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Abstract

We show that comparing geometrical algorithms, in general, is verytbatd
in a fair way. Our focus here is on the existing ray-triangle intersectiorrdest
tines. A set of rules are developed so that a fair comparison can daqad, and
this is all implemented in an evaluation framework. If all algorithms are exatu
using different hit rates, on different machines, for different irgnud output data,
and different compilers then it is impossible to single out one “best” algurith
program called a “ray-triangle advisor” is developed that people carnugrder
to determine which algorithm works best under their particular circumsganc

1 Introduction

In computer graphics and geometrical algorithms, thereftsncan O(1)-algorithm
involved. For example, in collision detection, both bourgdivolume vs. bounding
volume and triangle/triangle overlap tests are used. Theseften called a very large
number of times, and can therefore significantly affect ttefggmance. However,
there does not appear to be a systematic way of determinirdhwhsuch algorithms
is performing best. In this paper, we concentrate on evalyatifferent ray-triangle
intersection algorithms, but we believe that our approacpplicable to otheD(1)-
algorithms as well. Ray-triangle intersection is oftendugeray tracers, for simple
collision detection, and for picking. We have found morent8 different algorithms
which have been published over the years and there is stilimple answer to which
algorithm that is the fastest.

In the first author’'s master’s thesis [11], it has been cahedithat no single fastest
algorithm can be singled out, since performance dependsamy mifferent factors,
such as compiler, computer, application, hit rate, and tfpeiangle data. The pur-
pose of this paper is to introduce a framework which can bd tsevaluate different
ray-triangle intersection test algorithms. This test femrark should be fair to all algo-
rithms, and be able to provide information on which algarith user should choose for
best performance on a specific platform. The entire framkeand all implementations
of the ray-triangle intersection algorithms are put inte plublic domain.



2 Evaluation Framework

While reviewing publications considering ray-triangledrgection algorithms we found
no consensus on how to evaluate their performance. Thiddstunate since it makes
it difficult to draw any conclusion on which is the fastest Iswdgorithm based on
previous research.

To develop a more general method of testing, we outline sawiglgms we have
found with previous test approaches and then suggest adutiThe problems have
been:

I. The test have been performed on too few machines, usirygeosihgle compiler
and including only a few of the available algorithms,

II. all algorithms have been tested on the same input,
lll. the algorithms have not calculated the same type of aiLitp
IV. the algorithms have not reported the same amount of hitstest set,

V. the test set has only had a single hit rate (i.e., the numbiatersected triangles
divided by the number of tested triangles).

The solution to problem | is simply to test on more machineth weveral differ-
ent compilers, and to test all available algorithms. Pnoblearises since different
algorithms may benefit from different input data. For examplgorithms that use the
triangle plane equation may benefit from having this pradated and stored with the
triangle description. On the other hand storing extra imi@tion that an algorithm do
not need may be disadvantageous in terms of cache perfoemanc

In order to test the included algorithms using their bestuingata, we provide
fivel different triangle description (assuming each point otteeis stored using three
floats):

1. Only triangle vertices [9 floats]

2. Triangle vertices, triangle plane equation and projectndices [13 floats + 3
ints]

3. Plicker coordinates of the triangle edges, and one triangtexéor t-value
calculation [21 floats].

4. Inverse matrix for the Arenberg algorithm [2] and a trikengertex fort-value
calculation [12 floats]

5. Halfplane equations for each edge, triangle plane emuatid projection indices
[13 floats + 2 ints]

10bviously, it is possible to create more different types giindata, but those reported are the ones that
we found most useful.



In this manner, each algorithm can use a triangle descnifition the list above that
the algorithm benefits the most from. We also find it interestd test every algorithm
with the first triangle description type, since it will meetmimal storage requirements
and force every algorithm to calculate everything “on-tlye-

Problem IIl stems from the fact that the included algorithhosnot calculate the
same output data that may be useful in different types ofiegns. We noticed
that most of the algorithms that provide, for example, bamyiic coordinates or the
t-value can be rewritten into faster versions that insteadpede “scaled” versions
of the same parameters. We therefore suggest that evemjtlalgshould be tested
in three different versions. The first version computes Hagthycentric coordinates
and thet-value, the second version computes only thelue, and for the third no
extra information needs to be computed. These three varsiene selected because
we find that they correspond to the three major usages fotri@ygle intersection
algorithms. The first would be useful when tracing regulassrian a ray tracer, the
second for intersection testing, and the third may be useshwiacing shadow rays in
aray tracef

An algorithm that intersects a triangle with a line segment eport different re-
sults than an algorithm that intersects with a semi-infinidg The same problem
occurs because some algorithms report intersection behenday, e.g., for negative
t-values, and some report hits only when the triangle vestaze ordered in counter-
clockwise order as seen along the ray. Thus, problem IV costien algorithms that
use different definitions of what a “hit” is are compared. &air to all algorithms we
must assure that every algorithm report the same amountf hihis would be very
difficult if we test every ray against every triangle as in goprevious publications.
We therefore suggest that the test set should be composedr®bprays and triangles
that let us control the positions of the ray versus the tlenghis is easily achieved
by composing the ray and triangle from randomized pointshensurface of the unit
sphere while controlling that the counterclockwise relaship is met.

Some algorithms perform best for test sets where the hitisateery low (say
< 10%), while other perform better when the majority of inemtons tests are hits.
Furthermore, some applications may have a small percenfduts, while others have
almost only hits. This is what we refer to as problem V. To maketest fair we suggest
that several different test sets with different hit ratess@eated. The previous style of
testing every ray against every triangle will make it difftcio control the hit rate in
a test set, but our suggested method of generating pairy®farad triangle provides
a simple solution. We simply test if a ray and triangle paisal#es a hit or a miss
and reject or include this to compose a test set with whateveate we desire to test.
Thus, the creation of the test sets are done as a preprocess.



machine oS | gce .NET | Borland | CodeWarrior

G4 450 MHz Mac OS X * *
eMac 800 MHz Mac Os X *
iMac 800 MHz Mac Os 9 *
G5 dual 2.0GHz OsX *
Ultra Sparc 10 Solaris *
Sun Blade 150 Solaris *
Sun Blade 1000 Solaris *
Sun Blade 2000 Solaris *
Celeron 600 MHz Mandrake Linux/Windows XP * * *
Celeron 2.0 GHz Windows XP * * *
P3 933 MHz Windows XP * * *
P3 1000 MHz Free BSD *
P4 1.8 GHz Free BSD *
P42.4 GHz Windows XP * * *
P4 2.6 GHz Windows XP * * *
AMD Athlon 1,33 GHz Free BSD *
AMD Athlon 1,33 GHz(Laptop) Debian Linux *
AMD Athlon 1,73 GHz Windows XP * * *

Table 1: Machines and compilers. With the gcc and the Bortaomdpiler we use the
02 optimization. With the CodeWarrior and .NET compilerswge full optimization
for speed.



A122 The Shimrat Algorithm 122 [16]t-value.
A2D The Area 2D algorithm based on O’Rourke [14}value.
AR The Arenberg algorithm [2].t-value, barycentric coor dinates.

AR2  The Arenberg algorithm but with a late division in the sameine as in theM T2 and HF2 and coded to only handle counterclockwise cagegalue, barycentric
coordinates.

BA  The Badouel algorithm [3].t-value, barycentric coor dinated.

BO The Bounding planes algorithm [1}-value.

CH1 This is a version of theCH3 algorithm without the branching on different projectedngia and with an optimization in the number of calculatiohsalue(scal ed)
CH2 This is the Chirkov algorithm with code provided by the autf. t-value(scaled)

CH3 This is the Chirkov algorithm with the same branching@s 2, but with the optimization on calculations as @H1. t-value(scaled)

CR This is a crossings test based algorithm inspired by Haiflgs\falue

ER This an adaptation of the ERIT ray-triangle intersectiagogithm [9]. t-value

HF This is an adaptation of the halfplane algorithm as disalibyeGreen [6]. t-value

HF2 A version of the halfplane algorithm where the tests arequeréd on scaled values of the intersection point and theidivican be performed after we know we have
a hit. t-value(scaled)

MA  This is the Mahovsky optimization of theiRiker algorithm [12].
MTO The original version of the Riller-Trumbore algorithm [13].t-value, barycentric coordinates.

MT1 The Moller-Trumbore algorithm where the tests are done on uedcatrsions of the barycentric coordinates leaving thesidimi until we know we have a hit.
t-value, barycentric coor dinates.

MT2 The Moller-Trumbore algorithm with different branching on éifént signs of the determinant to divide with. The divisisibéfore the testst-value, barycentric
coor dinates.

MT3 The Moller-Trumbore as above but with a crossproduct done béfiereching on determinant sigri-value, barycentric coor dinates.

OR This version of the volume of tetrahedron algorithm usegigterminant calculation as suggested by O’Rourke [14]wlitita slightly optimized version of the tests.
ORC This is a version ofOR which only works with triangles which are counter-clockevigersus the ray.

PU This is a Plicker algorithm without the optimizations iMA. For references see [1, 5, 10, 17].

SE This is a version of the volume of tetrahedron algorithm vaigiculation of determinant as i®R, but with tests on signs and branching as suggested by Sagdra
Feito [15].

SNY  This is an implementation of the Snyder-Barr algorithm [18)value, barycentric coor dinates.

SU The Sunday algorithm, with code provided by the author [19¥alue, barycentric coordinates.

Table 2: The different algorithms and what extra informadtilbey originally were de-
signed to calculate.



Machine | os | Com| 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | Sum

G4 0.45 GHz Os9 cw AR2i AR2i AR ARi ARI AR ARi ARI ARI AR AR ARi
G4 0.45 GHz Os X gce OR MTO MTO MTO MTO MTO MTO MTO MTO MTO MTO MTO
eMac 0.8 GHz Os X gce MT1 HF2h HFh HF2h HFh MT1 HFh HFh HFh HFh ARi HFh
iMac 0.8 GHz Os9 cw ARi ARi ARi ARi ARi ARi ARi ARi ARi ARi ARi ARi
G5 dual 2.0GHz OsX gce OR HF2h HF2h HF2h HF2h AR2i AR2i AR2i AR2i AR2i AR2i AR2i
Ultra Sparc 10 Sol gce ORC ORC ORC ORC ORC MT2 MT2 MT2 ARi ARi ARi ORC
Sun Blade 150 Sol gce ORC ORC ORC ORC ORC ORC ORC MT2 MT2 MT2 MT2 ORC
Sun Blade 1000 Sol gce ORC ORC ORC ORC ORC ORC ARi ARi ARi ARi ARi ORC
Sun Blade 2000 Sol gce ORC ORC ORC ORC ORC ARI ARi ARI AR ARI ARi ORC
Celeron 0.6 GHz Lin gce CH2p CH3p CH3p CH1p MT2 MT2 MT2 MT2 MT2 ARi ARi MT2
Celeron 0.6 GHz XP gce CH2p CH3p CH1p CH1p AR2i AR2i ARI ARI ARi ARi ARi AR2i
Celeron 0.6 GHz XP NET MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1
Celeron 0.6 GHz XP Bo MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1
Celeron 2.0 GHz XP gce CH1p CH2p HF2h CH2p HF2h HF2h HF2h HF2h HF2h HF2h HFh HF2h
Celeron 2.0 GHz XP NET CH1p CH1p CH1p CH1p CH1p AR2i AR2i AR2i AR2i AR2i AR2i AR2i
Celeron 2.0 GHz XP Bo CH1p CH2p HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h
P30.933 GHz XP gce CH3p CH3p CH3p AR2i AR2i AR2i AR2i MT1 MT1 MT2 MT2 MT1
P30.933 GHz XP NET AR2i AR2i AR2i MT1 MT1 MT1 AR2i MT1 MT1 MT1 MT1 MT1
P30.933 GHz XP Bo MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1
P31.0GHz BSD gce CH1p OR OR ARI ARi ARi AR ARi ARi ARi ARi ARI
P4 1.8 GHz BSD gce CH1p HFh AR2i HFh HFh HFh HFh HFh HFh HFh HFh HFh
P4 2.4 GHz XP gce CH2p CH1p CH1p HF2h HF2h HF2h CH1p HF2h HF2h HF2h HF2h HF2h
P4 2.4 GHz XP NET CH1p HF2h AR2i CH1p HF2h AR2i AR2i AR2i AR2i AR2i AR2i AR2i
P4 2.4 GHz XP Bo CH2p CH1p HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h
P4 2.6 GHz XP gce CH1p | CH2p HF2h CH1p HF2h HF2h HF2h CH1p | HF2h | HF2h | HF2h | HF2h
P4 2.6 GHz XP NET CH3p CH1p CH1p HF2h AR2i HF2h AR2i AR2i AR2i AR2i AR2i AR2i
P4 2.6 GHz XP Bo CH1p CH2p CH1p HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h
AMD 1,33 GHz BSD gce CH3p CH3p OR MT1 ARI MT1 ARi MT1 ARI MT1 ARI MT1
AMD 1,33 GHz Lin gce ORC MT1 MT2 MT1 OR MT1 MT1 MTO MT2 MT3 MT1 MT1
AMD 1,73 GHz XP gce OR ORC ORC MT1 MT1 MT1 MTO MTO MT3 MT1 MTO MTO
AMD 1,73 GHz XP NET ORC OR CH3p PU AR2i OR OR MT3 ORC MT1 PU OR
AMD 1,73 GHz XP Bo PU OR OR MT2 AR2i AR2i AR2i AR2i AR2i AR2i AR2i AR2i

Table 3: Fastest algorithms on the barycentric test atréifiehit rates on all machines.
In the last column the algorithm with the smallest summakizmtime over all hit rates
is listed. A firstthing to notice in this table is the diffei@nin fastest algorithm between
machines, hit rates and compilers. We should also notidestirae machines as the
G4 450Mhz, Blade 150, Celeron 600MHz, P3 933MHz and AMD 1 H43Geem to
prefer algorithms not using any precalculated data andalatithms such as th@R,
HF, CH andPU not originally intended to calculate barycentric coordésamay still
be fastest at the barycentric test. When referring to therithgos we use lowercase
letters to describe which triangle structures that was ,uséetre p = precalculated
plane equation, pl = precalculatediBker coordinates, i = precalculated inverse for the
Arenberg algorithm, hf = precalculated halfplane equation
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Figure 1: Some of the fastest algorithms with runtime ptbts a function of hit rate.

All algorithms calculate barycentric coordinates an@lue. For the P4 and AMD the
.NET compiler was used and for the G5 and Blade machines tbegupiler was

used. Note the negative slope for some of the algorithms @Pthand G5 machines.
Since the algorithms return early on a miss, more instrostiwave to be executed to
reach a hit and therefore the runtime should increase wéthihrate and we should
not get a negative slope. We believe that this behavior isaby branch prediction
mechanisms in the newer P4 and G5 architectures and thbéete use a rather large
testset of 100,000 ray-triangle pairs.



3 Some Results

The evaluation framework described above has been impleaénC, compiled with
different compilers and run on 18 different machines as rilesg in Table 1. The
included algorithms are listed in Table 2.

The major result from this test is that which algorithm idl $éistest depends on
machine, compiler and hit rates. This is illustrated in @abWwhere we list the fastest
algorithms on all of our tested machines at 11 hit rates. Tfference between ma-
chines and hit rate is further described in Figure 1, whereploethe runtime as a
function of hit rate on some machines for some of the fastgstithms’.

4 Ray-Triangle Advisor

In the text above, we have argued and empirically provedhese does not exist such
a thing aghe fastest ray-triangle intersection algorithm. Unfortunately, this leaves us
with a problem when picking an algorithm for a particularjpad. To give some help
with this decision we developed a simplified version of trst thscussed above which
we call theray-triangle advisor. To save runtime we excluded algorithms that have
not been among the fastest on the tests described abovempbfgithe analysis of
the results we only consider the summed run times over diftenit rates and let the
user decide which hit rates to summarize over. This givesisiee maximal flexibility
in setting the parameters so that an algorithm can be chbs¢suits her needs. The
source code and information on how to use this is availaldmtittp: //www.cs.
1th.se/~tam/raytri/advisor.tar.gz.

5 Discussion

We believe that our experience in this work can be used irrstinelies of geometrical
intersection and overlap tests as well. It may not alwayshsible to perform such a
large study as ours in order to determine which algorithnes.bHowever, we strongly
believe that an attempt should be made to follow the guidslinrom Section 2. At the
very minimum, we believe that all existing algorithms shibbk included in the test,
and a relative large set of different input data with diffarait rates should be used
as this gives the reader a hint on when the algorithm will week and when it will
not. In our tests, we used 11 different sets with hit rates0fd, wherek € [0, 10].
Presenting diagrams with execution time on yh&xis, and the hit rate on theaxis
often provide a lot of information about the algorithm’s ceteristics.

2This may not be applicable for algorithms that report intelisecn a negativé-value, but since there
may be certain data structures that could prevent us fronersag negativé-value space, we still find it
interesting to test this class of algorithms in their fastnsions.

3A more thorough discussion on the results can be found in thteafithor's master’s thesis [11].
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