will be used
for rasterization of the wedge, as described in Section 3.2. See
Figure 6 for examples of constructed wedges from a simple shadow
casting object.

An advantageous property of this procedure is that the wedges
are created independently of each other, which is key to making the
algorithm robust, simple, and fast. Also, note that when a silhouette
edge’s vertices are significantly different distances from the light
source, then the bounding volume will not be a tight fit. While this
still will result in a correct image, unnecessarily many pixels will
be rasterized by the wedge. However, the majority of time is spent
on the points inside the exact penumbra volume generated by the
silhouette edge, and more such points are not included by making
the wedge larger. It should be pointed out that if the front and back

left plane
e1

right plane

e'0e'e'

lies in the right planelies in the right planelies in the right planelies in the right planelies in the right plane

lies in the left planee1

e0

(c) (d)

left plane
e1

right plane

e'0

lies in the right plane, front plane and back plane

lies in the left plane, front plane and back planee1

e0

front plane

back plane

(a) (b)

front plane

back plane

e1

e'0

e0

e'0

e0

d
d

lc

e1

arbitrary

light souce

penumbra

wedge

Figure 5: Wedge construction steps. a) Move the vertex furthest
from the light center lc towards lc to the same distance as the other
vertex. b) Create the front and back planes. c) Create the left and
right planes. d) The final wedge is the volume inside the front, back,
left, and right planes.

planes are created so that they pass through both e0 and e1, the
wedge would, in general, not fully enclose the penumbra volume.
That is why we have to use an adjusted vertex, as described above.
Currently, we assume that geometry does not intersect light sources.
However, a geometrical objects may well surround the light source.

3.2 Visibility Computation

The visibility computation is divided into two passes. First, the hard
shadow quads, as used by the hard shadow volume algorithm [Crow
1977], are rendered into the V-buffer in order to overestimate the
umbra region, and to detect entry/exit events into the shadows. Sec-
ondly, the penumbra wedges are rendered to compensate for the
overstatement of the umbra. Together these passes render the soft
shadows. In the following two subsections, these two passes are
described in more detail. However, first, some two-dimensional
examples of how these two passes cooperate are given, as this sim-
plifies the rest of the presentation.

In Figure 7, an area light source, a shadow casting object, and
two penumbra wedges are shown. The visibility for the points a,
b, c, and d, are computed as follows. For points a and b, the al-
gorithm works exactly as the hard shadow volume algorithm, since
both these points lie outside both penumbra wedges. For point a,
both the left and the right hard shadow quads are rendered, and
since the left is front facing, and the right is back facing, point a
will be outside shadow. Point b is only behind the left hard shadow
quad, and is therefore fully in shadow (umbra). For point c, the left
hard shadow quad is rendered, and then during wedge rendering, c
is found to be inside the left wedge. Therefore, c is projected onto
the light source through the left silhouette point to find out how
much to compensate in order to compute a more correct visibility
factor. Point d is in front of all hard shadow quads, but it is inside

Figure 6: The wedges for a simple scene. At 512×512 resolution,
this image was rendered at 5 frames per second using our software
implementation. Note that there are wedges whose adjusted top
edges differ a lot from the original silhouette edge. This can es-
pecially be seen to the left of the cylinder. The reason for this is
that the vertices of the original silhouette edge are positioned with
largely different distances to the light source.

the left wedge, and therefore d is projected onto the light source as
well. Finally, its visibility factor compensation is computed, and
added to the V-buffer.

3.2.1 Visibility Pass 1

Initially, the V-buffer is cleared to 1.0, which indicates that the
viewer is outside any shadow regions. The hard shadow quads used
by the hard shadow volume algorithm are then rendered exactly as
in that algorithm, i.e., for front facing quads 1.0 is subtracted per
pixel from the V-buffer, and for back facing quads, 1.0 is added.

An extremely important property of using the hard shadow
quads, is that the exact surface between the penumbra and the um-
bra volumes is not needed. As mentioned in Section 3.1, com-
puting this surface in three dimensions is both difficult and time-
consuming. Our algorithm simplifies this task greatly by render-
ing the hard shadow volume, and then letting the subsequent pass
compensate for the penumbra region by rendering the penumbra
wedges. It should be emphasized that this first pass must be in-
cluded, otherwise one cannot detect whether a point is inside or
outside shadows, only whether a point is in the penumbra region or
not. The previous algorithm [Akenine-Möller and Assarsson 2002]
used an overly simplified model of the penumbra/umbra surface,

light source

shadow casting

object

eye

hard shadow quad

a

b
d c

silhouette points

penumbra

wedge

penumbra

wedge

Figure 7: A two-dimensional example of how the two passes in
computing the visibility cooperate. The two penumbra wedges,
generated by the two silhouette points of the shadow casting ob-
ject, are outlined with dots.

which was approximated by a quad per silhouette edge. This limi-
tation is removed by our two-pass algorithm.

3.2.2 Visibility Pass 2

In this pass, our goal is to compensate for the overstatement of the
umbra region from pass 1, and to compute visibility for all points,
p = (x,y,z), where z is the z-buffer value at pixel (x,y), inside each
wedge. In the following we assume that a rectangular light source,
L, is used, and that the hard shadow quads used in pass 1, were
generated using a point in the middle of the rectangular light source.
To compute the visibility of a point, p, with respect to the set of
silhouette edges of a shadow casting object, imagine that a viewer
is located at p looking at L. The visibility of p is then the area of
the light source that the viewer can see, divided by total light source
area [Drettakis and Fiume 1994].

Assume that we focus on a single penumbra wedge generated by
a silhouette edge, e0e1, and a point, p, inside that wedge. Here, we
will explain how the visibility factor for p is computed with respect
to e0e1, and then follows an explanation of how the collective visi-
bility of all wedges gives the appearance of soft shadows. First, the
semi-infinite hard shadow quad, Q, through the edge is projected,
as seen from p, onto the light source. This projection consists of
the projected edge, and from each projected edge endpoint an infi-
nite edge, parallel with the vector from the light source center to the
projected edge endpoint, is extended outwards. This can be seen to
the left in Figure 8. Second, the area of the intersection between the
light source and the projected hard shadow quad is computed and
divided by the total light source area. We call this the coverage,
which is dark gray in the figure. For exact calculations, a simple
clipping algorithm can be used. However, as shown in Section 3.3,
a more efficient implementation is possible.

light

source
e
0

e
1projected

hard shadow

quad, Q

area covered

by projection

e
0

e
1

x ,y
1 1

x ,y
2 2

Figure 8: Left: Computation of coverage (dark gray area divided
by total area) of a point p with respect to the edge e0e1. A three-
dimensional view is shown, where p looks at the light source center.
It can also be thought of as the projection of the hard shadow quad,
Q, onto the light source as seen from p. Note that Q, in theory,
should be extended infinitely outwards from e0e1, and this is shown
as dashed in the figure. Right: the edge is clipped against the border
of the light source. This produces the 4-tuple (x1,y1,x2,y2) which
is used as an index into the four-dimensional coverage texture.

The pseudo code for rasterizing a wedge becomes quite simple
as shown below.

1 : rasterizeWedge(wedge W, hard shadow quad Q,light L)

2 : for each pixel (x,y) covered by front facing triangles of wedge
3 : p = point(x,y,z); // z is depth buffer value
4 : if p is inside the wedge

5 : vp = projectQuadAndComputeCoverage(W,p,Q);
6 : if p is in positive half space of Q
7 : v(x,y) = v(x,y)− vp; // update V−buffer
8 : else

9 : v(x,y) = v(x,y)+ vp; // update V−buffer
10 : end;
11 : end;
12 : end;

When this code is used for all silhouettes, the visible area of the
light source is essentially computed using Green’s theorem. If line

4 is true, then p might be in the penumbra region, and more com-
putations must be made. Line 5 computes the coverage, i.e., how
much of the area light source that the projected quad covers. This
corresponds to the dark region in Figure 8 divided by the area of
the light source. The plane of Q divides space into a negative half
space, and a positive half space. The negative half space is defined
to be the part that includes the umbra. This information is needed in
line 6 to determine what operation (+ or −) should be used in order
to evaluate Green’s theorem. An example of how this works can be
seen in Figure 9, which shows the view from point p looking to-
wards the light source. The gray area is an occluder, i.e., a shadow

B

A

A

B

(a) (b) (c)

(d)

l
c

l
c l

c

A

-

B

=

1 - A + B

+

100% 30% 10% 80%

Figure 9: Splitting of shadow contribution for each wedge for a
point p. A and B are two silhouette edges of a shadow casting ob-
ject.

casting object, as seen from p. Both edge A and B contribute to
the visibility of p. By setting the contributions from A and B to be
those of the virtual occluders depicted in Figure 9b and c, using the
technique illustrated in Figure 8, the visible area can be computed
without global knowledge of the silhouette.

3.3 Rapid Visibility Computation using 4D Textures

The visibility computation for rectangular light sources presented
in Section 3.2 can be implemented efficiently using precomputed
textures and pixel shaders.

The visibility value for a wedge and a point p depends on how
the edge is projected onto the light source. Furthermore, it only
depends on the part of the projected edge that lies inside the light
source region (left part of Figure 8). Therefore, we start by project-
ing the edge onto the light source and clipping the projected edge
against the light source borders, keeping the part that is inside.

The two end points of the clipped projected edge, (x1,y1) and
(x2,y2), can together be used to index a four-dimensional lookup
table. See the right part of Figure 8. That is, f (x1,y1,x2,y2) returns
the coverage with respect to the edge. This can be implemented
using dependent texture reads if we discretize the function f . We
strongly believe that this is the “right” place to introduce discetiza-
tion, since this function varies slowly.

Now, assume that the light source is discretized into n× n texel
positions, and that the first edge end point coincides with one of
these positions, say (x1 = a,y1 = b), where a and b are integers.
The next step creates an n×n subtexture where each texel position
represents the coordinates of the second edge end point, (x2,y2). In
each of these texels, we precompute the actual coverage with re-
spect to (x1 = a,y1 = b) and (x2,y2). This can be done with exact
clipping as described in Section 3.2.2. We precompute n× n such
n× n subtextures, and store these in a single two-dimensional tex-
ture, called a coverage texture, as shown in Figure 10. At runtime,
we compute (x1,y1) and round to the nearest texel centers, which

Figure 10: Left: example of precomputed coverage texture with
n = 32. Top right: the original fire image. Bottom right: an un-
dersampled 32× 32 texel version of the original fire texture, used
as light texture when computing the coverage texture. Each of the
small 32× 32 squares in the coverage texture are identified by the
first edge end point, (x1,y1), and each texel in such a square corre-
sponds to the coordinate of the second edge end point, (x2,y2).

is used to identify which of the n× n subtextures that should be
looked up. The second edge end point is then used to read the cov-
erage from that subtexture. To improve smoothness, we have exper-
imented with using bilinear filtering while doing this lookup. We
also implemented bilinear filtering for (x1,y1) in the pixel shader.
This means that the four texel centers closest to (x1,y1) are com-
puted, and that four different subtextures are accessed using bilinear
filtering. Then, these four coverage values are filtered, again, using
bilinear filtering. This results in quadlinear filtering. However, our
experience is that for normal scenes, this filtering is not necessary.
It could potentially be useful for very large light sources, but we
have not verified this yet.

In practice, we use n = 32, which results in a 1024× 1024 tex-
ture, which is reasonable texture usage. This also results in high
quality images as can be seen in Section 5. With a Pentium4 1.7
GHz processor, the precomputation of one such coverage texture
takes less than 3 minutes with a naive implementation.

Our technique using precomputed four-dimensional coverage
textures can easily be extended to handle light sources with tex-
tures on them. In fact, even a sequence of textures, here called a
video texture, can be used. Assume that the light source is a rect-
angle with an n×n texture on it. This two-dimensional texture can
act as a light source, where each texel is a colored rectangular light.
Thus, the texture defines the colors of the light source, and since a
black texel implies absence of light, the texture also indirectly de-
termines the shape of the light source. For instance, the image of
fire can be used. To produce the coverage texture for a colored light
source texture, we do as follows. Assume, we compute only, say,
the red component. For each texel in the coverage texture, the sum
of the red components that the corresponding projected quad cov-
ers is computed and stored in the red component of that texel. The
other components are computed analogously.

Since we store each color component in 8 bits in a texel, a cover-
age texture for color-textured light sources requires 3 MB1 of stor-
age when n = 32. For some applications, it may be reasonable to
download a 3MB texture to the graphics card per frame. To de-
crease bandwidth usage to texture memory, blending between two
coverage textures is possible to allow longer time between texture

1For some hardware, 24 bit textures are stored in 32 bits, so for these
cases, the texture usage becomes 4 MB.

downloads. However, for short video textures, all coverage textures
can fit in texture memory.

4 Implementation

We have implemented the algorithm purely in software with exact
clipping as described in Section 3.2, and also with coverage tex-
tures. The implementation with clipping avoids all sampling arti-
facts. However, our goal has been to implement the algorithm using
programmable graphics hardware as well. Therefore this section
describes two such implementations.

The pixel shader implementations were done using NVIDIA’s
Cg shading language and the GeForce FX emulator. Here follow
descriptions of implementations using both 32 and 8 bits for the
V-buffer. For both versions, the pixel shader code is about 250 in-
structions.

4.1 32-bit version

For the V-buffer, we used the 32-bit floating point texture capability
with one float per r, g, and b. This allows for managing textured
light sources and colored soft shadows. If a 16-bit floating point
texture capability is available, it is likely that those would suffice
for most scenes.

The GeForce FX does not allow reading from and writing to the
same texture in the same pass. This complicates the implemen-
tation. Neither does it allow blending to a floating point texture.
Therefore, since each wedge is rendered one by one into the V-
buffer in order to add its shadow contribution, a temporary ren-
dering buffer must be used. For each rasterized pixel, the existing
shadow value in the V-buffer is read as a texture-value and is then
added to the new computed shadow contribution value and written
to the temporary buffer. The region of the temporary buffer corre-
sponding to the rasterized wedge pixels are then copied back to the
V-buffer.

We chose to implement the umbra- and penumbra contribution in
two different rendering passes (see Section 3.2) using pixel shaders.
These passes add values to the V-buffer and thus require the use of
a temporary rendering buffer and a succeeding copy-back. In total,
this means that 4 rendering passes (the umbra and penumbra passes
and two copy-back passes) are required for each wedge.

4.2 8-bit version

We have also evaluated an approach using an accuracy of only eight
bits for the visibility buffer. Here, only one component (i.e., inten-
sity) could be used in the coverage texture. One advantage is that
no copy-back passes are required. Six bits are used to get 64 lev-
els in the penumbra, and two bits are used to manage overflow that
may arise when several penumbra regions overlap. The penumbra
contribution is rendered in a separate pass into the frame buffer. All
additive contribution is rendered to the red channel and all subtrac-
tive contribution is rendered as positive values to the green channel
using ordinary additive blending in OpenGL. Then, the frame buffer
is read back and the two channels are subtracted by the CPU to cre-
ate a visibility mask, as shown in Figure 3. In the future, we plan to
let the hardware do this subtraction for us without read-back to the
CPU. The umbra contribution is rendered using the stencil buffer
and the result is merged into the visibility mask. Finally, the visi-
bility mask is used to modulate the diffuse and specular contribution
in the final image.

5 Results and Discussion

In this section, we first present visual and performance results.
Then follows a discussion of, among other things, possible artifacts
that can appear.

5.1 Visual Results

To verify our visual results, we often compare against an algorithm
that places a number, e.g., 1024, of point light samples on an area
light source, and renders a hard shadow image for each sample.
The hard shadow volume algorithm is used for this. The average
of all these images produces a high-quality soft shadow image. To
shorten the text, we refer to this as, e.g., “1024-sample shadow.”

Figure 11 compares the result of the previously proposed penum-
bra wedge algorithm [Akenine-Möller and Assarsson 2002] that
this work is based upon, our algorithm, and a 1024-sample shadow.
As can be seen, our algorithm provides a dramatic increase in
soft shadow quality over the previous soft shadow volume algo-
rithm, and our results are also extremely similar to the 1024-sample
shadow image.

Figure 11: Comparison of the previous penumbra wedge algorithm,
our algorithm, and using 1024 point light samples.

Figure 12: Example of a simple textured light source with two col-
ors, demonstrating that the expected result is obtained.

In Figure 1, an image of fire is used as a light source. It might be
hard to judge the quality of this image, and therefore Figure 12 uses

Figure 13: Here, a single rectangular light replaces 16 small rect-
angular light sources. Sampling artifacts can be seen in the shadow.
This can be solved by increasing the resolution of the coverage tex-
ture.

a colored light source as well. However, the light source here only
consists of two colors. As can be seen, the shadows are colored
as one might expect. A related experiment is shown in Figure 13,
where a single texture is used to simulate the effect of 16 small area
light sources. This is one of the rare cases where we actually get
sampling artifacts.

In Figure 14, we compare our algorithm to 256-sample shadows
and 1024-sample shadows. In these examples, a large square light
source has been used. As can be seen, no sampling artifacts can
be seen for our algorithm, while they are clearly visible using 256
samples. We believe that our algorithm behaves so well because
we discretize in a place where the function varies very slowly. This
can also be seen in Figure 10. Sampling artifacts can probably oc-
cur using our algorithm as well, especially when the light source is
extremely large. However, we have not experienced many problems
with that.

In Figure 15, a set of overlapping objects in a more complex
situation are shown. Finally, we have been able to render a single
image using actual hardware.2 See Figure 16. The point here is
to verify that the hardware can render soft shadows with similar
quality as our software implementation.

5.2 Performance Results

At this point, we have not optimized the code for our Cg implemen-
tations at all, since we have not been able to locate bottlenecks due
to lack of actual hardware. Therefore, we only present performance
results for our software implementation, followed by a discussion
of bandwidth usage.

The scene in Figure 14 was rendered at 100× 100, 256× 256,
and 512×512 resolutions. The actual image in the figure was ren-
dered with the latter resolution. The frame rates were: 3, 0.51, and
0.14 frames per second. Similarly, the scene in Figure 13 was ren-
dered at 256×256, and 512×512 resolution. The frame rates were:
0.8, and 0.4 frames per second. When halving the side of the square
light source, the frame rate more than doubled for both scenes.

Another interesting fact about our algorithm is that it uses lit-
tle bandwidth. We compared the bandwidth usage for the shadow

2Our program was sent to NVIDIA, and they rendered this image.

Figure 14: Soft shadow rendering of a fairy using (left to right) our algorithm, 256 samples on the area light source, and 1024 samples. Notice
sampling artifacts on the middle image for the shadow of the left wing.

Figure 15: A grid of 3×3×3 spheres is used as a shadow casting
object.

pass for the software implementation of our algorithm and for a
1024-sample shadow image. In this study, we only counted depth
buffer accesses and V-buffer/stencil buffer accesses. The latter used
585 MB per frame, while our algorithm used only 6.0 MB. Thus,
the 1024-sample shadow version uses almost two orders of magni-
tude more bandwidth. We believe that this comparison is fair, since
fewer samples most often are not sufficient to render high-quality
images. Furthermore, we have not found any algorithm with rea-
sonable performance that can render images with comparable soft
shadow quality, so our choice of algorithm is also believed to be
fair. Even if 256 samples are used, about 146 MB was used, which
still is much more than 6 MB.

Our algorithm’s performance is linear in the number of silhouette
edges and in the number of pixels that are inside the wedges. Fur-
thermore, the performance is linear in the number of light sources,
and in the number of shadow casting objects.

5.3 Discussion

Due to approximations in the presented algorithm, artifacts can oc-
cur. We classify the artifacts as follows:

1. single silhouette artifact, and

2. object overlap artifact.

Artifact 1 occurs because we are only using a single silhouette as
seen from the center of the area or volume light source. This is

Figure 16: Left: image rendered using our software implementa-
tion. Right: rendered using GeForce FX hardware.

obviously not always the case; the silhouette may differ on different
points on the light source. Artifact 2 occurs since two objects may
overlap as seen from the light source, and our algorithm treats these
two objects independently and therefore combines their shadowing
effects incorrectly. For shadow casting objects such as an arbitrary
planar polygon, that do not generate artifact 1 and 2, our algorithm
computes physically correct visibility.

Figure 17 shows a scene with the objective to maximize the sin-
gle silhouette artifact. Figure 18 shows an example with object
overlap artifacts. For both figures, the left images show our al-
gorithm. The right images were rendered using 1024-sample shad-
ows. Thus, these images are considered to provide very accurate
soft shadows. Since we only use the silhouette as seen from the
center point of the light source, artifact 1 occurs in Figure 17. As
can be seen, the umbra disappears using our algorithm, while there
is a clear umbra region for the other. Furthermore, the shadows on
the sides of the box are clearly different. This is also due to the
single silhouette approximation. In the two bottom images of Fig-
ure 18, it can be noticed that in this example the correct penumbra
region is smoother, while ours becomes too dark in the overlapping
section. This occurs since we, incorrectly, treat the two objects in-
dependently of each other.

As has been shown here, those artifacts can be pronounced in
some cases, and therefore our algorithm cannot be used when an
exact result is desired. However, for many applications, such as
games, we believe that those artifacts can be accepted, especially,
since the errors are are hard to detect for, e.g., animated characters.
Other applications may be able to use the presented algorithm as
well.

Figure 17: Single silhouette error: the left image shows results from
our algorithm, and the right from rendering using 1024 point sam-
ples on the area light source. Notice differences in the shadow un-
der the box, and on the sides on the box. The noise on the right light
source are the 1024 sample locations.

In general, for any shadow volume algorithm the following re-
strictions regarding geometry apply: the shadow casting objects
must be polygonal and closed (two-manifold) [Bergeron 1986].
The z-fail algorithm [Everitt and Kilgard 2002] can easily be in-
corporated into our algorithm to make the algorithm independent of
whether the eye is in shadow or not [Assarsson and Akenine-Möller
2003]. For the penumbra pass, this basically involves adding a bot-
tom plane to the wedge to close it and rasterize the back-facing
wedge-triangles instead of the front-facing. The solution of the ro-
bustness issues with the near- and far clipping planes [Everitt and
Kilgard 2002] could easily be included as well.

Regarding penumbra wedge construction, we have never expe-
rienced any robustness issues. Also, it is possible to use any kind
of area/volumetric light source, but for fast rendering we have re-
stricted our work to rectangular and spherical light sources. It is
trivial to modify visibility pass 2 (see Section 3.2.2) to handle a
spherical light source shape instead of a rectangular. In this case,
we do not use a precomputed coverage texture, since the compu-
tations become much simpler, and therefore, all computations can
be done in the pixel shader. We have not yet experimented with
spherical textured light sources.

6 Conclusion

We have presented a robust soft shadow volume algorithm that
can render images that often are indistinguishable from images
rendered using the average of 1024 hard shadow images. The
visibility computation pass of our algorithm was inspired by the
physics of the geometrical situation, which is key to the relatively
high quality. Another result is that we can use arbitrary shadow
casting and shadow receiving objects. Our algorithm can also
handle light sources with small textures, and even video textures
on them. This allows for spectacular effects such as animated
fire used as a light source. We have implemented our algorithm
both in software and using the GeForce FX emulator. With
actual hardware, we expect that our algorithm will render soft
shadows in real time. Our most important task for the future is
to run our algorithm using real hardware, and to optimize our
code for the hardware. We would also like to do a more accurate
comparison in terms of quality with other algorithms. Furthermore,

Figure 18: Object overlap error: the left images show results from
our algorithm, and the right from rendering using 1024-sample
shadows. The right images are correct, with their curved bound-
aries to the umbra. The left images contain straight boundaries to
the umbra.

it would be interesting to use Kautz and McCool’s [1999] work
on factoring low frequency BRDF’s into sums of products for our
four-dimensional coverage textures. It might be possible to greatly
reduce memory usage for coverage textures this way. We also plan
to investigate when quadrilinear filtering is needed for the coverage
textures.

Acknowledgements: Thanks to Randy Fernando, Eric Haines,
Mark Kilgard, and Chris Seitz.

References

AGRAWALA, M., RAMAMOORTHI, R., HEIRICH, A., AND MOLL, L.
2000. Efficient Image-Based Methods for Rendering Soft Shadows. In
Proceedings of ACM SIGGRAPH 2000, ACM Press/ACM SIGGRAPH,
New York. K. Akeley, Ed., Computer Graphics Proceedings, Annual
Conference Series, ACM, 375–384.

AKENINE-MÖLLER, T., AND ASSARSSON, U. 2002. Approximate Soft
Shadows on Arbitrary Surfaces using Penumbra Wedges. In 13th Euro-
graphics Workshop on Rendering, Eurographics, 309–318.

ASSARSSON, U., AND AKENINE-MÖLLER, T. 2003. Interactive Ren-
dering of Soft Shadows using an Optimized and Generalized Penumbra
Wedge Algorithm. submitted to the Visual Computer.

BERGERON, P. 1986. A General Version of Crow’s Shadow Volumes. IEEE
Computer Graphics and Applications 6, 9 (September), 17–28.

BRABEC, S., AND SEIDEL, H.-P. 2002. Single Sample Soft Shadows using
Depth Maps. In Graphics Interface 2002, 219–228.

BROTMAN, L. S., AND BADLER, N. I. 1984. Generating Soft Shadows
with a Depth Buffer Algorithm. IEEE Computer Graphics and Applica-
tions 4, 10 (October), 5–12.

COHEN, M. F., AND WALLACE, J. R. 1993. Radiosity and Realistic Image
Synthesis. Academic Press Professional.

CROW, F. 1977. Shadow Algorithms for Computer Graphics. In Computer
Graphics (Proceedings of ACM SIGGRAPH 77), ACM, 242–248.

DRETTAKIS, G., AND FIUME, E. 1994. A Fast Shadow Algorithm for
Area Light Sources Using Back Projection. In Proceedings of ACM
SIGGRAPH 94, ACM Press/ACM SIGGRAPH, New York. A. Glassner,
Ed., Computer Graphics Proceedings, Annual Conference Series, ACM,
223–230.

EVERITT, C., AND KILGARD, M. 2002. Practical and Ro-
bust Stenciled Shadow Volumes for Hardware-Accelerated Rendering.
http://developer.nvidia.com/ .

FERNANDO, R., FERNANDEZ, S., BALA, K., AND GREENBERG, D. P.
2001. Adaptive Shadow Maps. In Proceedings of ACM SIGGRAPH
2001, ACM Press/ACM SIGGRAPH, New York. E. Fiume, Ed., Com-
puter Graphics Proceedings, Annual Conference Series, ACM, 387–390.

HAINES, E., AND MÖLLER, T. 2001. Real-Time Shadows. In Game
Developers Conference, CMP, 335–352.

HAINES, E. 2001. Soft Planar Shadows Using Plateaus. Journal of Graph-
ics Tools 6, 1, 19–27.

HART, D., DUTRÉ, P., AND GREENBERG, D. P. 1999. Direct Illumina-
tion with Lazy Visbility Evaluation. In Proceedings of ACM SIGGRAPH
99, ACM Press/ACM SIGGRAPH, New York. A. Rockwood, Ed., Com-
puter Graphics Proceedings, Annual Conference Series, ACM, 147–154.

HECKBERT, P., AND HERF, M. 1997. Simulating Soft Shadows with
Graphics Hardware. Tech. rep., Carnegie Mellon University, CMU-CS-
97-104, January.

HEIDMANN, T. 1991. Real Shadows, Real Time. Iris Universe, 18 (Novem-
ber), 23–31.

HEIDRICH, W., BRABEC, S., AND SEIDEL, H.-P. 2000. Soft Shadow
Maps for Linear Lights. In 11th Eurographics Workshop on Rendering,
Eurographics, 269–280.

KAUTZ, J., AND MCCOOL, M. D. 1999. Interactive Rendering with Ar-
bitrary BRDFs using Separable Approximations. In 10th Eurographics
Workshop on Rendering, Eurographics, 281–292.

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D.,
GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-Time Nonphotorealis-
tic Rendering. In Proceedings of ACM SIGGRAPH 97, ACM Press/ACM
SIGGRAPH, New York. T. Whitted, Ed., Computer Graphics Proceed-
ings, Annual Conference Series, ACM, 415–420.

PARKER, S., SHIRLEY, P., AND SMITS, B. 1998. Single Sample Soft
Shadows. Tech. rep., University of Utah, UUCS-98-019, October.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987. Rendering
Antialiased Shadows with Depth Maps. In Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 87), ACM, 283–291.

SEGAL, M., KOROBKIN, C., VAN WIDENFELT, R., FORAN, J., AND
HAEBERLI, P. 1992. Fast Shadows and Lighting Effects Using Tex-
ture Mapping. In Computer Graphics (Proceedings of ACM SIGGRAPH
92), ACM, 249–252.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting
Environments. ACM Transactions on Graphics 21, 3 (July), 527–536.

SOLER, C., AND SILLION, F. X. 1998. Fast Calculation of Soft Shadow
Textures Using Convolution. In Proceedings of ACM SIGGRAPH 98,
ACM Press/ACM SIGGRAPH, New York. M. Cohen, Ed., Computer
Graphics Proceedings, Annual Conference Series, ACM, 321–332.

STAMMINGER, M., AND DRETTAKIS, G. 2002. Perspective Shadow Maps.
ACM Transactions on Graphics 21, 3 (July), 557–562.

WILLIAMS, L. 1978. Casting Curved Shadows on Curved Surfaces. In
Computer Graphics (Proceedings of ACM SIGGRAPH 92), ACM, 270–
274.

WOO, A., POULIN, P., AND FOURNIER, A. 1990. A Survey of Shadow Al-
gorithms. IEEE Computer Graphics and Applications 10, 6 (November),
13–32.

