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Abstract

We show that comparing geometrical algorithms, in general, is very hardto do
in a fair way. Our focus here is on the existing ray-triangle intersection testrou-
tines. A set of rules are developed so that a fair comparison can be produced, and
this is all implemented in an evaluation framework. If all algorithms are evaluated
using different hit rates, on different machines, for different input and output data,
and different compilers then it is impossible to single out one “best” algorithm. A
program called a “ray-triangle advisor” is developed that people can use in order
to determine which algorithm works best under their particular circumstances.

1 Introduction

In computer graphics and geometrical algorithms, there is often anO(1)-algorithm
involved. For example, in collision detection, both bounding volume vs. bounding
volume and triangle/triangle overlap tests are used. Theseare often called a very large
number of times, and can therefore significantly affect the performance. However,
there does not appear to be a systematic way of determining which of such algorithms
is performing best. In this paper, we concentrate on evaluating different ray-triangle
intersection algorithms, but we believe that our approach is applicable to otherO(1)-
algorithms as well. Ray-triangle intersection is often used in ray tracers, for simple
collision detection, and for picking. We have found more than 13 different algorithms
which have been published over the years and there is still nosimple answer to which
algorithm that is the fastest.

In the first author’s master’s thesis [11], it has been concluded that no single fastest
algorithm can be singled out, since performance depends on many different factors,
such as compiler, computer, application, hit rate, and typeof triangle data. The pur-
pose of this paper is to introduce a framework which can be used to evaluate different
ray-triangle intersection test algorithms. This test framework should be fair to all algo-
rithms, and be able to provide information on which algorithm a user should choose for
best performance on a specific platform. The entire framework and all implementations
of the ray-triangle intersection algorithms are put into the public domain.
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2 Evaluation Framework

While reviewing publications considering ray-triangle intersection algorithms we found
no consensus on how to evaluate their performance. This is unfortunate since it makes
it difficult to draw any conclusion on which is the fastest such algorithm based on
previous research.

To develop a more general method of testing, we outline some problems we have
found with previous test approaches and then suggest solutions. The problems have
been:

I. The test have been performed on too few machines, using only a single compiler
and including only a few of the available algorithms,

II. all algorithms have been tested on the same input,

III. the algorithms have not calculated the same type of output,

IV. the algorithms have not reported the same amount of hits in a test set,

V. the test set has only had a single hit rate (i.e., the numberof intersected triangles
divided by the number of tested triangles).

The solution to problem I is simply to test on more machines with several differ-
ent compilers, and to test all available algorithms. Problem II arises since different
algorithms may benefit from different input data. For example, algorithms that use the
triangle plane equation may benefit from having this precalculated and stored with the
triangle description. On the other hand storing extra information that an algorithm do
not need may be disadvantageous in terms of cache performance.

In order to test the included algorithms using their best input data, we provide
five1 different triangle description (assuming each point or vector is stored using three
floats):

1. Only triangle vertices [9 floats]

2. Triangle vertices, triangle plane equation and projection indices [13 floats + 3
ints]

3. Pl̈ucker coordinates of the triangle edges, and one triangle vertex for t-value
calculation [21 floats].

4. Inverse matrix for the Arenberg algorithm [2] and a triangle vertex fort-value
calculation [12 floats]

5. Halfplane equations for each edge, triangle plane equation and projection indices
[13 floats + 2 ints]

1Obviously, it is possible to create more different types of input data, but those reported are the ones that
we found most useful.
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In this manner, each algorithm can use a triangle description from the list above that
the algorithm benefits the most from. We also find it interesting to test every algorithm
with the first triangle description type, since it will meet minimal storage requirements
and force every algorithm to calculate everything “on-the-fly.”

Problem III stems from the fact that the included algorithmsdo not calculate the
same output data that may be useful in different types of applications. We noticed
that most of the algorithms that provide, for example, barycentric coordinates or the
t-value can be rewritten into faster versions that instead compute “scaled” versions
of the same parameters. We therefore suggest that every algorithm should be tested
in three different versions. The first version computes bothbarycentric coordinates
and thet-value, the second version computes only thet-value, and for the third no
extra information needs to be computed. These three versions were selected because
we find that they correspond to the three major usages for ray-triangle intersection
algorithms. The first would be useful when tracing regular rays in a ray tracer, the
second for intersection testing, and the third may be used when tracing shadow rays in
a ray tracer.2

An algorithm that intersects a triangle with a line segment can report different re-
sults than an algorithm that intersects with a semi-infiniteray. The same problem
occurs because some algorithms report intersection behindthe ray, e.g., for negative
t-values, and some report hits only when the triangle vertices are ordered in counter-
clockwise order as seen along the ray. Thus, problem IV occurs when algorithms that
use different definitions of what a “hit” is are compared. To be fair to all algorithms we
must assure that every algorithm report the same amount of hits. This would be very
difficult if we test every ray against every triangle as in some previous publications.
We therefore suggest that the test set should be composed of pairs of rays and triangles
that let us control the positions of the ray versus the triangle. This is easily achieved
by composing the ray and triangle from randomized points on the surface of the unit
sphere while controlling that the counterclockwise relationship is met.

Some algorithms perform best for test sets where the hit rateis very low (say
< 10%), while other perform better when the majority of intersections tests are hits.
Furthermore, some applications may have a small percentageof hits, while others have
almost only hits. This is what we refer to as problem V. To makeour test fair we suggest
that several different test sets with different hit rates are created. The previous style of
testing every ray against every triangle will make it difficult to control the hit rate in
a test set, but our suggested method of generating pairs of rays and triangle provides
a simple solution. We simply test if a ray and triangle pair describes a hit or a miss
and reject or include this to compose a test set with whateverhit rate we desire to test.
Thus, the creation of the test sets are done as a preprocess.
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machine OS gcc .NET Borland CodeWarrior

G4 450 MHz Mac OS X * *

eMac 800 MHz Mac Os X *

iMac 800 MHz Mac Os 9 *

G5 dual 2.0GHz OsX *

Ultra Sparc 10 Solaris *

Sun Blade 150 Solaris *

Sun Blade 1000 Solaris *

Sun Blade 2000 Solaris *

Celeron 600 MHz Mandrake Linux/Windows XP * * *

Celeron 2.0 GHz Windows XP * * *

P3 933 MHz Windows XP * * *

P3 1000 MHz Free BSD *

P4 1.8 GHz Free BSD *

P4 2.4 GHz Windows XP * * *

P4 2.6 GHz Windows XP * * *

AMD Athlon 1,33 GHz Free BSD *

AMD Athlon 1,33 GHz(Laptop) Debian Linux *

AMD Athlon 1,73 GHz Windows XP * * *

Table 1: Machines and compilers. With the gcc and the Borlandcompiler we use the
O2 optimization. With the CodeWarrior and .NET compilers weuse full optimization
for speed.
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A122 The Shimrat Algorithm 122 [16].t-value.

A2D The Area 2D algorithm based on O’Rourke [14].t-value.

AR The Arenberg algorithm [2].t-value, barycentric coordinates.

AR2 The Arenberg algorithm but with a late division in the same manner as in theMT2 and HF2 and coded to only handle counterclockwise cases.t-value, barycentric
coordinates.

BA The Badouel algorithm [3].t-value, barycentric coordinated.

BO The Bounding planes algorithm [1].t-value.

CH1 This is a version of theCH3 algorithm without the branching on different projected planes and with an optimization in the number of calculations.t-value(scaled)

CH2 This is the Chirkov algorithm with code provided by the author [4]. t-value(scaled)

CH3 This is the Chirkov algorithm with the same branching asCH2, but with the optimization on calculations as inCH1. t-value(scaled)

CR This is a crossings test based algorithm inspired by Haines [7].t-value

ER This an adaptation of the ERIT ray-triangle intersection algorithm [9]. t-value

HF This is an adaptation of the halfplane algorithm as discussed by Green [6]. t-value

HF2 A version of the halfplane algorithm where the tests are performed on scaled values of the intersection point and the division can be performed after we know we have
a hit. t-value(scaled)

MA This is the Mahovsky optimization of the Plücker algorithm [12].

MT0 The original version of the M̈oller-Trumbore algorithm [13].t-value, barycentric coordinates.

MT1 The Möller-Trumbore algorithm where the tests are done on unscaled versions of the barycentric coordinates leaving the division until we know we have a hit.
t-value, barycentric coordinates.

MT2 The Möller-Trumbore algorithm with different branching on different signs of the determinant to divide with. The division is before the tests.t-value, barycentric
coordinates.

MT3 The Möller-Trumbore as above but with a crossproduct done beforebranching on determinant sign.t-value, barycentric coordinates.

OR This version of the volume of tetrahedron algorithm uses thedeterminant calculation as suggested by O’Rourke [14], butwith a slightly optimized version of the tests.

ORC This is a version ofOR which only works with triangles which are counter-clockwise versus the ray.

PU This is a Pl̈ucker algorithm without the optimizations inMA. For references see [1, 5, 10, 17].

SE This is a version of the volume of tetrahedron algorithm withcalculation of determinant as inOR, but with tests on signs and branching as suggested by Seguraand
Feito [15].

SNY This is an implementation of the Snyder-Barr algorithm [18]. t-value, barycentric coordinates.

SU The Sunday algorithm, with code provided by the author [19].t-value, barycentric coordinates.

Table 2: The different algorithms and what extra information they originally were de-
signed to calculate.
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Machine OS Com 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Sum

G4 0.45 GHz Os 9 cw AR2i AR2i ARi ARi ARi ARi ARi ARi ARi ARi ARi ARi

G4 0.45 GHz Os X gcc OR MT0 MT0 MT0 MT0 MT0 MT0 MT0 MT0 MT0 MT0 MT0

eMac 0.8 GHz Os X gcc MT1 HF2h HFh HF2h HFh MT1 HFh HFh HFh HFh ARi HFh

iMac 0.8 GHz Os 9 cw ARi ARi ARi ARi ARi ARi ARi ARi ARi ARi ARi ARi

G5 dual 2.0GHz OsX gcc OR HF2h HF2h HF2h HF2h AR2i AR2i AR2i AR2i AR2i AR2i AR2i

Ultra Sparc 10 Sol gcc ORC ORC ORC ORC ORC MT2 MT2 MT2 ARi ARi ARi ORC

Sun Blade 150 Sol gcc ORC ORC ORC ORC ORC ORC ORC MT2 MT2 MT2 MT2 ORC

Sun Blade 1000 Sol gcc ORC ORC ORC ORC ORC ORC ARi ARi ARi ARi ARi ORC

Sun Blade 2000 Sol gcc ORC ORC ORC ORC ORC ARi ARi ARi ARi ARi ARi ORC

Celeron 0.6 GHz Lin gcc CH2p CH3p CH3p CH1p MT2 MT2 MT2 MT2 MT2 ARi ARi MT2

Celeron 0.6 GHz XP gcc CH2p CH3p CH1p CH1p AR2i AR2i ARi ARi ARi ARi ARi AR2i

Celeron 0.6 GHz XP .NET MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1

Celeron 0.6 GHz XP Bo MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1

Celeron 2.0 GHz XP gcc CH1p CH2p HF2h CH2p HF2h HF2h HF2h HF2h HF2h HF2h HFh HF2h

Celeron 2.0 GHz XP .NET CH1p CH1p CH1p CH1p CH1p AR2i AR2i AR2i AR2i AR2i AR2i AR2i

Celeron 2.0 GHz XP Bo CH1p CH2p HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h

P3 0.933 GHz XP gcc CH3p CH3p CH3p AR2i AR2i AR2i AR2i MT1 MT1 MT2 MT2 MT1

P3 0.933 GHz XP .NET AR2i AR2i AR2i MT1 MT1 MT1 AR2i MT1 MT1 MT1 MT1 MT1

P3 0.933 GHz XP Bo MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1 MT1

P3 1.0 GHz BSD gcc CH1p OR OR ARi ARi ARi ARi ARi ARi ARi ARi ARi

P4 1.8 GHz BSD gcc CH1p HFh AR2i HFh HFh HFh HFh HFh HFh HFh HFh HFh

P4 2.4 GHz XP gcc CH2p CH1p CH1p HF2h HF2h HF2h CH1p HF2h HF2h HF2h HF2h HF2h

P4 2.4 GHz XP .NET CH1p HF2h AR2i CH1p HF2h AR2i AR2i AR2i AR2i AR2i AR2i AR2i

P4 2.4 GHz XP Bo CH2p CH1p HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h

P4 2.6 GHz XP gcc CH1p CH2p HF2h CH1p HF2h HF2h HF2h CH1p HF2h HF2h HF2h HF2h

P4 2.6 GHz XP .NET CH3p CH1p CH1p HF2h AR2i HF2h AR2i AR2i AR2i AR2i AR2i AR2i

P4 2.6 GHz XP Bo CH1p CH2p CH1p HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h HF2h

AMD 1,33 GHz BSD gcc CH3p CH3p OR MT1 ARi MT1 ARi MT1 ARi MT1 ARi MT1

AMD 1,33 GHz Lin gcc ORC MT1 MT2 MT1 OR MT1 MT1 MT0 MT2 MT3 MT1 MT1

AMD 1,73 GHz XP gcc OR ORC ORC MT1 MT1 MT1 MT0 MT0 MT3 MT1 MT0 MT0

AMD 1,73 GHz XP .NET ORC OR CH3p PU AR2i OR OR MT3 ORC MT1 PU OR

AMD 1,73 GHz XP Bo PU OR OR MT2 AR2i AR2i AR2i AR2i AR2i AR2i AR2i AR2i

Table 3: Fastest algorithms on the barycentric test at different hit rates on all machines.
In the last column the algorithm with the smallest summarized runtime over all hit rates
is listed. A first thing to notice in this table is the difference in fastest algorithm between
machines, hit rates and compilers. We should also notice that some machines as the
G4 450Mhz, Blade 150, Celeron 600MHz, P3 933MHz and AMD 1,33GHz seem to
prefer algorithms not using any precalculated data and thatalgorithms such as theOR,
HF, CH andPU not originally intended to calculate barycentric coordinates may still
be fastest at the barycentric test. When referring to the algorithms we use lowercase
letters to describe which triangle structures that was used, where p = precalculated
plane equation, pl = precalculated Plücker coordinates, i = precalculated inverse for the
Arenberg algorithm, hf = precalculated halfplane equations.
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Figure 1: Some of the fastest algorithms with runtime plotted as a function of hit rate.
All algorithms calculate barycentric coordinates andt-value. For the P4 and AMD the
.NET compiler was used and for the G5 and Blade machines the gcc compiler was
used. Note the negative slope for some of the algorithms on the P4 and G5 machines.
Since the algorithms return early on a miss, more instructions have to be executed to
reach a hit and therefore the runtime should increase with the hit rate and we should
not get a negative slope. We believe that this behavior is caused by branch prediction
mechanisms in the newer P4 and G5 architectures and the fact that we use a rather large
testset of 100,000 ray-triangle pairs.
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3 Some Results

The evaluation framework described above has been implemented in C, compiled with
different compilers and run on 18 different machines as described in Table 1. The
included algorithms are listed in Table 2.

The major result from this test is that which algorithm is still fastest depends on
machine, compiler and hit rates. This is illustrated in Table 3 where we list the fastest
algorithms on all of our tested machines at 11 hit rates. The difference between ma-
chines and hit rate is further described in Figure 1, where weplot the runtime as a
function of hit rate on some machines for some of the fastest algorithms3.

4 Ray-Triangle Advisor

In the text above, we have argued and empirically proved thatthere does not exist such
a thing asthe fastest ray-triangle intersection algorithm. Unfortunately, this leaves us
with a problem when picking an algorithm for a particular project. To give some help
with this decision we developed a simplified version of the test discussed above which
we call theray-triangle advisor. To save runtime we excluded algorithms that have
not been among the fastest on the tests described above. To simplify the analysis of
the results we only consider the summed run times over different hit rates and let the
user decide which hit rates to summarize over. This gives theuser maximal flexibility
in setting the parameters so that an algorithm can be chosen that suits her needs. The
source code and information on how to use this is available from http://www.cs.

lth.se/∼tam/raytri/advisor.tar.gz.

5 Discussion

We believe that our experience in this work can be used in other studies of geometrical
intersection and overlap tests as well. It may not always be feasible to perform such a
large study as ours in order to determine which algorithm is best. However, we strongly
believe that an attempt should be made to follow the guidelines from Section 2. At the
very minimum, we believe that all existing algorithms should be included in the test,
and a relative large set of different input data with different hit rates should be used
as this gives the reader a hint on when the algorithm will workwell and when it will
not. In our tests, we used 11 different sets with hit rates of 10k%, wherek ∈ [0,10].
Presenting diagrams with execution time on they-axis, and the hit rate on thex-axis
often provide a lot of information about the algorithm’s characteristics.

2This may not be applicable for algorithms that report intersection on a negativet-value, but since there
may be certain data structures that could prevent us from traversing negativet-value space, we still find it
interesting to test this class of algorithms in their faster versions.

3A more thorough discussion on the results can be found in the first author’s master’s thesis [11].
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